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For decades, lactate has been considered an innocuous bystander metabolite of cellular
metabolism. However, emerging studies show that lactate acts as a complex
immunomodulatory molecule that controls innate and adaptive immune cells’ effector
functions. Thus, recent advances point to lactate as an essential and novel signaling
molecule that shapes innate and adaptive immune responses in the intestine and systemic
sites. Here, we review these recent advances in the context of the pleiotropic effects of
lactate in regulating diverse functions of immune cells in the tissue microenvironment and
under pathological conditions.

Keywords: dendritic cells, macrophages, lactate signaling, GPR81/GPR132, regulatory and inflammatory responses,
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INTRODUCTION

For decades, lactate has been considered a waste product of cellular metabolism. New lines of
investigations now recognize this glycolytic metabolite as an active immune modulator that shapes
the functions of immune cells in the tissue microenvironment and under pathological conditions
(1–3). Accumulation of lactate in the tissue microenvironment is an essential feature of both
inflammatory diseases and cancer (1–3). Much is known about the production of lactic acid under
various disease conditions, while the mechanisms by which it shapes the effector functions of
immune cells and restores tissue homeostasis remain obscure. Recent evidence suggests an
emerging role for lactate in the field of inflammation, autoimmunity, and cancer (1–3). Here, we
review our current knowledge of the role of lactate in regulating inflammatory and regulatory
responses in various tissue environments, highlight some unanswered questions, and discuss how
this new information can be exploited in the rational design of therapies against various
autoimmune disorders, infections, and cancers.
DENDRITIC CELLS AND MACROPHAGES IN REGULATING
INFLAMMATORY AND REGULATORY RESPONSES

The immune system launches robust immunity against foreign antigens while maintaining a state of
tolerance to self-antigens, food antigens, and commensal flora (4–8). Loss of tolerance to self-antigens,
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food antigens, and commensal flora leads to immune cell-
mediated inflammatory diseases and autoimmunity (4–9).
Dendritic cells (DCs) and macrophages are a specialized subset
of antigen-presenting cells (APCs) that form a critical link
between innate and adaptive immune cells. These APCs
represent a complex immunological system composed of
several functionally distinct subsets distributed in different
organs and microenvironments (4–9). A detailed discussion of
DC and macrophage subsets and their influence on adaptive
immunity is outside the scope of the present review and was
reviewed extensively recently (4–9). DCs and macrophages
express a wide array of pathogen recognition receptors (PRRs)
which enables them to sense different pathogen-associated
molecular patterns (PAMPs) and damage‐associated molecular
pattern molecules (DAMPs) (7, 10). Signaling through PRRs
activate and programAPCs to induce distinct innate responses that
shape the type of T-helper (Th) responses (7, 10). In addition to
inducing robust immune responses against infections, DCs and
macrophages also play a critical role in suppressing inflammatory
responses and maintaining tissue immune homeostasis.
Furthermore, DCs and macrophages induce immune tolerance
and contribute to the resolution of inflammation through several
regulatory mechanisms (11). However, the cellular and molecular
mechanisms underlying this phenomenon remain poorly
understood. Emerging studies suggest a fundamental role for
lactate in the tissue microenvironment in regulating immunity and
immune tolerance by shaping the functions of DCs and
macrophages. Here, we will discuss how lactate shapes the
functions of DCs and macrophages under steady-state and
inflammatory conditions.
LACTATE METABOLISM AND
TRANSPORT IN DENDRITIC CELLS
AND MACROPHAGES

Upon activation, DCs and macrophages undergo profound
metabolic changes critical for biosynthesis and energy
production (12). Lactate could also serve as a fuel source to
produce energy by various cell types, including immune, cancer,
and stromal cells (13, 14). Like other cell types, APCs produce
lactate under hypoxic conditions or by aerobic glycolysis. A
phenomenon similar to the Warburg effect in tumors is also
observed in DCs and macrophages following TLR activation
which induces a major metabolic reprogramming characterized
by a switch from oxidative phosphorylation (OXPHOS) to
glycolysis. This metabolic shift reprograms APCs from a
regulatory state to an inflammatory state and intracellular and
extracellular lactate levels play an essential role in this process.

Under homeostatic conditions, intracellular and extracellular
lactate levels are tightly regulated. Lactate production occurs in the
cytoplasm within the cell due to hypoxic or aerobic glycolysis and
accumulates in the extracellular space. Lactate dehydrogenases
(LDHs) are critical enzymes in glycolysis that reversibly catalyze
the conversion of pyruvate to lactate or lactate to pyruvate (1, 13).
LDH is a tetrameric enzyme composed of two types of subunits
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namely LDH-A and LDH-B. LDH-A has a higher affinity for
pyruvate and preferentially catalyzes pyruvate to L-lactate, while
LDH-B has a higher affinity for lactate and converts L-lactate to
pyruvate, fueling oxidative metabolism. Immune cells, including
DCs and macrophages, express both LDH-A and LDH-B subunits
(1). However, proinflammatory DCs and macrophages express
higher levels of LDH-A and show increased production of lactate
due to the sustained glycolytic reprogramming induced by TLR
ligands. In DCs this metabolic shift depends on activating
transcription factors such as sterol regulatory element-binding
protein (SREBP) and hypoxia-inducible factor (HIF)-1a (15).
Furthermore, HIF-1a plays a crucial role in regulating the
expression of LDH-A and several other genes involved in
glycolysis (15). Evidence suggests that HIF1a deficiency in DCs
and macrophages leads to loss of GLUT1 (a facilitative glucose
transporter) and LDHA (16–18). Besides, HIF-1a can be activated
through a feedback mechanism by intracellular pyruvate or lactate
(19, 20). However, whether this effect depends on SREBP or the
direct control of inflammatory cytokine expression is unknown.

