
Frontiers in Immunology | www.frontiersin.

Edited by:
Andras Perl,

Upstate Medical University,
United States

Reviewed by:
Melissa Anne Cunningham,

Medical University of South Carolina,
United States
Rille Pullerits,

Sahlgrenska University Hospital,
Sweden

*Correspondence:
Takako S. Chikenji

chikenji@pop.med.hokudai.ac.jp

†ORCID:
Yuki Saito

orcid.org/0000-0002-7949-1628
Takako S. Chikenji

orcid.org/0000-0003-2832-3656

Specialty section:
This article was submitted to

Autoimmune and
Autoinflammatory Disorders,

a section of the journal
Frontiers in Immunology

Received: 08 April 2021
Accepted: 19 October 2021

Published: 03 November 2021

Citation:
Saito Y, Miyajima M, Yamamoto S,

Sato T, Miura N, Fujimiya M and
Chikenji TS (2021) Accumulation of
Senescent Neural Cells in Murine

Lupus With Depression-Like Behavior.
Front. Immunol. 12:692321.

doi: 10.3389/fimmu.2021.692321

ORIGINAL RESEARCH
published: 03 November 2021

doi: 10.3389/fimmu.2021.692321
Accumulation of Senescent Neural
Cells in Murine Lupus With
Depression-Like Behavior
Yuki Saito1,2†, Maki Miyajima2, Sena Yamamoto2, Tsukasa Sato2, Norihiro Miura2,
Mineko Fujimiya1 and Takako S. Chikenji 1,2*†

1 Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan, 2 Department of Health
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Neuropsychiatric manifestations targeting the central, peripheral, and autonomic nervous
system are common in systemic lupus erythematosus (SLE); collectively, these symptoms
are termed neuropsychiatric SLE (NPSLE). Among a wide variety of neuropsychiatric
symptoms, depression is observed in about 24-39% of SLE patients. Several cytokines
and chemokines have been identified as biomarkers or therapeutic targets of NPSLE; in
particular, the levels of type 1 interferons, TNFs, and IL-6 are elevated in SLE patient’s
cerebrospinal fluid (CSF), and these factors contribute to the pathology of depression.
Here, we show that senescent neural cells accumulate in the hippocampal cornu
ammonis 3 (CA3) region in MRL/lpr SLE model mice with depressive behavior.
Furthermore, oral administration of fisetin, a senolytic drug, reduced the number of
senescent neural cells and reduced depressive behavior in the MRL/lpr mice. In
addition, transcription of several senescence and senescence-associated secretory
phenotype (SASP) factors in the hippocampal region also decreased after fisetin
treatment in the MRL/lpr mice. These results indicate that the accumulation of
senescent neural cells in the hippocampus plays a role in NPSLE pathogenesis, and
therapies targeting senescent cells may represent a candidate approach to treat NPSLE.

Keywords: systemic lupus erythematosus, senescence, depression, inflammation, SASP (senescence-associated
secretory phenotype)
INTRODUCTION

Systemic lupus erythematosus (SLE) is a currently incurable autoimmune disease characterized by
hyperactive immune cells, serum autoantibodies, and multiple organ damage involving the kidney,
skin, vasculature, and brain (1). Neuropsychiatric manifestations targeting the central, peripheral,
and autonomic nervous system are common in SLE; collectively, these symptoms are called
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neuropsychiatric SLE (NPSLE). Up to 75% of patients experience
central nervous system (CNS) involvement, and 60% of SLE
patients experience autonomic symptoms (2–4). Among a wide
variety of neuropsychiatric symptoms, depression is observed in
about 24-39% of SLE patients (5). Various immune effectors
contribute to SLE pathogenesis, including autoantibodies,
cytokines, and cell-mediated inflammation (2, 4, 6, 7);
however, the detailed mechanism underlying NPSLE remains
largely unknown (2, 4, 6, 7).

