
Frontiers in Immunology | www.frontiersin.

Edited by:
Adrian John Frederick Luty,

Institut de Recherche Pour le
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Background: Transmission blocking vaccines targeting the sexual-stages of the malaria
parasite could play a major role to achieve elimination and eradication of malaria. The
Plasmodium falciparum Pfs25 protein (Pfs25) is the most clinically advanced candidate
sexual-stage antigen. IMX313, a complement inhibitor C4b-binding protein that forms
heptamers with the antigen fused to it, improve antibody responses. This is the first time
that viral vectors have been used to induce antibodies in humans against an antigen that is
expressed only in the mosquito vector.

Methods: Clinical trial looking at safety and immunogenicity of two recombinant viral
vectored vaccines encoding Pfs25-IMX313 in healthy malaria-naive adults. Replication-
deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus
modified vaccinia virus Ankara (MVA), encoding Pfs25-IMX313, were delivered by the
intramuscular route in a heterologous prime-boost regimen using an 8-week interval.
Safety data and samples for immunogenicity assays were taken at various time-points.

Results: The reactogenicity of the vaccineswas similar to that seen in previous trials using the
same viral vectors encoding other antigens. The vaccines were immunogenic and induced
both antibody and T cell responses against Pfs25, but significant transmission reducing
activity (TRA) was not observed in most volunteers by standard membrane feeding assay.

Conclusion: Both vaccines were well tolerated and demonstrated a favorable safety
profile in malaria-naive adults. However, the transmission reducing activity of the
antibodies generated were weak, suggesting the need for an alternative vaccine
formulation.

Trial Registration: Clinicaltrials.gov NCT02532049.
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INTRODUCTION

It was estimated that in 2018, malaria killed 405 000 people most
of whom were children aged under 5 years (1). The global
community has made a powerful economic and humanitarian
case for continued investment in the fight against malaria with
the aim of defeating malaria within the next 15 years (2), having
already reduced the global incidence of malaria by 30% and the
malaria mortality rate by 47% between 2001 and 2013 (3).
Transmission control is an essential component of malaria
control and elimination (4, 5). The strategic goals for 2030, set
out in the Malaria Vaccine Technology Roadmap, include the
development of transmission blocking malaria vaccines (TBVs)
(6). Unlikely traditional vaccines, TBVs do not provide direct
protection to the vaccinated individual but instead reduce or
eliminate disease transmission within a vaccinated community.
Malaria TBVs target sexual stages of the parasite, which do not
cause disease within the human host but are critical for
completing it’s life cycle in the mosquito vector (7).

The Plasmodium falciparum Pfs25 protein (Pfs25) is a leading
candidate antigen for a TBV (8, 9). Pfs25 is a sexual stage antigen
of Plasmodium falciparum that is expressed on the surface of the
zygote and ookinete forms of the parasite, where it is involved in
ookinete formation, as well as a possible role in traversal of the
mid-gut epithelium (10). As Pfs25 is not displayed with the
human host, it has not been under the same level of immune
pressure as other Plasmodium antigens, making it an attractive
vaccine target. Pfs25 was identified as the target of highly
effective transmission-blocking monoclonal antibodies which
were shown to prevent the ookinete to oocyst transition in the
mosquito mid-gut in several pre-clinical studies, thereby
blocking transmission (11–13).

It has modest immunogenicity as a monomeric protein, but
when conjugated to itself or to other carrier proteins the
immunogenicity is substantially improved (14). A recombinant
Pfs25 protein administered with adjuvant ISA 51 in human has
been tested previously but this trial had to be terminated due to
erythema nodosum reactions likely related to this specific
antigen/adjuvant combination (15). In ex vivo models, such as
the standard membrane-feeding assay (SMFA), mosquitoes are
fed cultured gametocytes in the presence of whole serum or
purified IgG. In this assay, vaccine-induced antibodies generated
against candidate antigens have been shown to reduce the
transmission capacity of the parasite, although this was carried
out on the P. vivax homologue Pvs25 (16). In two other clinical
trials, conjugation of Pfs25 to a recombinant detoxified
ExoProtein A (EPA) from Pseudomonas aeruginosa and a
plant produced virus-like-particle displaying Pfs25 induced
antibodies that recognized native protein on the parasite
surface and demonstrated modest but insufficient TRA (5, 17).

TRA demonstrated in a SMFA has been shown to correlate
with antibody titer and with antibody avidity (5, 18). In addition,
a correlation between level of antigen-specific antibodies and
their blocking efficacy was demonstrated in humans, as
approximately 1000 units (95% Confidence Interval, 683–1565
units) of antibody were required to reach a 50% reduction in
oocyst density (15, 16). Moreover, two studies demonstrated that
Frontiers in Immunology | www.frontiersin.org 2
concentration of 50-80 ug/mL of anti-Pfs25-specific antibodies
in human serum was needed to provide significant oocyst
reduction in the SMFA (5, 19).