Lactate in the cell or extracellular space is transported across the
plasmamembrane bymonocarboxylate transporters (MCTs) of the
SLC16 solute carrier family, and they transport lactate by an H+-
coupled transport mechanism (13, 14, 21, 22). MCTs, prevent
intracellular accumulation of lactate by removing excess lactate
produceddue to increasedglycolytic activity (23, 24).Dendritic cells
and macrophages express MCT1, MCT2 and MCT4 (13, 14, 22).
MCT1andMCT2have ahigher affinity for lactate and areprimarily
responsible for transporting lactate into the cells.MCT4has a lower
affinity for lactate and is primarily responsible for the export of
lactate. Interestingly, lactate also regulates the expression of MCT1
and MCT4 (25). In addition to MCTs, two other solute carrier
family 5 members (SLC5), namely SLC5A8 (SMCT1, sodium-
coupled monocarboxylate transporter 1) and SLC5A12 (SMCT2,
sodium-coupled monocarboxylate transporter 2) can also mediate
transmembrane transfer of lactate, and they transport lactate by a
Na+-coupled transport mechanism. DCs, macrophages, and other
immune cells express SLC5A8 and SLC5A12 (13, 14, 22). MCTs
and SMCTs play a key role in lactate transport in APCs, yet their
regulation and roles under steady-state and inflammatory
conditions are incompletely understood.

The Lactate-Mediated Signaling Pathway
New lines of investigation now place lactate as an active signaling
molecule that controls the differentiation and functions of
immune cells under steady-state and inflammatory conditions.
In addition, lactate exerts autocrine effects on the host cells and
paracrine effects on other cell types in the tissue environment.
Recent studies have revealed some of the signaling pathways by
which lactate shapes the functions of DC andmacrophage through
receptor-dependent and receptor-independent mechanisms.
LACTATE-GPR81 SIGNALING AXIS

L-Lactate, a ubiquitous metabolite, functions as a natural ligand
for GPR81 (HCAR1, hydroxy-carboxylic acid receptor) (26, 27).
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Lactate activates GPR81 in its physiological concentration range
of 1–20 mM (17). GPR81 expression varies depending on the cell
type and tissue microenvironment. For example, fat cells express
high levels of GPR81 whereas secondary lymphoid tissues, gut,
brain, kidney express low levels of GPR81 (26, 28, 29). Recently,
several groups have reported that DCs and macrophages express
GPR81, and its expression is regulated by the tissue
microenvironment (29–32). Our recent work has shown that
DCs and macrophages in the intestine and lung express higher
levels of GPR81 compared with DCs and macrophages in the
spleen (30). Likewise, DCs in the tumor microenvironment
(TME) express high levels of GPR81 (13, 32). An important
unresolved question is how the tissue microenvironment
regulates GPR81 expression in these APCs. Adipocyte studies
have shown that peroxisome proliferative–activated receptor g
(PPARg) transcriptionally regulates GPR81 expression (27, 33).
Lipids and their metabolites are potent activators of the PPAR
family transcription factors in APCs (34–36). These ligands are
widely present in the intestine and TME suggesting that PPAR-
mediated signaling might regulate GPR81 expression in APCs
(34–36). Besides, recent studies have shown that lactate can
regulate GPR81 expression in tumor cells via the snail3/STAT3
(signal transducer and activator of transcription 3) pathway (37).
Further studies are warranted to see whether the PPARg and
snail3/STAT3 pathways regulate GPR81 expression in DCs and
macrophages. Recent studies have highlighted a protective role
for GPR81 in minimizing tissue injury by controlling
Frontiers in Immunology | www.frontiersin.org 3
pathological inflammatory responses (31). Lactate-GPR81
mediated signaling in non-immune cells regulates several key
signaling pathways such as the cyclic adenosine monophosphate
(cAMP), protein kinase A (PKA), and extracellular signal-
regulated kinase (ERK) pathways. However, the downstream
signaling networks of GPR81 in DCs and macrophages are
unknown. GPR81 suppresses inflammatory responses in
monocytes and macrophages by limiting the activation of the
b-arrestin/inflammasome pathway (31). In pDCs, GPR81
signaling regulates IFNa production by inducing intracellular
Ca2+ mobilization and its downstream genes Ca2+/calmodulin
dependent protein kinase II (CaMKII), and calcineurin (CaN)
phosphatase (38). In addition to modulating these pathways,
other signaling pathways, such as inhibition of nuclear factor-
kappa B (NF-kB), play a role in the anti-inflammatory function
of lactate in macrophages. GPR81 signaling in macrophages
exerts suppressive effects on NF-kB and yes-associated protein
(YAP) activation via activation of AMP-activated protein kinase
(AMPK) and large tumor suppressor kinases (LATS), resulting
in reduced proinflammatory cytokine production after exposure
to LPS (39) (Figure 1). In contrast to its anti-inflammatory role,
an in vitro study has shown that lactate augmented LPS-induced
expression of inflammatory genes by enhancing NF-kB
activation in human monocyte-derived macrophages and U937
cells (40). In the TME, GPR81-signaling plays an essential role in
immune suppression against tumors by inducing regulatory
APCs (32) and upregulating the expression of programmed
A B

FIGURE 1 | The Lactate-mediated receptor-dependent and receptor-independent signaling pathways. Lactate binds to GPR81 and GPR132 receptors and
activates several downstream signaling pathways and transcription factors in DCs and macrophages. (A) Lactate binding to GPR81 and GPR132 results in the
activation or suppression of several downstream pathways such as PI3K/AKT/CREB, PLC/IP3/Ca2+, b-arrestin/inflammasome, AMPK/LATS/YAP/NF-kB. This results
in reduced expression of proinflammatory cytokine production and increased expression of immune regulatory factors (IL-10, IDO, RA, TGFb) in response to TLR
ligands. (B) Lactate can shape APC functions independent of surface receptors. MCTs transport extracellular lactate into the cells, and intracellular lactate can
modulate APC functions by directly regulating the activation of multiple signaling pathways and transcription factors such as HIF-1a, MAPK, ERK, and NF-kB.
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death-ligand 1 (PD-L1) in tumor cells (25). Collectively, these
studies show a regulatory role for the lactate-GPR81 signaling
axis in DCs and macrophages. GPR81 signaling in tumor cells
regulates MCT1 and MCT4 (25), but underlying molecular
mechanisms remain largely unknown. The extent to which
GPR81 signaling regulates the expression of MCT1 and MCT4
in DCs and macrophages remains to be determined.
LACTATE-GPR132 SIGNALING AXIS