Cellular senescence is a state of irreversible cell cycle arrest in
which an adaptive response is induced by multiple stressors (8,
9). Although senescence serves as a defense mechanism that
limits tumorigenesis to maintain tissue homeostasis,
accumulation of senescent cells causes age-related disease and
chronic inflammation in lung, kidney, heart, and muscle,
through the secretion of pro-inflammatory molecules including
cytokines, chemokines, and proteases; collectively, these factors
are referred to as the senescence-associated secretory phenotype
(SASP) (8–13). Prolonged exposure to the SASP leads to
pathological changes that contribute to tissue and organ
decline (8). Senescent cells contribute to the neurodegeneration
and pathogenesis of the brain observed in Alzheimer’s disease,
Parkinson’s disease, and multiple sclerosis (14–18). For example,
in Alzheimer’s disease model mice, astrocytes, microglia, and
oligodendrocyte progenitor cells have features of senescence, and
elimination of senescent cells via genetic or pharmacological
treatment attenuates neuroinflammation and cognitive deficits
(17, 18). Chronic neuroinflammation is one of the hallmarks of
Parkinson’s disease. The expression levels of pro-inflammatory
factors and proteases, such as tumor necrosis factor-a (TNF-a),
interleukin-1b (IL-1b), and interleukin-6 (IL-6), and interferon-
gamma (IFN-g) and metalloproteinase-3 (MMP-3), which are
canonical SASP factors, are elevated in the brains of patients with
Parkinson’s disease (19). Furthermore, the number of senescent
astrocytes and dopaminergic neurons is elevated, and these
senescent cells have the potential to contribute to pathology
(14, 15). Although the mechanism by which cellular senescence
is linked to neurodegeneration is not fully understood, the
accumulation of senescent cells may trigger a chronic
inflammatory response that contributes to synapse damage and
cognitive decline (20). NPSLE causes a disruption of the blood–
brain barrier, which is directly caused by cytokines and
complement proteins (21). Pro-inflammatory cytokines and
chemokines related to neuroinflammation in NPSLE were
identified in the cerebrospinal fluid (CSF) of SLE patients for
use as biomarkers or therapeutic targets; in particular, the levels
of type 1 interferons, TNFs, and IL-6 are elevated and contribute
to the pathology of depression (4, 6, 8, 22). Overexpression of
these pro-inflammatory factors in the CSF of NPSLE patients is
hypothesized to cause cellular senescence in CNS; however, to
the best of our knowledge, cellular senescence in the CNS has not
been evaluated in patients with lupus (22–30).

In this study, we sought to determine the relationship
between senescence and depression in SLE by investigating
cellular senescence in the hippocampus, which is associated
with depression (31–34), in MRL/lpr SLE model mice.
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In addition, we investigated whether senolytics, small
molecules that selectively eliminate senescent cells, reduce the
observed number of senescent cells and consequently reduce
depression symptoms in MRL/lpr SLE model mice.
MATERIALS AND METHODS

Mice
The Committee of the Animal Experimentation Center of the
Sapporo Medical University School of Medicine approved all
animal protocols (#17-080 and #21-051). Mice were maintained
in an enclosed, specific pathogen–free facility with a 12 h light
and dark cycle. Female MRL/lprmice were used as an SLE mouse
model, and haplotype-matched female MRL/MPJ mice were
used as phenotypic controls (Sankyo Lab Service, Tokyo,
Japan). For pathological analysis, four MRL/MPJ mice and five
MRL/lpr mice were used and euthanized at 18 weeks of age. For
senolytic treatment, twenty-four MRL/MPJ mice and twenty-
four MRL/lpr mice were used and euthanized at 22 weeks of age,
and tissue samples were harvested.

Behavioral Analysis
The tail suspension test was performed to assess depression-like
behavior (35–39). Mice were suspended by their tails with tape
60 cm above the floor for 6 min, and the time of immobility was
measured. Each mouse was tested only once. The time of
immobility was defined as the time when the animal stopped
struggling for ≥ 1 s, which was measured using a video tracking
system (ANY-maze; Muromachi Kikai, Tokyo, Japan).

