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The glioma tumor microenvironment (TME), composed of several noncancerous cells and
biomolecules is known for its complexity of cancer-immune system interaction. Given that,
novel risk signature is required for predicting glioma patient responses to immunotherapy.
In this study, we systematically evaluated the TME infiltration pattern of 2877 glioma
samples. TME phenotypes were determined using the Partitioning Around Medoid
method. Machine learning including SVM-RFE and Principal component analysis (PCA)
were used to construct a TME scoring system. A total of 857 glioma samples from four
datasets were used for external validation of the TME-score. The correlation of TME
phenotypes and TME-scores with diverse clinicopathologic characteristics, genomic
features, and immunotherapeutic efficacy in glioma patients was determined.
Immunohistochemistry staining for the M2 macrophage marker CD68 and CD163,
mast cell marker CD117, neutrophil marker CD66b, and RNA sequencing of glioma
samples from the XYNS cohort were performed. Two distinct TME phenotypes were
identified. High TME-score correlated with a high number of immune infiltrating cells,
elevated expression of immune checkpoints, increased mutation rates of oncogenes, and
poor survival of glioma patients. Moreover, high TME-score exhibited remarkable
association with multiple immunomodulators that could potentially mediate immune
escape of cancer. Thus, the TME-score showed the potential to predict the efficacy
of anti-PD-1 immunotherapy. Univariate and multivariate analyses demonstrated the
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TME-score to be a valuable prognostic biomarker for gliomas. Our study demonstrated
that TME could potentially influence immunotherapy efficacy in melanoma patients
whereas its role in immunotherapy of glioma patients remains unknown. Therefore, a
better understanding of the TME landscape in gliomas would promote the development of
novel immunotherapy strategies against glioma.
Keywords: tumor microenvironment, gliomas, immunotherapy, somatic mutation, immune checkpoint,
machine learning
HIGHLIGHTS

• The TME-score comprehensively evaluate the infiltration
characteristics of the TME cells in glioma patients.

• The TME-score is an independent prognostic biomarker to
predict patients’ survival.

• TME-score showed the potential to predict the efficacy of
anti-PD-1 immunotherapy.
INTRODUCTION

According to the 2016 World Health Organization (WHO)
classification criteria, gliomas are classified into low-grade
glioma (LGG) and glioblastoma (GBM). Gliomas are the most
common and devastating primary tumors affecting the central
nervous system (1). The prognosis of GBM patients is dismal and
the median overall survival (OS) is about 15 months following
concomitant chemoradiotherapy, which can be attributed to the
excessive heterogeneity of GBMs, rendering traditional
therapies ineffective.

Immune checkpoint blockers such as PD-1/L1 and CTLA-4
have demonstrated remarkable clinical efficacy in the
management of multiple cancers (2, 3). However, the current
checkpoint immunotherapy is only effective in a limited number
of glioma patients. It is, therefore, important to develop more
effective immunotherapies for gliomas.

Besides genetic and epigenetic variations in glioma cells,
tumor microenvironment (TME) also plays a critical role in
tumor proliferation, progression, and therapeutic responses (4,
5). TME is a complex network of cancer cells, stromal cells and,
most importantly, infiltrating immune cells. The TME
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complexity makes it difficult to predict the immunotherapy
outcome in gliomas effectively. Cancer cells regulate numerous
biological functions through direct or indirect interaction with
TME components (6). Emerging evidence suggests that TME
crucially influences the response to both chemotherapy (7) and
immunotherapy (8). Moreover, alterations in the number of
immune infiltrating cells in the TME have been shown to affect
clinical outcomes in various malignant tumor types. Therefore, it
is important to characterize the TME landscape in gliomas.

Understanding the complexity of the TME landscape in
gliomas may lead to the identification of different immune-
related TME phenotypes. This can help guide and predict
immunotherapeutic responses and reveal potential therapeutic
targets. Bioinformatics analysis has been used to evaluate the
abundance of immune infiltrating cells in the TME. Several
studies have also explored how TME affects immunotherapeutic
response and other clinical outcomes (9, 10).

In this study, we developed a novel TME scoring system to
improve the clinical management of glioma patients based on
large-scale samples.
MATERIALS AND METHODS

Glioma Datasets and Preprocessing
The following search terms were used as: (((survival OR
prognosis OR prognostic OR outcome OR death OR relapse
OR recurrence))) AND (Glioma[Title]) OR (Astrocytoma*
[Title]) OR (Glioblastoma*[Title]) OR (Ependymoma*[Title])
OR (Oligodendroglioma*[Title]) OR (Gliosarcoma*[Title]) OR
(Astroglioma*[Title]) OR (LGG[Title]) OR (HGG[Title]) OR
(glial cell tumor[Title]). All datasets were manually examined.
Patients lacking survival information were excluded from
further evaluation.