A second functional receptor for lactate in macrophages is the G
protein-coupled receptor 132 (Gpr132, also known as G2A) (41,
42). Besides lactate, lysophosphatidylcholine (lysoPC) is also a
ligand for GPR132 (43). GPR132 is a stress-inducible, seven-pass
transmembrane receptor that actively modulates several cellular
and biological activities, such as cell cycle, proliferation, and
immunity (44, 45). Tumor-associated macrophages (TAMs)
promote metastasis (46, 47), and GPR132 signaling plays a crucial
role in promoting breast cancer metastasis (41). Mechanistically,
the lactate-GPR132 axis promotes the alternatively activated
macrophage (M2)-like phenotype, which, in turn, facilitates
cancer cell adhesion, migration, and invasion (41). Consequently,
GPR132 deletion reduces M2 macrophages and impedes breast
cancer lung metastasis in mice. Interestingly, GPR132 regulating
macrophage function may vary depending on the tissue
microenvironment (41, 42). Like GPR81, GPR132 plays a crucial
role in regulating inflammation in the intestine (48). GPR132-
mediated signaling activates several downstream signaling
pathways associated with immune regulation and inflammatory
responses such as cAMP, protein kinase A (PKA), and ERK (48)
(Figure 1). However, the role of GPR132 in intestinalmacrophages
and DCs remain largely unknown.
RECEPTOR-INDEPENDENT
LACTATE SIGNALING

In addition to signaling via cell surface receptors, extracellular
lactate can also modulate the APC’s functions by directly
regulating the activation of multiple signaling pathways and
transcription factors after getting transported into the cells
through MCTs and SMCTs (14). In this context, ex vivo studies
have shown that lactate metabolically reprograms macrophages to
inhibit the expression of proinflammatory factors in response to
LPS in a GPR81-independent manner (29). Under hypoxic
conditions, lactate can modulate DC and macrophage functions
by regulating other signaling pathways such as the HIF-1a,
Hedgehog, MAPK, and mTOR pathways (49) (Figure 1). Histone
deacetylases (HDACs) regulate gene transcription and chromatin
assembly at the posttranscriptional levels by modifying histones
(50). HDAC inhibitors exhibited anti-inflammatory effects and
were shown to ameliorate immune cell-mediated inflammatory
diseases (50). For instance, strong evidence shows that intracellular
lactate acts as an endogenous inhibitor of HDACs and regulates
gene transcription in an HDAC-dependent manner (51, 52).
Further, studies are warranted to see whether lactate regulates
Frontiers in Immunology | www.frontiersin.org 4
gene transcription in DCs and macrophages via the inhibition
of HDACs.
MODULATION OF DC AND MACROPHAGE
FUNCTIONS BY LACTATE

Robust immune responses against pathogens and tumors depend
on several factors, such as the degree of maturation and
activation of DCs, their ability to capture, process, and present
exogenous antigens, them trafficking to secondary lymphoid
organs and tissues type of factors they produce. Emerging
studies have shown that lactate-mediated signaling is crucial in
shaping immune responses by modulating DC and macrophage
functions (Figure 2 and Table 1). Here, we will discuss how
lactate shapes essential functions of DCs and macrophages that
influence adaptive immune responses.
REGULATION OF DC MATURATION
AND ACTIVATION BY LACTATE

DC maturation and activation are important in inducing a robust
immune response against tumors and pathogens (11). Immature or
tolerogenic DCs facilitate tolerance or immune regulatory responses,
whereas immunogenic/inflammatory DCs facilitate robust
inflammatory responses (7). Under homeostatic conditions,
peripheral DCs typically display an immature phenotype
characterized by low surface levels of MHC II and costimulatory
molecules and induce suboptimal T‐cell priming, often leading to T‐
cell anergy or tolerance. Upon stimulation, DCs undergomaturation
characterized by the expression of high levels of MHC II and
costimulatory molecules (CD80, CD86, and CD40) and induce
robust T‐cell activation and effector differentiation (7). However,
certain stimuli induce the tolerogenic/regulatory DCs that express
markedly lower costimulatory molecules and induce regulatory T
cells and immune suppression. Several reports have shown that
lactate-mediated signaling blocks DC differentiation, activation and
antigenpresentation (53, 60). Exposure to lactate conditionsDCs to a
regulatory or anti-inflammatory state. Earlier ex vivo studies have
shown that DCs cultured in the presence of lactate exhibit regulatory
functions (53–59). These regulatoryDCs expressed low surface levels
of MHC II and costimulatory molecules and produced markedly
lower levels of IL-12 andhigher levels of IL-10. Besides, a recent study
has shown that human tolerogenicDCs produce high levels of lactate
that shape T cell responses toward tolerance and delayed graft-
versus-host disease (91). Like DCs, lactate exposure polarizes
macrophages to M2 phenotype with increased expression of
CD163 and Arg1 and decreased expression of M1 markers such as
CD38, iNOS, IL-1b, and IL-6 (41). This lactate effect on TAMs
depends on NRF2 (nuclear factor erythroid 2-related factor 2), HIF-
1a, and MCT1 (20, 78, 79).

DCs and macrophages recognize diverse microbial structures
through multiple receptors collectively known as PRRs (10). DCs
and macrophages can also recognize damage-associated
molecular patterns (DAMPs) and other endogenous ligands
released from dying tumor cells through PPRs (92–94).
July 2021 | Volume 12 | Article 691134
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PRRs include Toll-like receptors (TLRs), C-type lectin-like
receptors (CLRs), RIG-I-like receptors (RLRs), and Nod-like
receptors (NLRs) (10). TLR ligands have gained significant
interest in immunotherapy in recent years for their potential
use as vaccine adjuvants (95, 96). In general, PRR engagement
potently activates DCs by upregulating the surface expression of
maturationmarkers such asMHCII, CD80, CD83, and CD86 (10).
Even thoughPRR ligands are there in the TME andmucosal organs
(92–94), DCs and macrophages present in these environments
display markedly decreased expression of costimulatory molecules
(97). Earlier ex vivo studies on human andmurineDCs have shown
that exposure to lactate markedly affected the maturation and
activation in response to LPS (31, 53). Lactate also inhibited the
LPS-mediated activation of bone marrow-derived macrophages
and peritoneal macrophages. Lactate-conditioned macrophages
failed to upregulate costimulatory molecules while expressing
lower levels of proinflammatory cytokines and higher levels of
IL-10 even in response to TLR ligands (29, 31, 39, 98). Further,
mechanistic studieshave shown that lactate signaling cannegatively
regulate the inflammatory pathways such as the NF-kB, NFAT
(nuclear factor of activated T-cells), YAP, inflammasome, and
MAPK (mitogen-activated protein kinases) pathways, critical for
DC activation and expression of inflammatory factors (31, 59).
Accordingly,DCs andmacrophages that are deficient inGPR81 are
hyper-responsive to TLR ligands (30). Also, other studies revealed
Frontiers in Immunology | www.frontiersin.org 5
the role of monocarboxylate transporters (MCTs) in mediating
the lactate effect in macrophages (77). MCT4 inhibition
significantly boosted lactate-induced M2 polarization, while
blocking of MCT1/2 failed to reverse the immunosuppressive
effect of lactate, correlating with the results from gene expression
studies that showed lactate increasing MCT4 expression but
downregulating the expression of MCT1/2 (59). Thus, the effects
of lactate on the maturation and activation of DCs and
macrophages involve GPR81 dependent and independent
mechanisms viaMCTs.
REGULATION OF DENDRITIC CELL
MIGRATION BY LACTATE