Cell Culture and Senescence Induction
Neuro-2a cells (Cell No. IFO50081), which are a mouse brain–
derived neuroblast cell line, were obtained from the Japanese
Collection of Research Bioresources Cell Bank (Osaka, Japan)
and maintained in Eagle’s Minimal Essential Medium with non-
essential amino acids and 10% fetal bovine serum. Cells were
tested for mycoplasma using the e-Myco Mycoplasma PCR
Detection Kit (iNtRON Biotechnology, Seongnam-si, South
Korea). Cellular senescence was induced by X-ray irradiation.
Neuro-2a cells were exposed to 10 Gy irradiation using an X-Ray
Irradiator (MBR-1520-3; HITACHI, Tokyo, Japan), and 3 days
later the cells were passaged to avoid confluency. Six days after
irradiation, Neuro-2a cells were harvested and subjected to SA-
b-Gal staining, PCR analysis, and pharmacological experiments.
To detect cellular senescence, we performed senescence-
associated b-Galactosidase (SA-b-Gal) staining using the
Senescence b-Galactosidase Staining Kit (Cell Signaling
Technology, Danvers, MA, USA). Cells were observed using an
inverted microscope (Primovert; ZEISS), and the percentage of
SA b-Gal–positive cells was calculated by dividing the number of
SA b-Gal–positive cells by the total number of cells observed.
The cell size was measured using the ImageJ software (National
Institutes of Health). Briefly, the cell body was outlined using the
drawing/selection tools, and the area was measured using the
analyze tool.
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In Vitro Senolytic Treatment
For senolytic treatment, fisetin flavonoid, which is found in
many fruits and vegetables and was previously identified as a
senolytic compound (40), was used. Fisetin (S2298) was
purchased from Selleck (Houston, TX, USA) and dissolved in
DMSO before use. Irradiated senescent Neuro-2a cells and non-
irradiated Neuro-2a cells were seeded on a 96-well black/clear
bottom plate at 40,000 cells and 10,000 cells per well,
respectively. After senescence induction for 6 days, 5µM,
10µM, or 20µM fisetin was added and the cells were incubated
for 48 h. The concentration of fisetin used was based upon a
previous study that reported its senolytic effects (40). Cell
number and cellular senescence were determined by DAPI
staining and SPiDER-b-Gal staining, respectively. Briefly, cells
were washed twice with PBS, fixed in 4% paraformaldehyde at
room temperature for 5 min, and washed twice with PBS.
Sections were incubated in 20 µM SPiDER-b-gal (Dojindo)
in solution in McIlvaine buffer (pH 6.0) for 60 min at 37°C.
After washing of tissue sections, nuclei were stained with
DAPI. Cells were observed using fluorescence microscopy
(Axio Observer7; ZEISS).

In Vivo Senolytic Treatment
Eighteen-week–old MRL/MPJ mice (n = 24) and MRL/lpr mice
(n = 24) were randomized for pharmacological treatment
analysis. For oral administration, mice were gavaged with 100
mg/kg fisetin (Tokyo Chemical Industry, Tokyo, Japan) (MRL/
MPJ: n = 12 and MRL/lpr: n = 12) or vehicle (20% PEG 400)
(MRL/MPJ: n = 12 and MRL/lpr: n = 12) for 5 days every week
for 4 weeks.