Publicly available glioma gene-expression datasets together
with clinical annotations were downloaded and examined. 2877
samples from 12 patient cohorts diagnosed with gliomas were
included in this study (Table S1). Four external datasets were
included for validation: GSE13041, GSE16011, GSE61335,
GSE68838. The microarray datasets were downloaded from the
Gene-Expression Omnibus (GEO; https://www.ncbi.nlm.nih.
gov/geo/). Chinese Glioma Genome Atlas (CGGA) datasets
were downloaded from the CGGA website (http://www.cgga.
org.cn/), while The Cancer Genome Atlas (TCGA) datasets were
downloaded from UCSC Xena (https://xenabrowser.net/).
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Raw data from microarray datasets were generated using
Affymetrix and Agilent. The RMA algorithm was used to
perform quantile normalization and background correction of
the raw data from Affymetrix in the Affy software package. The
final summarizing of oligonucleotides for each transcript was
based on the consensus median polish algorithm in the
Affymetrix software. The raw data from Agilent was processed
using limma software. RNA-sequencing data were downloaded
from the TCGA and CGGA data portals and the fragments per
kilobase million (FPKM) values were transformed into
transcripts per kilobase million (TPM) values, which were
similar to those resulting from microarrays and comparable
between samples. The TPM values from TCGA and CGGA
had similar signal intensity with the RMA-standardized values
from microarray datasets. R package sva was then used to
remove the computational batch effect.

Estimation of TME-Infiltrating Cells
The CIBERSORT algorithm was used to predict the presence and
quantify the abundance of immune cells in glioma samples (11).
The LM22 gene signature was applied since it allowed for
sensitive and specific discrimination of 22 human infiltrating
immune cell phenotypes. Gene-expression profiles were
uploaded to the CIBERSORT web portal (http://cibersort.
stanford.edu/). This algorithm was run using the LM22
signature and 1000 permutations. Single factor analysis was
performed on the 22 immune cells to determine their
prognostic values in gliomas. The cellular correlation among
the 22 immune cells was performed using Pearson correlation
analysis. TIMER algorithm (9), EPIC algorithm (12),
MCPcounter algorithm (13), quanTlseq algorithm (14), xCell
algorithm (15), and ssGSEA algorithm (16) were also used for
estimating the abundance of immune infiltrating cells.

Unsupervised Consensus Clustering for
TME-Infiltrating Cells
Tumors with qualitatively diverse TME infiltrating patterns were
classified using Partitioning Around Medoid (PAM) (17), which
identified TME patterns and grouped patients for further
analysis. The optimal number of clusters and their stability and
reliability in the meta-cohort and TCGA cohort were determined
using the ConsensuClusterPlus R package. Infiltration level of
stromal cells and immune cells in glioma samples was assessed
using the consensus ESTIMATE (Estimation of Stromal and
Immune cells in Malignant Tumor tissues using Expression)
algorithm (18).

Identification of TME-Related Differentially
Expressed Genes (DEGs)
To identify genes associated with TME cell-infiltrating patterns,
the patients were grouped into two distinct TME clusters based
on the diverse expression of infiltrating immune cells. The
enrichment levels of immune signatures were quantified by the
xCell algorithm to validate TME clusters (15). The R package
limma (19) was used to determine DEGs associated with the two
Frontiers in Immunology | www.frontiersin.org 3
TME cell-infiltrating patterns. The adjusted P-value < 0.01 was
used to determine DEGs among the TME subtypes.

Generation of TME Gene Signatures
and Dimension Reduction
The DEGs among the TME clusters were standardized in all
samples in the TCGA glioma cohort. Univariate cox regression
analysis identified representative DEGs. The unsupervised
clustering method (20) was used to classify patients into two
TME gene clusters for further analysis. The clusterProfiler R
package (21) was used to annotate the TME pattern genes. The
consensus clustering algorithm (22) was performed to define
the gene clusters. c2 contingency test was used to determine the
correlation between the TME gene clusters. The SVM-RFE
algorithm was used for dimension reduction and to mitigate
the interference effect of redundant genes (23). The top 300
DEGs between two TME gene clusters were selected (24), among
which 63 most representative genes were identified with the
highest accuracy of separating samples. Principal component
analysis (PCA) was performed and the extracted principal
component 1 served as the signature score. A method similar
to GGI was then applied (25) to define the TME-score of
each patient after the prognostic value of gene signature score
was obtained:

TME − score = SPC1i  − SPC1j

where i is the signature score of clusters with HR>1, and j
represents the expression of genes with HR<1.

Pathway Enrichment Analysis
All gene sets were downloaded from the MSigDB database. Gene
set enrichment analysis (GSEA) and gene set variation analysis
(GSVA) were performed on the TME gene signatures using the
clusterProfiler R package and GSVA R package (21). Pathways
enriched in TME immune-related gene patterns were identified
in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) with the false discovery rate (FDR) < 0.05 and
a strict cutoff of P < 0.01.