IMX313 is a small protein domain that self-assembles into a
nanoparticle with seven identical chains. The 55 amino acid
sequence is a hybrid of the oligomerisation domains of two
chicken C4b-binding proteins, both distant homologues of
human Complement 4 binding protein (C4bp), simultaneously
performing an adjuvant-like effect that improves antibody
responses to the fused protein antigens (20). IMX313 has
recently been tested in a Phase I clinical trial in Oxford as part
of a candidate tuberculosis vaccine MVA 85A-IMX313
demonstrating favorable safety and immunogenicity profiles
(21). Pre-clinical vaccine development demonstrated that mice
immunized with the blood-stage malaria vaccine candidate
MSP119 fused to IMX313 were protected against challenge with
a lethal dose of P. yoelii parasites (20). Similarly, in our murine
study, Pfs25 fused to IMX313 and expressed in recombinant
replication-deficient chimpanzee adenovirus serotype 63
(ChAd63) and an attenuated orthopoxvirus MVA viral vectors
demonstrated significantly higher transmission-reducing activity
than the vectors encoding monomeric Pfs25, rendering it a
highly promising TBV candidate vaccine (22).

The design and administration of a recombinant replication–
deficient adenovirus and an attenuated recombinant poxvirus
vectors in a prime/boost regimen has been optimized over the
last decade in preclinical models to induce antibodies in
conjunction with T cell responses (23, 24), including studies of
such vectors encoding sexual-stage malaria antigens (25, 26).
These vectors, delivering antigens from P. falciparum, have now
been shown to be safe and immunogenic, resulting in the
development of both T cell and antibody responses in healthy
European and American adult volunteers (26–32) as well as in
African adults, children, and infants (33, 34).

Here, we report the safety and immunogenicity of ChAd63
and MVA vectors encoding Pfs25-IMX313. These vaccines were
tested in an open-label dose-escalation Phase Ia study in healthy
United Kingdom (UK) adults. We report that these vaccines
demonstrate a favorable safety profile in malaria-naive adults
and that anti Pfs25-specific antibodies, B cell and T cell responses
can be induced by immunization in humans. However, vaccine-
induced serum antibodies displayed weak transmission blocking
activity, highlighting the need for further in-depth evaluation of
the human immune responses induced by this vaccine candidate
in order to inform improved design of future TBV vaccines.
MATERIALS AND METHODS

Detailed methods are provided in Supplementary Methods.
ChAd63 and MVA Pfs25-IMX313 Vaccines
The design, production and preclinical testing of the viral vector
vaccines used in this study have been reported previously (22).
For the Pfs25-IMX313 constructs a 229 bp DNA fragment
encoding the IMX313 domain was cloned at the C-terminus of
July 2021 | Volume 12 | Article 694759
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Pfs25. The Pfs25-IMX313 insert was subcloned into the ChAd63
and MVA destination and shuttle vectors. ChAd63 Pfs25-IMX313
was manufactured under current Good Manufacturing Practice
(cGMP) conditions by the Clinical Biomanufacturing Facility
(CBF), University of Oxford, UK, and MVA Pfs25-IMX313 was
manufactured under cGMP conditions by IDT Biologika GmbH,
Germany, both as previously described (29, 35).

Study Design and Approvals
Thiswas a Phase I open-label, dose escalation,first-in-human, non-
randomized trial of the viral vectored vaccines ChAd63 Pfs25-
IMX313 andMVA Pfs25-IMX313 given in a prime-boost regimen
with an eight week interval. The study was conducted at the Centre
for Clinical Vaccinology and Tropical Medicine (CCVTM),
University of Oxford, Oxford, UK and the NIHR-CRF University
Hospital SouthamptonNHS Foundation Trust, Southampton, UK.
The study received ethical approval from the Oxfordshire Research
Ethics Committee A in the UK (REC reference 15/SC/0237). The
study was also reviewed and approved by the UK Medicines and
Healthcare products Regulatory Agency (MHRA, reference 21584/
0344/001-0001). Volunteers signed written consent forms and
consent was verified before each vaccination. The trial was
registered on Clinicaltrials.gov (NCT02532049) and was
conducted according to the principles of the current revision of
the Declaration of Helsinki 2008 and in full conformity with the
ICH guidelines for Good Clinical Practice (GCP). The primary
endpoint of the study was to assess the safety of ChAd63 Pfs25-
IMX313 and MVA Pfs25-IMX313, with secondary endpoints to
assess immunogenicity and ex-vivo efficacy.