Immunohistochemistry and
SPiDER-b-Gal Staining
Brain samples were fixed in 4% paraformaldehyde overnight.
The following day, the tissues were transferred to 20% sucrose in
phosphate buffer, incubated overnight, frozen in OCT
compound in liquid nitrogen, and stored at −80°C until use.
Cryosections (8 µm thick) were prepared using a cryostat. The
sections were incubated in 0.01 M PBS containing 0.3% Triton-X
(PBS-T) and treated with 2% BSA for 60 min at RT. After
washing with 0.01 M PBS-T, the sections were incubated with
primary antibodies at 4°C overnight, followed by secondary
staining. Alexa Fluor 594–conjugated anti-GFAP (1:100;
644708; Biolegend), anti–Iba-1 (1:400; 019-19741; Wako,
Osaka, Japan), and anti-NeuN (1:150; 2697501; Proteintech,
Rosemont, IL, USA) were used as primary antibodies. Cy3-
conjugated IgG (1:400; Jackson ImmunoResearch, West Grove,
PA, USA) was used as a secondary antibody, and nuclei were
stained with DAPI (1:1000; Dojindo). After washing, tissue
sections were mounted with Vectashield (Vector Laboratories).
For the SPiDER-b-gal stain, tissue sections were incubated in
20 µM SPiDER-b-gal (Dojindo) in solution in McIlvaine buffer
(pH 6.0) for 60 min at 37°C. After washing of tissue sections,
nuclei were stained with DAPI, and tissue sections were mounted
with VECTASHIELD. Sections were observed by fluorescence
microscopy [Axio Observer7 (ZEISS) or BZ-X700 (Keyence)].
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RNA Extraction and Quantitative
Real-Time PCR
Total RNA was isolated using the Tri Reagent (Molecular
Research Center, Cincinnati, OH, USA), and RNA was reverse
transcribed into cDNA using the iScript Advanced cDNA
Synthesis Kit (1725038; Bio-Rad, Hercules, CA, USA).
Quantitative PCR was performed using SsoAdvanced Universal
SYBR Green Supermix (172-5270; Bio-Rad) on a QuantStudio3
Real-Time PCR System (Applied Biosystems). Cycling
conditions were as follows: 95°C for 20 s, followed by
40 cycles of amplification (95°C for 15 s and 60°C for 1 min).
Transcription levels were normalized against the corresponding
levels of housekeeping genes listed in Supplementary Table 1.
Specific primer sequences used for PCR are listed in
Supplementary Table 1. The DDCt method was used to
compare data.

Statistical Analysis
Quantitative data are shown as means and standard errors in dot
plots generated by ggplot2, a plotting system for R based on The
Grammar of Graphics (The R Foundation for Statistical
Computing, Vienna, Austria). Normality was assessed using
the Shapiro–Wilk test. The pairwise t-test was used for
comparison between two groups, and a one-way analysis of
variance (ANOVA) was conducted to assess differences among
three groups or more. Pairwise comparisons were made only
when one-way ANOVA indicated statistical significance.
P-values for multiple comparisons were adjusted by the Tukey
method. Statistical analyses were performed using EZR, a
graphical user interface for R (41). Two-sided P-values less
than 0.05 were considered statistically significant.
RESULTS