Prediction of Immunotherapy Response
The Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm was used to infer individual responses to
immunotherapy such as immune checkpoint blockade (e.g.
anti-PD-1 therapy) (26). The submap analysis was applied to
compare differences in response to anti-PD-1 and anti-CTLA-4
therapies. For the melanoma data set (GSE78220, N=28),
GSE78220 expression profiles (FPKM normalized) were
transformed into TPM values, which were used to calculate the
TME-score (27). T cell-inflamed gene expression profile (GEP)
was defined through the expression of the 18 genes (28).
Cytotoxic activity (CYT) was determined based on the gene
expression value of two cytolytic markers (GZMA and PRF1)
(29), and the geometric mean of these two markers was used to
perform the calculations. Seven types of immune checkpoints
were collected from previously published work (30).
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RNA Sequencing
For each glioma patient of the 48 samples, major exclusion
criteria were incomplete follow-up data, poor quality of samples,
and missing baseline clinicopathological features. RNAstore-
fixed tumor tissues were then collected for sequencing. Briefly,
1 mg RNA per sample was used as input material for RNA sample
preparations. RNA was extracted and sheared followed by
sequencing library preparation using NEBNext® UltraTM
RNA Library Prep Kit. Subsequently, PCR was performed with
Phusion High-Fidelity RNA polymerase, Universal PCR primers
and the Index (X) Primer. After PCR primer removal, biotin-
labeled probe was used for capturing target regions. The captured
libraries were sequenced on an Illumina Hiseq platform and 125
bp/150 bp paired-end reads were generated. Raw data (raw
reads) of fastq format were first processed through in-house
perlscripts. In this step, clean data (clean reads) were obtained by
removing reads containing adapter, ploy-N, and low-quality
reads from raw data. At the same time, Q20, Q30, and GC
content of the clean data were calculated. All downstream
analyses were based on clean data with high quality. Reference
genome and gene model annotation files were downloaded from
the genome website directly. The reference genome index was
built using Hisat2 v2.0.5 and paired-end clean reads were aligned
to the reference genome using Hisat2 v2.0.5 and Hisat2 was
selected as the mapping tool. FeatureCounts v1.5.0-p3 was then
used to count the reads numbers mapped to each gene. TPM of
each gene was calculated based on the gene length and reads
count mapped to this gene.

Immunohistochemistry Staining
Immunohistochemistry (IHC) staining was conducted as
previously described (31, 32). Paraffin-embedded tissues of 40
glioma samples with the corresponding sequencing data from the
Xiangya Neurosurgey (XYNS) cohort were used for performing
IHC. The paraffin-embedded glioma sections were incubated
with CD68, CD163, CD117 (Rabbit, 1:500, Proteintech, China),
and CD66b (Rabbit, 1:200, Abcam). The IHC marker was
detected with microscope.

Statistical Analysis
The normality of variables was tested using the Shapiro-Wilk
normality test (33). For normally distributed variables, unpaired
Student’s t-test was used to compare differences between two
groups, while the Wilcoxon test was used to compare
nonnormally distributed variables. For multiple groups, one-
way analysis of variance was used as a parametric method to
compare mean values between groups while Kruskal–Wallis tests
were used as a nonparametric method.

Pearson analysis and distance correlation analyses were used
to calculate correlation coefficients. Contingency tables were
analyzed by c2 contingency test. The OS and TME-score were
calculated using the R package survival and cutoff values
determined. Based on the dichotomized TME-score, patients
were grouped into high or low TME-score in each data set, and
the computational batch effect was reduced by the R package sva.
Data were mainly visualized using the R package ggplot2.
R package, igraph was used to visualize the cellular interactions
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within the TME. For the differential gene expression analysis, we
used the Benjamini–Hochberg method that converts the P values to
FDRs to identify significant genes (34). The package pROC (35)
was utilized to establish receiver operating characteristic (ROC)
curves and calculate the area under the curve (AUC). OncoPrint
was used to delineate the mutation landscape of TCGA via the
maftools R package (36). The Kaplan–Meier method was applied to
generate and visualize survival curves for the subgroups, and the
differences between data sets were compared using the log-rank test.
The univariate and multivariate Cox proportional hazards
regression models were utilized to calculate the hazard ratios in
univariate and multivariate analyses and to determine independent
prognostic factors using the R package survival. All survivorship
curves were generated via R package survminer. All heatmaps were
generated based on pheatmap. All statistical analyses were performed in
R version 3.6.1 (https://www.r-project.org/). All tests were two-sided
and P values < 0.05 were considered to be statistically significant.
RESULTS