The migration of DCs to secondary lymphoid organs and tissues is
essential for initiating adaptive immune responses, tumor immune
surveillance, regulation of inflammation in the tissues, and selective
elimination of infected cells (99, 100). DC migration involves its
trafficking to tissues, capturing and endocytosing dead or infected
cells, and transporting associated antigens to the draining lymph
nodes (TDLNs) where they prime and activate T cells to initiate
adaptive immune responses (101–104). DC migration depends on
the expression of specific chemokine receptors on DCs and its
FIGURE 2 | Lactate in the environment shapes the functions of both innate and adaptive immune cells. Lactate promotes anti-inflammatory and antitumor immune
responses by modulating DC and macrophage functions such as activation, trafficking, capturing, and cross-presenting antigens and expression of immune
regulatory and inflammatory factors. Besides, lactate signaling cascade directly shapes the activation, proliferation, and effector phenotypes of myeloid-derived
suppressor cells (MDSCs), Tregs, CD4+ T cells, CD8+ T cells, NK cells, and other immune cells. Lactate also regulates trafficking and migration of immune cells to
tissues and draining lymph nodes (DLNs) by regulating chemokine receptors as well as synthesis and secretion of chemokines. Lactate signaling in the immune cell
leads to metabolic alterations in DCs and macrophages that programs them to a regulatory state. Lactate-mediated signaling shifts metabolism of DCs and
macrophages from glycolysis to fatty acid oxidation (FAO). Besides, lactate signaling in tumors and macrophages promotes tumor growth, migration, and metastasis.
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cognate chemokine ligand within the tissues and DLNs. DC
migration to DLNs requires chemokine receptor CCR7, whereas
its recruitment to the tissues depends on chemokines such asCCL4,
CCL5, andXCL1 (99).However, only a tiny fractionofDCsmigrate
to tumor tissue and subsequently to the draining lymph nodes.
Glycolytic metabolism is essential for CCR7 oligomerization and
DC migration (94). Blocking glycolysis impairs CCR7
oligomerization and impairs migration (63). Ex vivo studies have
shown that high lactate levels (20 mM) inhibited the migration of
monocytes and DCs (53, 64). Similarly, lactate regulates
macrophage functions such as adhesion, migration, and tissue
recruitment (41, 80, 81). Furthermore, lactate in the TME and
inflamed tissues can regulate the migration of immune cells by
regulating the expression of several key enzymes involved in
glycolysis (105).
REGULATION OF ANTIGEN DELIVERY
AND PRESENTATION BY LACTATE

Cross-presentation is critical for initiating immune responses
against tumors and viral infections, where DCs present
Frontiers in Immunology | www.frontiersin.org 6
extracellular antigens on MHC I to activate CD8+ T cell-
mediated cytotoxicity (10). Effective cross-presenting involves
uptake of extracellular antigens, processing antigens into
peptides, loading peptides onto MHC I, and trafficking of
MHC I: peptide complex to the cell’s surface (106). Membrane
trafficking proteins such as SNARE (soluble n-ethylmaleimide-
sensitive factor attachment protein receptor) and VAMP3
(vesicle-associated membrane protein 3) play a critical role in
cross-presentation. Loss of these membrane trafficking proteins
in DCs leads to defective cross-presentation of tumor-associated
antigens (57). DCs within the TME are less efficient in cross-
priming CD8+ T cells (61, 62), and the TME contains high lactate
levels. Emerging evidence has shown that lactate affects DCs’
function by regulating antigen presentation and cross-priming
CD8+ T cells (53, 60). However, the underlying molecular
mechanisms by which lactate affects cross-presentation are not
known. In this context, a recent study has shown that lactate can
affect cross-presentation by downregulating membrane
trafficking proteins such as SNAREs and VAMP3 while
accelerating antigen degradation in DCs (57). Furthermore,
these proteins facilitate the secretion of cytokines from DCs
upon activation. Further studies are warranted to see whether the
TABLE 1 | Evidence for involvement of the lactate in the microenvironment in shaping the functions of innate and adaptive immune cells.

Observations References

Lactate effects on DC function
Lactate suppresses DC differentiation and maturation. (53–59)
Lactate suppresses the activation of DCs and the expression of proinflammatory factors in response to TLR ligands. (31, 53)
Lactate inhibits antigen delivery and presentation by DCs. (53, 60–62)
Lactate accelerates antigen degradation in DCs by downregulating membrane trafficking proteins. (57)
Lactate-GPR81 signaling in intestinal DCs induces the expression of immune regulatory factors to induce Tregs and suppresses the differentiation of
Th1/Th17 cells.

(30)

Lactate in the TME conditions DCs to a regulatory state to suppress antitumor immune responses. (53, 60–62)
Tumor DCs-deficient in GPR81 are more potent in inducing antitumor immunity. (32)
Lactate signaling regulates the expression of chemokine receptors and chemokines that are critical for DC migration. (53, 63–65)
Lactate signaling in DCs regulates metabolic pathways involving glycolysis and fatty acid oxidation (FAO) (60, 66)
Lactate effects on T cells
Lactate suppresses T cell proliferation, cytokine production and Th1 differentiation. (67–69)
Lactate promotes Treg proliferation and functions. (67, 70–72)
Under inflammatory conditions, lactate signaling in CD4+ T cells favors Th17 cell differentiation. (73, 74)
Lactate suppresses the T cell migration and trafficking. (73, 74)
Tumor-derived lactate limits the expansion of tumor-antigen specific CD8+ T cells, cytokine production, CTL activity. (75, 76)
Lactate synergizes with IL-21 to promote stemness of CD8+ T cells and antitumor immunity. (70)
Lactate effects on macrophage
Lactate induces alternative polarization (M2) of macrophages. (29, 41, 77)
Lactate signaling in macrophages attenuates TLR-induced proinflammatory cytokine production. (31, 39, 59)
Lactate signaling in TAMs promotes tumor growth, migration, metastasis, and immunosuppression. (20, 41, 78–80)

(41, 80, 81)
Lactate-GPR132 signaling in macrophages contributes to tumor cell invasiveness and tumor growth. (65)
Lactate-GPR81 signaling imparts regulatory phenotype on intestinal macrophages and induces the expression of immune regulatory factors to induce
Tregs.