MRL/lpr Mice Exhibit a Depression-Like
Phenotype and Neuroinflammation
in the Hippocampus
We used 18-week-old MRL/lpr mice as a SLE model and MRL/
MPJ mice as controls. The presence of depression-like behavior
was evaluated by tail suspension test. The immobility time
observed during the tail suspension test was significantly
elevated in MRL/lpr mice relative to the MRL/MPJ mice,
which indicated that the MRL/lpr mice exhibited a depression-
like phenotype (Figures 1A, B). To determine whether MRL/lpr
mice exhibited neuroinflammation, we counted GFAP-positive
astrocytes and Iba-1–positive microglia in the hippocampus,
which are regions that may be important in regulation of
emotion in brains of MRL/lpr mice (42). MRL/lpr mice had
more GFAP-positive astrocytes in the cornu ammonis 3 (CA3)
region than MRL/MPJ mice (Figures 1C, D; P=0.009). In the
dentate gyrus (DG) region, the number of GFAP-positive
astrocytes did not significantly differ between the MRL/lpr and
MRL/MPJ mice (Figures 1E, F; P=0.108). Senescent cells
contribute to neuroinflammation (14–18, 43); therefore, we
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FIGURE 1 | MRL/lpr mice exhibit a depression-like phenotype and have higher proportions of GFAP-positive and Iba-1–positive cells in the hippocampus.
(A) Representative images of tail suspension test of MRL/lpr mice (SLE model) and MRL/MPJ mice (controls). (B) Quantitation of immobility time in MRL/MPJ and
MRL/lpr mice during tail suspension test. (C) Representative images of GFAP immunostaining of the hippocampus CA3 regions from MRL/MPJ and MRL/lpr mice and
(D) the corresponding quantitative data. (E) Representative images of GFAP immunostaining of the hippocampus DG regions from MRL/MPJ and MRL/lpr mice and
(F) the corresponding quantitative data. (G) Representative images of Iba-1 immunostaining of the hippocampus CA3 regions from MRL/MPJ and MRL/lpr mice and
(H) the corresponding quantitative data. (I) Representative images of Iba-1 immunostaining of the hippocampus DG regions from MRL/MPJ and MRL/lpr mice and
(J) the corresponding quantitative data. Quantitative data are shown as means ± SEs in dot plots. P-values were determined by two-tailed Student’s t-test. (*P < 0.05)
.
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counted the number of senescent cells, using the marker
SPiDER-b-Gal, in GFAP-positive astrocytes. We could not
identify SPiDER-b-Gal–positive astrocytes in either MRL/lpr or
MRL/MPJ. The number of Iba-1 positive microglia was higher in
MRL/lpr mice than in MRL/MPJ mice in the CA3 region
(Figures 1G, H; P = 0.033), but not in the DG region
(Figures 3C, D; P = 0.429). Small numbers of SPiDER-b-Gal–
positive microglia were present in both of MRL/lpr and MRL
/MPJmice; however, microglia were not the major population of
SPiDER-b-Gal–positive senescent cells (Figures 1I, J).

MRL/lpr Mice Have a Higher Proportion
of Senescent NeuN+ Cells in
CA3 Hippocampus
Next, to determine whether neurons exhibited features of
senescence, we performed SPiDER-b-Gal staining and
immunofluorescence with a NeuN antibody. SPiDER-b-Gal
intensity in NeuN-positive cells was significantly higher in
MRL/lpr mice than in MRL/MPJ mice in the hippocampus
CA3 region (Figures 2A–C; P = 0.037). By contrast, in the DG
region, SPiDER b-Gal expression was not detectable in either
MRL/lpr or MRL/MPJ mice (Figure 2B).

Neuro-2a Cells Induced to Senesce by
Irradiation Exhibit a Neuroinflammatory
Phenotype
These histological analyses indicated that neural cells in the CA3
region were a major population of senescent cells in lupus model
mice with a depression-like phenotype. We next investigated
whether senescent neural cells exhibited the features of cells that
induce neuroinflammation in NPSLE. To induce senescence, we
exposed Neuro-2a cells to 10 Gy irradiation and passaged them 3
days later to avoid the over-confluency that occurs post-
irradiation due to Neuro-2a cell enlargement. Six days after
irradiation, we harvested the cells and subjected them to SA-b-
Gal staining and quantitative PCR analysis. Irradiated Neuro-2a
cells exhibited senescent features including SA-b-Gal expression
(Figures 3A, B), elevated cell size (Figure 3C), and upregulation
of Cdkn2a (Ink4a and Arf), Cdkn2b, Cdkn1a, and Trp53
(Figure 3D). The irradiated Neuro-2a cells also expressed high
levels of genes encoded by SASP factors, including Tnfa,
Serpine1, Il6, and Il1b, all of which are also upregulated in
NPSLE (Figures 3E, F) (4).