The Landscape of Glioma TME
The TME cell infiltration patterns and gene signatures were
evaluated (Figure 1). The ConsensusClusterPlus package was
used to assess clustering stability to determine the optimal cluster
number (Figure S1A), which supported two robust subtypes of
gliomas in a meta-cohort. The optimal cluster number was also
identified in TCGA (Figure S1B). We built an integrated TME
cell network that comprehensively depicted a landscape of TME
cell lineages, tumor immune cell correlations, and their
prognostic values on the OS of glioma patients (Figure 2A and
Tables S3, S4). A similar TME cell network was constructed in
the TCGA cohort (Figure S2A and Tables S3, S4). Partitioning
Around Medoid (PAM) was performed for the 2877 tumors with
the corresponding TME cell expression profiles of the 12
included glioma cohorts (Figure 2B and Table S2). PAM was
subsequently performed in the TCGA cohort (1027 patient
samples), and two phenotypes were separated by different
clinical factors (Figure S2B and Table S6). Two TME
phenotypes were identified by TME cell infiltration and
exhibited significant differences in the OS in the meta-cohort
and TCGA alone (log-rank test, p < 0.001; Figures 2C and S2C).
Among the two clusters, PCA distribution was separated in both
the meta-cohort and TCGA alone (Figures 2D and S2D).
Figure 2E shows that the two TME clusters exhibited
significant differences in TME cell infiltration patterns, and
these differences were reported in multiple immune
suppressive cell types. Additionally, PAM was performed in
another two cohorts for validation, and there was a significant
correlation between identified TME phenotypes and TME
infiltration cell patterns in the CGGA and GSE108474 datasets,
respectively (Figures S2E, F and Table S6). We further analyzed
immune cells by the xCell algorithm (15). The two TME clusters
identified by xCell algorithm were significantly different in terms
of the survival probability (Figure S3E). Additionally, the TME
clusters identified by xCell algorithm were consistent with those
identified by the CIBERSORT algorithm (Figure S3F).
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FIGURE 1 | Flow diagram of the study design. TME phenotypes were determined using the Partitioning Around Medoid method. Principal component analysis (PCA) was
used to construct a TME scoring system. A total of 857 glioma samples from four datasets were used for external validation of the TME-score. The correlation of TME
phenotypes and TME-scores with diverse clinicopathologic characteristics, genomic features, and immunotherapeutic efficacy in glioma patients was determined.
Immunohistochemistry staining for the M2 macrophage marker CD68 and CD163, and RNA sequencing of glioma samples from the XYNS cohort were performed.
Frontiers in Immunology | www.frontiersin.org August 2021 | Volume 12 | Article 6918115
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Functional Annotations for TME
Phenotype Clusters
To elucidate the correlation between the immune infiltrating
environment and TME clusters, 20 of both immune-related and
DNA regulation-related signaling pathways in GO analysis were
identified in the meta-cohort (Figure S3A). We found that TME
Frontiers in Immunology | www.frontiersin.org 6
cluster1 was associated with immunosuppressive pathways
(Figure S3A). Additionally, TME cluster 1 was associated with
pathways regulating tumor cell proliferation (Figure S3A). Similar
results were observed in the TCGA database (Figure S3B),
showing differences in 20 signaling pathways in the two TME
clusters (Figures S3C, D).
C

E

D

A B

FIGURE 2 | TME landscape in gliomas and characteristics of TME subtypes in the meta-cohort. (A) Cellular interaction of the TME cell types. (B) Unsupervised
clustering of TME cells for 2877 patients in the meta-cohort. (C) Kaplan–Meier curves for two TME groups of 2877 patients in the meta-cohort. Log-rank test,
P < 0.001. (D) PCA separated the two TME clusters. (E) Fraction of TME cells in two TME clusters. The scattered dots represent TME cell expression values within
each group. NS, Not Statistically Significant; **P < 0.01; ****P < 0.0001.
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Generation of TME Gene Signatures and
Functional Annotation
We acquired a total of 1312 DEGs (Table S5) using the limma
package to classify the patients into genomic subtypes and to
investigate the potential biological characteristics of each TME
infiltration cell pattern. The analysis was significantly consistent
with the clustering results of the TME phenotype groups
(c2 contingency tests, p =1.95 × 10-12). The TCGA glioma
cohort population was grouped into two TME gene clusters 1
and 2 (Figure S4A). The survival analysis of the two patient
clusters indicated that gene cluster 1 correlated with worse survival
outcomes than cluster 2 (Figure S4B). The GO and KEGG
enrichment analyses showed that gene clusters 1 and 2 were
enriched in distinct biological processes. In GO enrichment
analysis, gene cluster 1 was involved in tumor proliferation
(Figure S4C). Overexpression of genes involved in immune
activation pathways was enriched in gene cluster 2 (Figure S4D).
Additionally, the KEGG enrichment analysis showed that gene
cluster 1 was associated with tumor proliferation and was a
prognostic marker for poor survival outcomes (Figure S4E).
Gene cluster 2 was associated with immune activation and was a
prognostic marker for better survival outcomes (Figure S4F).

Generation of TME-Score, Transcriptome
Traits, and Clinical Characteristics
The SVM-RFE algorithm was used in dimension reduction to
extract phenotype signatures with high classification accuracy
and further explore the role of TME phenotypes. Sixty-three
most representative DEGs were identified (Figure S5A and
Table S7); the chromosomal distribution and expression of
these genes are displayed in Figure S5B. Almost all of the 63
genes were significantly differentially expressed between glioma
molecular subtypes, isocitric dehydrogenase (IDH) mut glioma
and IDH wt glioma (Table S13). The regulatory networks
identified by the clusterProfiler R package suggested that
immune activation and tumor proliferation pathways were
involved and exhibited significant overlaps with other
pathways (Figure S5C).