(30)

Lactate-GPR81 signaling in macrophages suppresses expression of inflammatory factors in response to LPS. (31, 39)
Lactate effects on MDSCs
Lactate promotes the development and accumulation of MDSCs in tumors. (82)
Lactate-conditioned MDSCs inhibit the function of natural killer (NK) cells and T lymphocytes (83, 84)
Lactate effects on NK cells
Tumor-derived lactic acid inhibits natural killer (NK) cell maturation and function. (75)
Lactate effects on other immune cells
Lactate regulates the functions of basophils, neutrophils, mast cells (85–88)
Lactate effects on Tumor cells
Lactate promotes tumor growth, migration, and metastasis, (13, 89, 90)
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regulation of membrane trafficking proteins by lactate is
dependent on GPR81 and MCTs. These studies collectively
suggest that the lactate-mediated signaling suppresses efficient
capture of tumor-associated antigens by tumor DCs and cross-
priming of CD8+ T cells.
REGULATION OF IMMUNE REGULATORY
AND INFLAMMATORY FACTORS BY
LACTATE

DCs dictate the fate of naïve CD4+ and CD8+ T cells through
differential production of pro- and anti-inflammatory cytokines
(11, 107). Recent studies have shown that lactate can shape the
adaptive immune responses by regulating the expression of
immune regulatory factors and inflammatory factors in DCs
and macrophages (108–113). DCs and macrophages exposed to
TLR-ligands produce markedly higher levels of proinflammatory
cytokines and type-I interferons (IFN). In contrast, lactate-
condit ioned DCs and macrophages do not release
immunostimulatory cytokines; instead, they express higher
levels of IL-10 in response to TLR ligands (53–55, 57, 58). The
TME contains higher levels of immune regulatory factors such as
IL-10, retinoic acid (RA), and TGF-b that actively suppress
differentiation and expansion of tumor-specific effector T cells
(114, 115). Lactate in the TME condition DCs and macrophages
to a regulatory or anti-inflammatory state (1, 2). Accordingly,
tumor DCs deficient in the lactate receptor GPR81 expressed
markedly higher levels of IL-12 and IL-6 (32). Similarly, lactate-
GPR81 signaling influences the pDC functions in tumors by
attenuating IFNa production (38). Furthermore, blocking
GPR81 signaling can restore the IFNa production by pDCs.
Lactate in the TME conditions DCs and macrophages to express
higher levels of IL-10 (1, 2). The effects of lactate on the
expression of the regulatory and inflammatory cytokines in
APCs also depend on MCTs. Furthermore, blocking the MCT
in DCs or macrophages can reprogram them to an inflammatory
state (59). These APCs produce high levels of inflammatory
factors in response to TLR ligands (38). In the intestine, anti-
inflammatory factors such as IL‐10, TGF‐b, IDO, and RA
produced by DCs and macrophages are critical for maintaining
immune tolerance to commensal flora (116, 117). These immune
regulatory factors are also necessary to suppress inflammation
and restore immune homeostasis in the intestine. A recent study
has highlighted an essential role for the lactate-GPR81 signaling
in intestinal DCs and macrophages in regulating the expression
of immune regulatory factors such as IL-10, retinoic acid (RA),
and IDO (30). Intestinal DCs and macrophages isolated from
GPR81 deficient mice produced markedly higher levels of
inflammatory cytokines and lower levels of anti-inflammatory
factors under homeostatic and inflammatory conditions (30).
Furthermore, GPR81-deficient intestinal APCs are hyper-
responsive to microbial ligands and express higher levels of
proinflammatory cytokines (30). Collectively, these studies
demonstrate that lactate-mediated signaling imparts an anti-
inflammatory phenotype to DCs and macrophages.
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REGULATION OF IMMUNE CELL
METABOLISM BY LACTATE

Cellular metabolic pathways play a critical role in modulating the
functions of DCs andmacrophages (12, 56), and emerging evidence
support lactate as one of the essential molecules that links
metabolism and immunity. DC and macrophage subsets have
potential metabolic differences under homeostatic and
inflammatory conditions (12, 56). Tolerogenic or regulatory DCs
and macrophages show a catabolic metabolism marked by
increased oxidative phosphorylation, fatty acid oxidation (FAO),
and glutaminolysis (12, 56). In contrast, immunogenic or
inflammatory DCs display an anabolic metabolism marked by
increased glycolysis and lactate production (12, 56). Preliminary
evidence suggests that lactate mediates immune cell-intrinsic effects
on metabolism (73). Besides, extracellular lactate induces metabolic
reprogramming of DCs and macrophages, resulting in reduced
glycolysis and increased FAO (29, 60, 66). This metabolic
reprogramming of APCs significantly changes cytokine
production with predominantly anti-inflammatory effects,
emphasizing the complex interplay between metabolism and
APC functions (29, 60, 66). The effects of lactate on immune cell
metabolism may serve as a negative feedback signal limiting
inflammation (3). For example, lactate can modulate APC
functions by regulating the expression of critical enzymes
involved in glycolysis (3). These studies show that lactate imparts
regulatory phenotype on APCs by metabolic reprogramming.
EFFECTS OF LACTATE IN MODULATING
THE FUNCTIONS OF OTHER IMMUNE
CELLS