Fisetin Treatment Selectively Kills SPiDER-
b-Gal–Positive Senescence Neural Cells
In Vitro
Next, we investigated whether the senolytic drug fisetin would
selectively kill senescent neural cells. Fisetin, a flavonoid found in
many fruits and vegetables, was previously identified as a
senolytic compound (40). In addition, fisetin exhibits brain
uptake potential and penetrates the blood–brain barrier more
effectively than other flavonoids, including quercetin, luteolin,
and myricetin (44–46). Hence, we used fisetin as a senolytic
Frontiers in Immunology | www.frontiersin.org 5
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FIGURE 2 | MRL/lpr mice have higher numbers of SPiDER-b-Gal– and
NeuN-positive cells in the hippocampus. (A, B) Representative images of
NeuN immunostaining and SPiDER-b-Gal staining of the hippocampus CA3
and DG regions in MRL/MPJ and MRL/lpr mice. (C) Quantitation of SPiDER-
b-Gal intensity in NeuN-positive cells in MRL/MPJ and MRL/lpr mice.
Quantitative data are shown as means ± SEs in dot plots. P-values were
determined by two-tailed Student’s t-test. (*P < 0.05).
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compound in this study. Unirradiated and irradiated Neuro-2a
cells were treated with serial concentrations of fisetin (0–20 µM)
for 48 h. The observed number of irradiated Neuro-2a cells
significantly decreased in a dose-dependent manner
(Figures 4A, B), and the number of control Neuro-2a cells
significantly decreased after treatment with 20 µM fisetin
(Figures 4A, B). SPiDER-b-Gal expression in irradiated
Neuro-2a cells was significantly reduced at doses of 5, 10, and
20 µM (Figure 4C). Doses of 5 and 10 µM fisetin decreased the
fraction of SPiDER-b-Gal–positive senescent Neuro-2a cells
without affecting non-irradiated proliferating cells.
Frontiers in Immunology | www.frontiersin.org 6
Fisetin Treatment Reduced the Prevalence
of the Depression-Like Phenotype and
Number of Senescent Cells In Vivo
To examine the senolytic effect of fisetin in vivo, we orally
administered fisetin (100 mg/kg) or 20% PEG400 (as a control)
to MRL/lpr (n=12 and 12, respectively) and MRL/MPJ (n=6 and
6, respectively) mice for 5 days every week for 4 weeks
(Figure 5A). During this 4-week period, two MRL/lpr mice in
the vehicle group died. Fifty percent of MRL/lpr mice die from
renal failure by 24 weeks of age (47). After this 4-week period, we
found that fisetin treatment reduced the prevalence of
A B

D
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C

FIGURE 3 | Neuro-2a cells induced to undergo senescence by irradiation exhibit a neuroinflammatory phenotype. (A) Representative images of SA-b-Gal expression
after 10 Gy ionizing radiation (IR) in Neuro-2a cells in randomly chosen fields of view (n = 6 per group). (B, C) Quantitation of SA-b-Gal–positive cells and the cell size.
(D–F) Relative mRNA expression of senescence and SASP-related genes in Neuro-2a cells with or without 10 Gy IR. Quantitative data are shown as means ± SEs in dot
plots. P-values were determined by two-tailed Student’s t-test. (*P < 0.05, **P < 0.01).
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depression-like behavior in the MRL/lpr mice (Figure 5B).
Fisetin treatment also reduced the observed SPiDER-b-Gal
expression level in NeuN+ cells in the CA3 region
(Figures 5C, D). PCR analysis showed that fisetin treatment
reduced the mRNA transcription levels of Cdkn1a and Cdkn2a
(Arf), which are senescence factors, and Ifna and Ifnb, which are
known SASP factors, in the hippocampus of the MRL/lpr mice
(Figures 5E, F). In addition, vehicle-treated MRL/lpr mice
exhibited significantly increased levels of Trp53, Il6, and
Mmp3 mRNA transcription relative to the vehicle-treated
MRL/MPJ mice, but no significant difference was observed for
the fisetin-treated MRL/lpr mice relative to the vehicle-treated
MRL/MPJ mice (Figures 5E, F).
DISCUSSION