The PCA algorithm was used to define the TME-scores of the
12 cohorts (Table S8). Based on the 63 DEGs, PCA distribution
was separated among the two TME gene clusters in TCGA
(Figure S5F). The interconnections among TME clusters, TME
gene clusters, TME-scores, patient survival, and tumor grade are
presented in Figure S5D. Contingency table revealed the
significant consistency between TME clusters and TME-scores,
which TME score could be considered a collection of the features
of the two TME clusters (Figure S5E). The distribution of TME-
scores in TME clusters in CGGA and GSE108474 datasets are
shown in Figure S5G. Consistent with the findings in TME gene
cluster 1, a high TME-score was a prognostic marker for poor
clinical outcomes in TCGA and meta-cohort (Figures 3A, B).
Given that gliomas consist of various types and grades of glial
tumors, the differences in TME landscapes among different types
of glial tumors were explored. The prognostic values of TME-
scores were verified in TCGA LGG (Figure S6A) and TCGA
GBM (Figure S6B). The TME-score was also a prognostic
Frontiers in Immunology | www.frontiersin.org 7
marker for the IDH status in LGG (Figure S6C), GBM
(Figure S6D), and pan-gliomas (Figure S6E). A high TME-
score was associated with metastatic and immunosuppressive
signatures (Figure 3C). The correlations between TME-scores
and these known signatures are shown in Figure S5H.

The associations between TME-scores and the immune
infiltrating environment was further examined. High TME-
scores were correlated with Estimate Scores, Immune Scores,
and Stromal Scores (Figure 3D) and also associated with the
infiltration of M2 macrophages, mast cells, and neutrophils.
Thus, high TME-scores were an indicat ion of the
immunosuppressive environment and poor survival outcomes
while low TME-scores were prognostic for activated immune
environments (Figures 3E, S5I). Further, TME-scores were
significantly correlated with CD8 T cell, NK cell, regulatory T
cells (Tregs), macrophages, fibroblasts, Th1 cells, and dendritic
cells based on TIMER algorithm, EPIC algorithm, MCPcounter
algorithm, quanTlseq algorithm, and xCell algorithm
(Figure 3F). The immunocyte infiltrating characteristics of
TME-scores were verified in LGG (Figure S6F) and GBM
(Figure S6G). Gliomas with a high TME-score expressed more
immune checkpoints, such as LAG3, CD40, and PDCD1LG2
(Figure 3G). Figure S7B displays the expression differences of
TME-scores in relation to several clinical factors. Gliomas with
unmethylated MGMT, IDH WT, 1p19q non-codeletion, higher
grade, and mesenchymal gliomas with poor survival outcomes
had high TME-scores.

TME-Score Is Associated With Unique
Genomic Alteration Patterns
We performed a copy number variant (CNV) (Figure 4A) and
somatic mutation analysis (Figures 4B, C) of the TCGA dataset
to determine the associations between TME-score and glioma
genomic profiles. Various frequently amplified and deleted
genomic regions were observed in high and low TME-score
samples (Figure 4A). The somatic mutation analysis showed
mutation frequencies of various genes as follows: TP53 (45%),
IDH1 (40%), ATRX (27%), TTN (21%), and EGFR (20%) in the
high TME-score (Figure 4B), while IDH1 (62%), TP53 (31%),
and CIC (27%) in the low TME-score cluster (Figure 4C). A
CNV comparison between high and low TME-score clusters
identified significantly different CNV regions (Table S11). The
mutated genes were compared between high and low TME-score
clusters, identifying different mutated genes (Table S12).
Potential Intrinsic Immune Escape
Mechanisms of TME-Score
High TME-scores demonstrated significant enrichment of PD-1
signaling, T cell signaling, Hypoxia signaling, exosome signaling,
immunosuppressive cells including Tregs, myeloid-derived
suppressor cells (MDSCs), tumor-associated macrophages
(TAMs), and cancer-associated fibroblasts (CAFs) (Figure 5A).
m6A signatures that were associated with antitumor immunity
were also enriched in high TME-scores (Figure 5B). In term of
antigen presentation capacity, high TME-scores presented higher
August 2021 | Volume 12 | Article 691811
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antigen processing and presenting machinery (APM) score
(Figure 5C). Cancer testis antigen (CTA) and neoantigens
were vital source of tumor-specific antigens, and they were
significantly higher in high TME-scores (Figures 5D, E). A
series of factors associated with tumor immunogenicity was
then assessed. High TME-scores presented higher level of
nonsilent mutation rate, number of segments, and aneuploidy
Frontiers in Immunology | www.frontiersin.org 8
score, all of which were significant indicators for genome
alteration (Figures 5F–H). Stroma signatures including TGF-
beta response, leukocyte fraction, and stromal fraction were
higher in high TME-scores (Figures 5I–K). Intratumor
heterogeneity and tumor mutation burden (TMB) predicting
better immunotherapy responses were also higher in high TME-
scores (Figures 6A, B).
C