Emerging studies are beginning to provide insights into the
mechanisms by which lactate signaling cascade directly shapes
the effector phenotypes of myeloid-derived suppressor cells
(MDSCs), Tregs, CD4+ T cells, CD8+ T cells, and natural killer
(NK) cells. Several excellent studies and reviews discuss
extensively how extracellular lactate shapes the functions of
other immune cells (12, 56) and will thus be discussed only
briefly (Table 1). Lactate can exhibit a proinflammatory or anti-
inflammatory effect depending on the microenvironment and
immune cell type conditions and factors. For example, lactate
exerts an immune-suppressive role in the TME, whereas lactate
exerts an inflammatory role in chronic conditions like arthritis.
Lactate in the TME promotes expansion and accumulation of
MDSCs while suppressing the effector functions of NK cells,
CD4+ T lymphocytes, CTLs and mast cells (83–85). On the other
hand, under chronic inflammatory conditions, lactate manifests
an inflammatory role on CD4+ T cells by promoting the
differentiation of Th17 cells (73). Effect of lactate on Th17 cell
differentiation is T cell-intrinsic, but the underlying molecular
mechanism is unknown and requires further investigation. These
studies collectively show that the multi-faceted effect of lactate on
the immune response is dependent on cellular and
environmental contexts.
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REGULATION OF AUTOIMMUNITY AND
ANTITUMOR IMMUNITY BY LACTATE

Accumulation of lactate in the tissuemicroenvironment is a feature
of both inflammatory disease and cancer. Emerging evidence
suggests that this is due to metabolic disturbances in immune
cells. Lactate exhibits an inflammatory or anti-inflammatory role
dependingon its effects on immunecell type, disease type, and tissue
environment (12, 56). This sectionwill review recent developments
in our understanding of the role of lactate-mediated signaling in
regulating immune responses in pathological conditions.

INFLAMMATORY BOWEL DISEASE (IBD)

Loss of immune tolerance to intestinal commensal flora and oral
antigens leads tochronic intestinal inflammationand inflammatory
bowel disease (IBD). In the colon, lactate is one of the primary
metabolites produced by bacterial fermentation of dietary products
and gastrointestinal mucosa is exposed to high concentrations of
lactate (66, 73, 117). Besides, intestinal epithelial cells and immune
cells can produce lactate (118–120). Initial study onmurinemodels
of IBD showed that the intrarectal treatment with lactate prevents
intestinal inflammation by downregulating proinflammatory
response in epithelial cells (121). However, whether lactate
regulates immune responses to gut commensal flora remains
largely unknown. Our recent work has revealed an essential role
for GPR81 in programming tolerogenic DCs and macrophages in
the intestine (30).Mice deficient inGPR81 are highly susceptible to
chemically-induced colitis and T cell-mediated colitis. Besides,
genetic deletion of GPR81 in mice led to loss of immune
homeostasis in the intestine, which enhanced susceptibility to
colonic inflammation (30). Besides intestinal APCs, lactate plays a
crucial role in intestinal stem-cell-mediated regeneration of the
epithelial layer through the GPR81-Wnt signaling pathway (122).
This observation is particularly relevant in the intestine, given the
importance ofWnt signaling in intestinal DCs andmacrophages in
regulating immune tolerance and commensal homeostasis in the
intestine (123, 124). It would be interesting to see how lactate and
Wnt signaling pathways cross-regulate each other in establishing
immune tolerance and commensal homeostasis in the gut. In a
striking functional similarity with GPR81 knockout mice, genetic
deficiency of GPR132 also resulted in significantly worsened
chemically-induced colitis in mice (48, 125). However, GPR132
deficiency does not alter intestinal immune homeostasis under
homeostatic conditions. GPR132-mediated signaling in myeloid
and lymphoid cells limits intestinal inflammation in amousemodel
of colitis induced by dextran sodium sulfate (125). Collectively,
these studies have identified a new and essential role for lactate,
GPR81, and GPR132 signaling pathways in regulating immune
tolerance and colonic inflammation.

OTHER IMMUNE-MEDIATED
INFLAMMATORY DISEASES

Lactate plays a protective role in murine models of immune
hepatitis and pancreatitis (31). In this model, the lactate-
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mediated protective effect is dependent on GPR81 signaling
that limits the expression of proinflammatory factors by
macrophages. Mice deficient in GPR81 are highly susceptible
to LPS-induced hepatitis and pancreatitis. Confirming this
finding, pharmacological activation of GPR81 decreased LPS-
induced activation of the caspase-1 and NF-kB pathways and
production of proinflammatory factors by macrophages and
reduced disease severity in mice (31). Lactate plays a similar
anti-inflammatory role in Multiple sclerosis (MS). MS is a
chronic inflammatory demyelinating neurological disease of
the central nervous system (CNS). In the experimental
autoimmune encephalomyelitis (EAE) model of MS,
macrophages in the CNS display higher expression of LDHA
and increased glycolysis (126). CNS macrophages also expressed
higher levels of MCT4. siRNA-mediated knockdown of LDHA
and MCT4 or blocking MCT4 reduced leukocyte infiltration and
the clinical severity of EAE (126). However, the effects of lactate
on the functions of DCs and other immune cells in this chronic
inflammatory disease are not known.

In contrast to its regulatory and protective role, lactate
significantly induces and promotes inflammation in rheumatoid
arthritis (RA) (1). RA is a chronic inflammatory disease that affects
joint linings causing pain, swelling, and deformity (127). The
inflamed synovial tissue microenvironment includes an increased
number of inflammatory DCs, macrophages and pathological
effector T cells. Recent studies have revealed that lactate
exacerbates disease severity by regulating migration of immune
cells in the arthritic synovium (73, 74).Mainly, lactate inhibits T cell
motility,whichcontributes to their entrapment in the inflammatory
site. This depends on the lactate transporters SLC5A12 and
SLC16A1 (MCT1) (73, 74). In addition, lactate also drives the
differentiation of T helper 17 (Th17) cells that can exacerbate
inflammation and disease severity. However, the biological effects
of lactate on the APCs under inflammatory conditions are much
less understood. Therefore, further investigation requires a more
detailed understanding of the lactate effect on different subsets of
immune cells under inflammatory versus steady-state conditions.
LACTATE IN REGULATING IMMUNE
RESPONSES TO INFECTIONS