Senescent cells limit their own proliferation but remain
metabolically active, secreting a variety of factors including:
Frontiers in Immunology | www.frontiersin.org 7
inflammatory cytokines such as IL-6, IL-8, and TNF-⍺;
chemokines; growth factors such as TGF-b ; matrix
metalloproteinases (MMPs); and micro-RNAs. Collectively,
these secreted factors are referred to as the SASP (48). The
SASP is considered a hallmark of cellular senescence when
combined with other senescence markers such as the
cytoplasmic marker SA-b-gal and the nuclear biomarkers
p16INK4a, p21WAF1/Cip1, Ki67, and gH2AX (48–50). In this
study, we show that MRL/lpr lupus-prone mice accumulate
senescent NeuN-positive cells in the hippocampus. In addition,
neural cells induced to undergo senescence increased mRNA
expression of genes encoding SASP-related factors such as Tnfa,
Serpine1, Il6, and Il1b, all of which are elevated in NPSLE (4).
Because neurons are post-mitotic, non-cycling cells (those
permanently in the G0 phase of the cell cycle), neuronal
senescence, like that observed in other post-mitotic cells, relies
on mechanisms other than proliferation arrest. Although it is not
a fully specific marker, SA-b-Gal is considered to be a useful
marker of cellular senescence, and the number of SA-b-Gal–
A

B C

FIGURE 4 | Effect of fisetin treatment on senescent Neuro-2a cells in vitro. (A) Representative images of SPiDER-b-Gal and F-actin staining in Neuro-2a cells with or
without 10 Gy IR. (B, C) Quantitation of cell number and SPiDER-b-Gal intensity in Neuro-2a cells treated with the indicated concentrations of fisetin (0–20 µM) for
48 h. Quantitative data are shown as medians with IQRs and 1.5 times the IQR, and are displayed as dot plots and box-and-whisker plots. P-values were
determined by one-way ANOVA adjusted by the Tukey method. P-values were determined by two-tailed Student’s t-test. (*P < 0.05 and **P < 0.01).
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positive neurons increases in aging mice and rats (51, 52).
Furthermore, long-term culture–induced senescent neuronal
cells exhibit elevated transcription levels of SASP genes (53).
Several cytokines and chemokines were identified as biomarkers
Frontiers in Immunology | www.frontiersin.org 8
or therapeutic targets of NPSLE; in particular, type-1 interferons,
TNFs, IL-6, and PAI-1, which are major components of the
SASP, are present at elevated levels in the CSF of SLE patients (4,
6, 54, 55). Our results showed that the hippocampus isolated
A

E

B

D
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C

FIGURE 5 | Effect of fisetin treatment on depression-like behavior in MRL/lpr mice. (A) Schematic diagram of the procedure for oral administration of fisetin to MRL/
lpr and MRL/MPJ mice. (B) Quantification of the immobility time from the tail suspension test for MRL/MPJ and MRL/lpr mice with or without fisetin treatment. (C)
Representative images of NeuN SPiDER-b-Gal immunostaining of the hippocampus CA3 regions and (D) the corresponding quantification of SPiDER-b-Gal intensity
in NeuN-positive cells in MRL/MPJ and MRL/lpr mice with or without fisetin treatment. Relative mRNA transcription levels of (E) senescence- and (F) SASP-related
genes in hippocampus isolated from MRL/MPJ and MRL/lpr mice with or without fisetin treatment. Quantitative data are shown as means ± SEs in dot plots.
P-values were determined by two-tailed Student’s t-test. (*P < 0.05 and **P < 0.01).
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from MRL/lpr mice and irradiated senescent Neuro-2a cells
exhibit upregulation of the transcription levels of SASP factors,
supporting the idea that senescent neural cells contribute to the
elevation of cytokines and chemokines in CSF.

In this study, the SA-b-Gal–positive senescent neural cells
were observed in the CA3 region of the hippocampus, which is
associated with depression (31–34). SLE and MRL/lpr mouse
brain have an elevated population of damaged neural cells that
express Fluoro Jade B (FJB) and also exhibit upregulation of
ubiquitin in the CA3 region (56, 57). FJB dye is an anionic
fluorescein derivative used for visualization of neuronal
degeneration in brain tissue sections (58, 59), and ubiquitin
binds to damaged or misfolded proteins (60). Most protein
damage is not reversible, and degradation by the ubiquitin–
proteasome system (UPS) eliminates damaged proteins (50, 61).
Activation of the UPS is a key characteristic of the senescent state
(50, 62).