D E

F G

A B

FIGURE 3 | Immune-related characteristics of the TME score. (A) Kaplan–Meier curves for high and low TME-score patient groups in TCGA. Log-rank test, P <
0.001. (B) Kaplan–Meier curves for the high and low TME-score patient groups in the meta-cohort. Log-rank test, P < 0.001. (C) TME-score patient groups were
distinguished by different known signatures (immune, mismatch, and stromal signatures as indicated) in TCGA. The scattered dots represent the mean value of
signature genes within each group. (D) Expression difference of Estimate Score, Immune Score, and Stromal Score in TME-score in TCGA. (E) Fraction of TME cells
in TME-score in TCGA. Scattered dots represent TME cell expression values. (F) Correlation between TME-score and TME cells calculated by different algorithms in
TCGA. (G) Fraction of seven types of immune checkpoints in TME-score in TCGA. Scattered dots represent immune checkpoint expression values. NS, Not
Statistically Significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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The TME-Score Predicts
Therapeutic Benefits
We assessed the TME-scores in glioma cohorts because of their
prognostic significance associated with poor outcomes in glioma
Frontiers in Immunology | www.frontiersin.org 9
datasets (Figure 4D). Survival analysis in the 10 included cohorts
indicated an association of the high TME-score with poor
survival outcomes in all datasets (Figure S7A). Univariate and
multivariate Cox regression models in both TCGA and CGGA
C

D

A

B

FIGURE 4 | Distinct genomic profiles associated with the TME-score. (A) GISTIC 2.0 amplifications and deletions in gliomas with high and low TME-scores.
Chromosomal locations of peaks of significantly recurring focal amplifications (red) and deletions (blue) are presented. (B) Differential somatic mutations were
detected in gliomas with high TME-score. (C) Differential somatic mutations were detected in gliomas with low TME-score. (D) Subgroup analyses estimating the
clinical prognostic value between low/high TME-score groups in independent glioma datasets.
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FIGURE 5 | Potential immune escape mechanisms related to TME-score. (A) Characterization of the immune suppressive signatures associated with TME-scores in
TCGA. (B) Fraction of m6A signature genes in TME-score in TCGA. (C) APM score in high and low TME-score. (D) CTA score in high and low TME-score. (E) SNV
neoantigens in high and low TME-score. (F) Nonsilent mutation rate in high and low TME-score. (G) Number of segments in high and low TME-score. (H) Aneuploidy
score in high and low TME-score. (I) Leukocyte fraction in high and low TME-score. (J) Stromal fraction in high and low TME-score. (K) TGF-beta response in high
and low TME-score. NS, Not Statistically Significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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FIGURE 6 | TME-score is a prognostic biomarker and predicts immunotherapeutic benefit. (A) Intratumor heterogeneity in high and low TME-score. (B) TMB in
high and low TME-score. (C) TIDE value and response to immunotherapy of patients with TME-scores. (D) Submap analysis based on the TIDE algorithm
showed a significant difference in response to CTLA-4 and anti-PD-1 therapy with respect to the TME-score in TCGA. (E) TME-scores in groups with a
response and non-response to anti–PD-1. Differences between groups were compared by the Wilcoxon test (Wilcoxon, P = 0.036). (F) Predictive value of the
TME-score measured by ROC curves in the GSE35640 cohort. AUC is 0.657. (G) Kaplan–Meier curves for high and low TME-score patient groups in the
GSE78220 cohort. Log-rank test, P = 0.00139. (H) TME-scores in groups with different anti–PD-1 clinical response status (CR/PR and SD/PD). Differences
between groups were compared by Wilcoxon test (Wilcoxon, P = 0.019). (I) Rate of clinical response (CR/PR, SD/PD) to anti–PD-1 immunotherapy in high or
low TME-score groups in the GSE78220 cohort. (J) Predictive value of the TME-score, PD-L1, and PD-L2 measured by ROC curves in the GSE78220 cohort.
AUC is 0.742. Scatter plots depicting a positive correlation between TME-score and (K) CYT and (M) GEP. Pearson Correlation Coefficient R = 0.34 and 0.51,
respectively. (L) CYT and (N) GEP expression differences in high and low TME-scores. Differences between groups were compared through the Wilcoxon test
(Wilcoxon, P < 0.001).
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cohorts showed that the TME-score model was an independent
prognostic factor (Figure S8A). TME-scores were also validated
in several external datasets and high TME-scores were found to
be prognostic markers for poor survival outcomes (Figure S9A).

The ability of the TME-score to predict patients’ response to
immune-checkpoint therapy was explored by assigning the
GSE35640 cohort patients (melanoma dataset) to different
TME-score groups. Patients with high TME-scores exhibited
better immunotherapeutic responses (Figure 6E). The ROC
analyses confirmed that TME-score was a predictive biomarker
in patients with melanoma (Figure 6F). In another melanoma
dataset, GSE78220, patients with high TME-scores exhibited
significantly longer OS compared to patients with low TME-
scores (Figure 6G). High TME-scores also correlated with
complete anti-PD-1 responses (Figures 6H, I). The expression
patterns of TME-scores in 27 melanoma patients with complete
anti-PD-1 and partial anti-PD-1 responses and progressive
disease are displayed in Figure S8C. The ROC analyses
confirmed that TME-score was a predictive biomarker in
melanoma patients (Figure 6J). TME-score was also found to
be significantly correlated with two classical immune checkpoint
molecules, LAG3 and PDCD1LG2 (Figure S8F).