Emerging studies show that lactate modulates immune responses to
infections. As discussed above, DCs and macrophages recognize
different pathogens through PRRs, and signaling through these
receptors leads to increased glycolysis and increased lactate
production. Sepsis is a common and frequently fatal clinical
condition characterized by an initial systemic inflammatory
response to infection followed by an immunosuppressive phase
(128). A recent study utilizing murine models of sepsis has shown
that, lactate-GPR81-mediated signaling suppresses the expression of
proinflammatory cytokines and induces alternative polarization of
macrophages to M2 phenotype (39, 98). Similarly, lactate-induced
activation of GPR109a improves survival in mice with sepsis (129).
However, the effects of lactate on the functions of DCs and other
immune cells in sepsis are unknown. RIG-I-like receptor (RLRs)-
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mediated signaling is necessary for Type I interferon (IFN)
production and this is critical for augmenting host immunity for
viral clearance and cancer immune surveillance (10). A recent study
has shown that lactate can affect IFN production by negatively
regulating the RLR- MAVS-RIG-I pathway (130). Besides, blocking
lactate production or metabolism increased type I IFN production
with enhanced viral clearance (130). Several pathogens can
modulate DC and macrophage function as a mechanism to evade
host immune response, resulting in chronic infections such as TB,
HIV, HCV, HBV, and SIV (10). However, the role of lactate in the
regulation of innate and adaptive immune responses to chronic
infections is unknown. In this context, a recent study has shown that
in response to Mycobacterium tuberculosis (Mtb) infection,
macrophages switch from pyruvate oxidation to reduction of
pyruvate into lactate (131). Besides, Mtb utilizes intracellular
lactate as an energy source for growth in macrophages (131). This
metabolic switch in macrophages to Mtb infection also increases
anti-inflammatory factors such as IL-10 (132). Anti-inflammatory
factors produced by APCs play a significant role in establishing
chronic infections (10). Collectively, these studies showed that
lactate could modulate the immune responses to infections.
LACTATE SIGNALING IN TUMOR-
INDUCED IMMUNE TOLERANCE

Tumors express self-antigens that actively suppress host
antitumor immune responses (114, 133). Increased lactate levels
positively correlate with tumor grade, progression, recurrence,
metastasis, and poor prognosis in several types of cancer (13, 134,
135). As discussed above, lactate secreted by the tumor cells
suppresses immune responses by modulating the phenotype and
functions of DCs and macrophages in the TME (136, 137).
Besides, high lactate levels in the TME impart an anti-
inflammatory phenotype on APCs, contributing to immune
suppression. Lactate also promotes tumor progression by
inducing the prostaglandin E2 (PGE2) synthesis and
cyclooxygenase 2 (COX2) upregulation in monocytes (65).
PGE2 is a potent immunomodulator that exhibits both
proinflammatory and anti-inflammatory effects on DCs and
macrophages. Tumors exploit lactate-mediated signaling to
effectively suppress host antitumor immune responses (1, 138).
DCs and macrophages in the TME express lactate receptors
GPR81 and GPR132 (32, 38). The importance of lactate-
mediated signaling in controlling antitumor immune responses
was demonstrated in a study using GPR81 knockout mice (32).
Accordingly, GPR81-deficiency in mice resulted in delayed tumor
growth and significantly reduced tumor burden in a syngeneic
transplant model and a constitutive breast cancer model in mice
(32). Tumor DCs from these mice displayed enhanced activation
and increased expression of proinflammatory cytokines such as
IL-6 and IL-12 (32). pDCs produce type I IFN and are critical for
antitumor immunity. However, pDCs in the TME are
dysfunctional and produce low levels of IFNa, which is partly
due to lactate in the TME (38). The lactate effect on pDC
dysfunction is dependent on GPR81 Signaling and MCTs.
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Besides, lactate signaling in pDCs induced regulatory T Cell
induction by regulating the tryptophan metabolism. Like DCs,
macrophages in the TME exert potent effects on cancer metastasis
and antitumor immunity. Similar to GPR81, lactate signaling via
GPR132 in macrophages promotes tumor growth and metastasis
(41). Consistent with these observations, mice deficient in
GPR132 displayed a significant reduction in tumor burden and
breast cancer metastasis. However, the underlying molecular
mechanisms are unknown. In addition to APCs, lactate can
suppress antitumor immune responses by modulating the
functions of other immune cells (67, 70, 71, 83, 84). In
summary, these studies reveal an exciting and unappreciated
role for lactate in contributing to immune suppression against
tumors through different effector mechanisms.
TARGETING THE LACTATE SIGNALING
PATHWAY FOR IMMUNE MODULATION
AND IMMUNOTHERAPY

There is considerable interest in the lactate signaling pathway as
a therapeutic target, especially as a treatment for inflammatory
diseases and cancer. Studies involving human cancers and
inflammatory diseases strongly suggest that targeting the
lactate signaling pathway and lactate metabolism is a
promising approach to overcome immune evasion by tumors
and suppressing immune-mediated inflammatory diseases.
These strategies include targeting signaling (GPR81/GPR132
antagonists), lactate transporters (MCT inhibitors), and lactate
metabolism (LDH inhibitors). In addition, pharmacological
activators and inhibitors of the lactate signaling pathway exist,
and several of them are currently in clinical testing. Here, we will
briefly discuss preclinical studies related to the effects of blocking
the lactate signaling pathway and lactate metabolism on
antitumor immunity and autoimmunity.
TARGETING LACTATE-GPR81/GPR132
SIGNALING

Lactate receptor expression is upregulated in several types of cancer
and lactate signaling plays a vital role in tumor development,
progression, and metastasis (13, 89, 90). As discussed above,
Lactate receptor-mediated signaling in immune cells contributes
to the suppression of antitumor immune responses. Thus, blocking
specific lactate ligand with cognate GPR81/GPR132 receptors
represents a potential strategy to restrain tumor cell proliferation
while boosting the antitumor immunity. In this context, a recent
study using a 4T1 breast cancermodel has shown that intratumoral
injection of a GPR81 inhibitor along with an MCT inhibitor
resulted in a significant reduction in tumor burden in mice
(38). Another critical study has demonstrated that blocking
GPR132 signaling in macrophages markedly reduced tumor
burden, progression, and breast cancer metastasis in mice (41).
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Likewise, pharmacological inhibition of GPR132 signaling had a
similar effect on tumor burden and antitumor immune
responses (139).