We also demonstrated that fisetin exerts a potent senolytic
effect in neural cells in vivo and in vitro. Several senolytic
compounds have been reported, e.g., flavonoids, quercetin,
curcumin, and luteolin (12, 13, 40). We used fisetin to target
CNS senescence because it has higher brain uptake potential and
more effective blood–brain barrier penetration than other
flavonoids such as quercetin, luteolin, and myricetin (44–46).
In vivo, fisetin treatment reduced the observed depression-like
behavior in the mice and the number of senescent cells in the
CA3 region of the hippocampus. In this study, fisetin treatment
also reduced the transcription levels of several senescence- and
SASP-related genes in the hippocampus. For example, the
transcription level of the senescence gene Cdkn1a markedly
increased in vehicle-treated MRL/lpr mice, and the level
decreased after fisetin treatment. The number of p21-
expressing NeuN-positive cells increases in older depressed
patients relative to non-depressed older patients (63). In our
study, type-I interferons, known SASP factors, are upregulated in
MRL/lpr mice. Therapeutic administration of type-I interferons
to mice with hepatitis C or other malignancies induces SLE-like
psychiatric symptoms, including sickness behavior associated
with depression, and inhibition of the type-I interferon receptor
reduces anxiety-like behavior and cognitive deficits in lupus-
prone mice (4, 54). If neural senescent cells produce type-I
interferons, thereby exacerbating the development of NPSLE,
senolytics targeting the causative cells may be effective
treatments for NPSLE. IL-6 is a known pro-inflammatory
SASP factor (8–13) that is upregulated in the hippocampus of
MRL/lpr mice. The level of IL-6 observed in CFS is higher in
NPSLE patients with an acute confusional state (ACS), which
includes anxiety disorders, cognitive dysfunction, mood
disorders, and psychosis, relative to those with diffuse NPSLE,
states other than ACS, or those with focal NPSLE, which suggests
that the IL-6 level observed in CFS may indicate the severity of
NPSLE (64, 65). In this study, fisetin administration reduced the
high transcription level of IL-6 in the hippocampus of MRL/lpr
mice. Fisetin treatment causes a reduction of the transcription
level of IL-6 in senescent cells in pulmonary fibrosis and aging-
related pathology (40, 66). Although the varied and complex
Frontiers in Immunology | www.frontiersin.org 9
pathogenic pathways complicate the development of NPSLE
therapies, our data indicate that fisetin treatment targeted
specifically to NPSLE senescent neural cells results in
inhibition of SASP factors such as type-I interferon and IL-6,
suggesting that fisetin is a candidate NPSLE therapeutic. Fisetin
not only has potential as a senolytic in neuronal cells, but also
acts as a neuroprotective agent via its antioxidant, antitumor,
anti-inflammatory, and anti-apoptosis effects (45, 67, 68). Hence,
fisetin could be a candidate drug for CNS disorders by targeting
neural cell populations. Our findings indicate that neural cells are
a major population of senescent cells in the lupus-prone mouse
model, whereas other studies reported that the major
populations of senescent cells in Alzheimer’s model mice are
astrocytes, microglia, and oligodendrocyte progenitor cells (17,
18). Furthermore, those studies used other senolytic compounds,
dasatinib and quercetin (D+Q) and ABT263, to treat Alzheimer’s
model mice, and administration of both senolytic compounds
alleviated cognitive deficits and decreased the abundance of
senescent cells in the brain (17, 18). Further study will be
needed to identify the most effective senolytic compound
for NPSLE.

In conclusion, our study highlights the accumulation of
senescent neural cells in hippocampus of lupus-prone model
mice. Oral administration offisetin, a senolytic drug, reduced the
number of senescent neural cells observed, the SASP expression
level, and depressive behavior in MRL/lpr mice. These results
indicate that the accumulation of senescent neural cells in the
hippocampus plays a role in NPSLE pathogenesis, and therapies
targeting senescent cells may represent candidate therapeutics
for the treatment of NPSLE.
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