To further elucidate the correlation between TME-score and
immunotherapy, the potential response to immunotherapy in
TCGA based on the TIDE algorithm was evaluated. Patients with
high TME-scores exhibited better immunotherapy response
compared to those with low TME-scores (Figure 6C).
Subsequently, responses to anti-PD-1 and anti-CTLA-4 therapies
were analyzed. The results showeddifferent responses betweenhigh
and lowTME-score groups to both immunotherapies, which a high
TME-score exhibited a significant response to anti-PD-1
immunotherapy while TME-score predicted no response for anti-
CTLA-4 immunotherapy in TCGA (Figure 6D). Further, TME-
scores were significantly associated with CYT (Figures 6K, L). A
high TME-score indicated increased expression of GEP
(Figures 6M, N). TME gene cluster 1 and TME phenotype cluster
1 also showed a high expression of CYT andGEP (Figures S8D, E).

Functional Annotation and Genomic
Analysis of TME-Scores
The potential associations between TME-scores and signaling
pathways in GO and KEGG pathways based on GSVA were
analyzed in TCGA. GO results showed that high TME-scores
were significantly associated with immune-related pathways
(Figure S9B). KEGG analysis showed that a high TME-score
was associated with pathways in cancer, apoptosis, and VEGF
signaling pathway (Figure S9C). These results denoted the
complexity of TME and also showed that activated T cells were
major components of immune infiltrating cells. GSEA indicated
that negative regulation of the immune response and T cell
activation were enriched in high TME-scores (Figure S9D).
Pathways in cancer were associated with high TME-scores as
shown in KEGG analysis (Figure S9E). A high TME-score
indicated the presence of higher overall variants (Figure S8B).
Additionally, a high TME-score was associated with lower arm
SCNA levels and higher chromosome SCNA levels in this study
(Figure S8G).
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Validation of TME-Scores in the
XYNS Cohort
We validated TME-scores in our samples with sequencing data
from Xiangya hospital (Table S14). High TME-scores served as
prognostic markers for poor clinical outcome in the XYNS cohort
(Figure 7A). Figure S10A shows that the high TME-score exhibited
significant higher TME cell infiltration level based on ssGSEA
algorithm, and these differences were reported in multiple immune
suppressive cell types, including macrophages, mast cells, MDSCs,
and Tregs. Gliomas with a high TME-score expressed higher levels of
immune checkpoint molecules including CD274, CD276,
PDCD1LG2, LAG3, PDCD1, TIGIT, IDO1, CTLA4, and TGFB1
(Figure S10B). As shown in Figure 7B, TME-scores were also
found to be positively correlated with four classical immune
checkpoints (CD274, PDCD1LG2, LAG3, and PDCD1). Given the
critical role of macrophages in the tumor microenvironment, CD68
and CD163, specific M2 macrophage markers, were used for the
identification of M2 macrophages in the glioma microenvironment
(37). IHC staining showed that high TME-scores exhibited a relatively
higher expression of CD68 and CD163 compared to low TME-scores
(Figure 7C), implying a high infiltration of M2 macrophages in the
tumor microenvironment with high TME-scores. Besides, IHC
staining was also performed for CD66b (marker of neutrophil) (38)
and CD117 (marker of mast cell) (39) (Figure S11). Likewise, high
TME-scores exhibited a relatively higher expression of CD66b and
CD117 compared to low TME-scores, implying a high infiltration of
neutrophils and mast cells in the tumor microenvironment with high
TME-scores.
DISCUSSION

TME is a complex system that plays an important role in the
proliferation and progression of tumor cells. Previous studies
have demonstrated that TME also contributes to chemoresistance
(7). It is, therefore, considered a novel therapeutic target, especially
for immunotherapeutic agents. However, the effects of
immunotherapy on gliomas have not been adequately addressed.
In this study, we established a TME signature based on prediction of
immune infiltrating cells that showed good potential to predict
glioma immunotherapy response. The TME signature revealed the
immune and stromal statuses, and predicted the survival of patients
with glioma. Gene cluster 1 of the TME signature was enriched in
genes involved in signaling pathways related to tumor proliferation
and progression and was associated with poor survival. Gene cluster
2 had a significant association with immune activation pathways.
Immune checkpoints have been shown to facilitate tumor immune
evasion (40). In this study, an immunosuppressivemicroenvironment
highly expressing classical immune checkpoints was observed in gene
cluster 1.