On the other hand, activating the GPR81 pathway in APCsmay
help prevent and treat immune cell-mediated inflammatory
diseases such as IBD, hepatitis, and pancreatitis. In this context,
our previous study has shown that pharmacological activation of
the GPR81 pathway suppressed intestinal inflammation by
inducing Treg responses and limiting pathological Th1/Th17
responses. Preclinical studies have shown that lactate treatment
suppresses inflammatory responses in the intestine and mitigates
intestinal injury (121). Oral administration of lactate had a similar
suppressive effect on inflammation-associated gastric injury (140).
Likewise, treatment with the GPR81 agonist, 3,5-dihydroxybenzoic
acid, ameliorated DSS-induced colitis and reduced inflammation-
associated injury in the colon (30). Other studies have shown that
pharmacological activation of the GPR81 pathway suppresses
inflammation and inflammation-associated tissue injury in other
immune cell-mediated inflammatory diseases (31, 141–143).
Further studies in understanding the lactate signaling networks in
a context-dependentmannerwill aid in thedevelopment of effective
treatments for many inflammatory diseases.
TARGETING LACTATE TRANSPORTERS

The second strategy to augment antitumor immune responses
involves blocking lactate transporters using MCT inhibitors (22,
144). MCTs are highly expressed in tumors and positively correlate
with cancer patients’ poor outcomes (22, 144). Besides, MCTs
promote migration and invasion processes in several cancer
types, including lung and breast cancers (22, 144). Several studies
have examined antitumor immune responses by blocking lactate
transport into the APCs using clinically relevant murine tumor
models. Blockade of cytosolic transport of lactate in pDCs using
AR-C155858 (MCT inhibitor) restored the IFNa production and
augmented the immune responses against 4T1 tumors in mice.
Furthermore, intratumoral injection of AR-C155858 caused a
significant reduction in 4T1 tumor burden in mice (38). Immune
checkpoint inhibitors are currently used in cancer immune therapy
to enhance immune responses. Another study has shown that
silencing MCT1 and MCT4 can restore T cell-induced immune
function and boost the immune response to immune checkpoint
inhibitors in melanoma patients (75). Also, treatment of Raji
xenograft-bearing severe combined immunodeficiency mice with
AZD3965 led to inhibition of tumor growth with increased tumor
immunecell infiltration involvingDCsandnatural killer cells (145).
MCT1/2 inhibitors are currently in Phase I/II clinical trials to treat
patients with advanced prostate cancer, gastric cancer, or diffuse
large B‐cell lymphoma (146–150). Collectively these preclinical
studies show that drugs that target MCTs alone or in combination
with immune checkpoint inhibitors hold much promise as
cancer treatments.

In certain autoimmune diseases such as arthritis and MS,
MCTs play an inflammatory role. Accumulating evidence shows
that blocking lactate efflux or influx has an immunosuppressive
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effect (151). MCT1/2/4 play a vital role in this, and
pharmacological inhibitors of the transporters are attractive
targets in these immune-cell mediated inflammatory diseases.
Preclinical studies utilizing the murine model of MS have shown
that silencing or blocking MCT4 reduced leukocyte infiltration
into the CNS and the clinical severity of EAE. Similarly, the
silencing of MCT4‐inhibited proliferation of RA synovial
fibroblast (RASFs) reduced the severity of arthritis in a mouse
model of collagen‐induced arthritis (152). Further studies
utilizing murine models of peritonitis and arthritis have shown
that blocking or silencing lactate transporter (SLC5A12) restored
the T cell functions and ameliorated the disease severity (73, 74,
153). CD147 (EMMPRIN) plays a crucial role in regulating MCT
expression by stabilizing and localizing MCTs to the cell
membrane. Therefore, disrupting the interaction between
CD147 and MCT is also an attractive strategy to regulate
immune responses in human diseases. Targeting CD147 has
yielded encouraging results in preclinical models of
inflammatory diseases (154, 155). Studies have shown that the
loss of CD147 function decreases the levels of MCT1 and MCT4
proteins and reduces tumor growth (156–158).
TARGETING LACTATE METABOLISM

The third strategy to augment antitumor immune responses
involves targeting lactate metabolism (23, 159). LDH-A increases
the production of lactate in tumor cells and immune cells resulting
in tumor immune escape by inhibiting the functionof immune cells
(71, 160). There is a strong correlation between elevated lactate
dehydrogenase (LDH) and poor prognosis in cancer patients.
Besides, cancer patients with high LDH levels respond poorly to
immunotherapy and other anticancer therapies such as
chemotherapy and targeted therapy (159, 161, 162). Thus,
targeting the lactate metabolic pathway in immune cells can
overcome immune cell dysfunction in the TME. For example,
suppressing LDH activity in macrophages can reprogram M2
phenotype to M1 phenotype (163). Besides, deletion of LDH-A in
myeloid cells triggers antitumor immunity in the K-Ras murine
lung carcinoma model (164). Likewise, blocking LDH in CD8+ T
cells enhances adoptive T cell therapy (70). Genetic disruption or
silencing of LDHAandLDHB in tumor cells inhibits tumor growth
(165). Thus, targeting lactate metabolism changes lactate levels in
the tumormicroenvironment and can enhance antitumor immune
responses. These targeting strategies collectively provide attractive
angles for immunotherapy but warrant a better understanding of
the actions of lactate on immune cells under steady-state and
inflammatory conditions.
SUMMARY

Although lactate was initially recognized as a waste product of
cellular metabolism, research over the past decade has revealed a
fundamental role for this metabolite in shaping the function of the
immune cells. Besides, as evidenced from the discussion above,
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lactate in the tissue microenvironment programs APCs and other
immune cells to regulate the balance between regulatory and
inflammatory responses. Though moderate inflammation is
essential to mount normal immune responses, uncontrolled,
chronic, and excessive inflammation leads to allergic and
autoimmune diseases. Lactate exhibits an inflammatory or anti-
inflammatory role depending on its effects on immune cell type
and disease type. Furthermore, lactate signaling in immune cells
could be a critical pathway that links metabolism and immunity.
While it is clear that both extracellular and intracellular lactate can
program DCs and macrophages to induce robust regulatory
immune responses, several important questions remain. For
example, how do the lactate signaling pathways regulate adaptive
immune responses under homeostatic conditions, inflammation,
and cancer?; What are the downstream mediators of the lactate-
GPR81/GPR132 pathway?; What role do receptor-dependent and
independent lactate signaling play in regulating immunity versus
tolerance?; How do the lactate act in concert with other signaling
pathways in shaping anti-inflammatory and inflammatory
immune responses?; and finally, the question of whether
Frontiers in Immunology | www.frontiersin.org 11
persistent chronic infections such as HIV, HCV or TB exploit
the lactate-mediated signaling pathways and, if so, whether
blocking this pathway would enhance the immune response is
unknown. Addressing these questions will guide the rational design
of therapeutic vaccines to reprogram the innate and adaptive
immune system towards autoimmune disease tolerance or
enhance immune responses against cancer and chronic infections.
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