Based on several consensus computational algorithms, the
TME infiltration pattern was estimated and the TME-score for
gliomas was established. Most of the 63 differentially expressed
genes identified by TME-score, such as ARHGDIB, MYO1F,and
CD14 have been demonstrated to facilitate tumor proliferation
and regulate tumor immune microenvironment in breast (41)
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and pancreatic (42) cancers, respectively. Analysis of the publicly
available datasets and the sequencing data from Xiangya samples
indicated that a high TME-score predicted poor survival and an
immunosuppressive environment, consistent with the findings in
TME phenotypes and TME gene clusters. A high TME-score was
also associated with a higher mutation rate of oncogenes,
including TP53 and PTEN, while IDH mutation, a favorable
prognostic marker for gliomas, was detected in low TME-score.
Moreover, the TME-score had a high SCNA. In the functional
annotation of TME-score in glioma, T cell activation and
Frontiers in Immunology | www.frontiersin.org 13
macrophage activation were significantly correlated with high
TME-score. These observations underscore the complexity of
biological processes in TME and immune activation that coexist
with immune suppression.

The Cox regression analysis showed that the TME-score was
associated with high risk in gliomas and several other cancers.
Notably, a high TME-score was a favorable marker in melanoma.
The patient age, tumor grade, IDH mutation, 1p19q codeletion,
and TME-score were all identified as risk factors in glioma
patients. Moreover, mesenchymal gliomas had the highest
C

A B

FIGURE 7 | Validation of TME-score in the XYNS cohort. (A) Kaplan–Meier curves for high and low TME-score patient groups in Xiangya samples. Log-rank test,
P = 0.00106. (B) Scatter plots depicting a positive correlation between the TME-score and three classical immune checkpoints, CD274, PDCD1LG2, LAG3, and
PDCD1. (C) Representative images of CD68 and CD163 IHC staining based on low and high TME-scores in Xiangya samples.
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TME-score. A previous study demonstrated that the
mesenchymal glioma subtype was associated with an
immunosuppressive environment (43), consistent with our
results that TME-score could predict an immunosuppressive
environment. Notably, TME-score was observed to be
significantly involved in the immunological functions of four
classical immune suppressive cells including TAMs, MDSCs,
Tregs, and CAFs. The IHC staining results proved that M2
macrophages, mast cells, and neutrophils were more infiltrated
in tumor microenvironment of patients with high TME-
scores. Moreover, high ICP score prominently participated in
the regulation of immunomodulators for tumor immunogenicity
and antigen presentation capacity. TMB, a diagnostic phenotype
with more malignancy of cancer and better immunotherapy
response, was more significantly correlated with high TME-
score (44). High TME-score was also detected with higher
Intratumor Heterogeneity, a diagnostic phenotype with more
malignancy of cancer (45). Additionally, high TME-score had
the distinct biological characteristics regarding stroma signatures
such as TGF-beta response and leukocyte fraction compared
with low TME-score, and these stroma signatures have
previously been proved to facilitate the immune escape of
cancer (46). Therapeutic inhibitors that block the PD-1/PD-L1
pathway have been reported to enhance immunotherapy
responses in multiple cancers (32, 47–51). So far, anti-PD-1
therapy has not been effective in glioma cohorts, and one phase 3
trial failed to show that PD-1 inhibition confers a survival benefit
in patients with recurrent glioblastoma (52). Therefore, we
examined the impact of TME-score on anti-PD-1 therapy
based on two melanoma cohorts, GSE35640, and GSE78220.
Patients with high TME-score were more likely to benefit from
anti-PD-1 therapy, demonstrating the different immune
infiltrating microenvironment between gliomas and melanoma.
Using the TIDE algorithm, high TME-scores correlated with
good response to immunotherapies such as anti-PD-1 and anti-
CTLA-4. Thus, we hypothesized that the TME-score may
potentially serve as a sensitive marker for predicting glioma
patients’ response to anti-PD-1 therapy.

A positive correlation was observed between TME-score,
GEP, and CYT. GEP-induced CYT enhanced the anti-tumor
activity of the adoptive transfer of T cells. These results may
appear contradictory to the perilous role of high TME-score in
gliomas. However, this could be attributed to TME complexity,
where activated T cells coexist with multiple immunosuppressive
infiltrating cells. Previous studies have shown that T cell–
infiltrated tumors have an optimal response to therapies
targeting the immune system inhibitory mechanisms (53). The
high TME-score was positively involved in T cell activity and
indicated a better response to anti-PD-1 therapy.

Although many studies have established prognostic models
based on several immune-related signature genes, they were
based on small samples and only utilized a small fraction of
TME (Table S9). In this study, we developed a TME-score based
on several signature genes that enabled us to comprehensively
explore the infiltration characteristics of the TME cells in
individual glioma patients. Thus, the TME-score would help
Frontiers in Immunology | www.frontiersin.org 14
study the immune phenotype of tumors thereby improving
clinical management. The performance of the TME-score was
consistent with findings from TME clusters and TME gene
clusters. Further analysis showed that the TME-score could
assess patients’ clinicopathological features, including the
immune infiltration pattern, tumor stage, age, molecular
subtypes, and genetic variations. TME-score showed good
potential as an independent prognostic biomarker in predicting
patient survival. Currently, there are multiple ongoing clinical
trials on immunotherapy targeting PD-1; however, they have not
demonstrated promising results so far (Table S10). Therefore,
the TME-score established here would help evaluate clinical
response to anti-PD-1 therapy and promote the development
of effective immunotherapy strategies.
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