Participants
Healthy,malaria-naivemales andnon-pregnant femalesaged18-50
years were invited to participate in the study. Volunteers were
recruited and vaccinated at the CCVTM, University of Oxford and
at the NIHR CRF in Southampton. In total, twenty-six volunteers
were enrolled, with twenty-four vaccinated as per protocol and
twenty-two completing follow-up. A full list of inclusion and
exclusion criteria is reported in Supplementary Methods.

Safety Analysis
Following each vaccination, volunteers completed an electronic
diary card for 28 days with any adverse event data. Data
regarding SAEs were collected throughout the duration of the
trial. Observations (heart rate, temperature and blood pressure)
were taken at the clinic visits from the day of vaccination until
the 28 day follow-up visit. Blood tests for exploratory
immunology were taken at all visits except those occurring 2
days after each vaccination (i.e. days 2 and 58). Blood samples for
safety (full blood count, liver function, urea and electrolytes)
were carried out at screening, day 0, day 7 and day 28 for all
groups, as well as on days 56, 63 and 84 for Groups 2B and 2C.
Any solicited AEs occurring during the first 7 days following
vaccination were defined as being at least possibly related to
vaccination. The likely causality of all other AEs was assessed as
described in the protocol and all AEs considered possibly,
probably or definitely related to vaccination are reported
Frontiers in Immunology | www.frontiersin.org 3
(Supplementary Table 1). Further details on grading are
provided in the Supplementary Material.

Peptides and Ex-Vivo IFN-g ELISPOT
Peptides spanning the Pfs25 and IMX313 inserts, as well as
junctional regions and human C4bp (20mers overlapping by 10)
were purchased from NEO Scientific and used for ex vivo IFN-g
ELISPOT (Supplementary Table 2). Ex-vivo IFN-g ELISPOT
was used to assess the kinetics and magnitude of the vaccine-
induced T cell responses over time. Fresh PBMC were used in all
assays using a previously described protocol (30), except that
50 µL/well Pfs25 and IMX313 peptide pools (Supplementary
Table 2) (final concentration of each peptide 5 µg/mL) were
added to triplicate test wells, 50 µL/well R10 and DMSO control
were added to negative control wells, and 50 µL/well Staphylococcal
enterotoxin B (SEB) (final concentration 0.02 µg/mL) plus
phytohemagglutinin (PHA) (final concentration 10 µg/mL) was
added to positive control wells. Spots were counted using an
ELISPOT counter (Autoimmune Diagnostika (AID), Germany).
Results are expressed as IFN-g spot-forming units (SFU) per
million PBMCs.

Total IgG ELISAs
ELISAs were performed against full-length Pfs25 protein using
standardized methodology as previously described (29, 30).
Briefly ELISA plates were coated over-night with Pfs25 protein
(2µg/mL, 50 µL per well). The plates were blocked with
StartingBlock™ T20 (PBS) Blocking Buffer (ThermoFisher
Scientific,UK) and the assay is performed by using a standard
curve and internal controls from the reference serum. Unknown
test serum samples from immunized volunteers are diluted and
added in triplicate to the ELISA plate. After a two hour
incubation period, the diluted sera were discarded, the plate
was washed and a secondary polyclonal antibody against the g–
chain of human IgG conjugated to alkaline phosphatase (Sigma,
UK) was added. After 1 hour incubation, followed by a wash step,
the alkaline phosphatase substrate was added. The substrate is
left to develop for 25 minutes and the absorbance at 405nm was
read using a plate reader. A standard curve and Gen5 ELISA
software v3.04 (BioTek, UK) was used to convert the OD405 of
individual test samples into arbitrary units (AU). These
responses in AU are reported in mg/mL following generation of
a conversion factor by calibration-free concentration analysis
(CFCA) as described in Supplementary Materials and Methods.

Memory B Cell and ASC ELISPOT
mBC ELISPOT assays were performed as described in detail
elsewhere (36). In brief, frozen PBMC were thawed and cultured
with a polyclonal B cell stimulation mix containing
Staphylococcus aureus Cowan strain Pansorbin cell ‘SAC’
(Calbiochem, Germany), the human TLR agonist CpG ODN-
2006 (Invivogen, USA) and pokeweed mitogen ‘PWM’ (Sigma,
UK) for 6 days, allowing mBC to differentiate into ASC. On day
five of the experiment, ELISPOT plates were coated with Pfs25
produced in Drosophila melanogaster Schneider 2 (S2) cell lines
or IMX313 produced in E. coli to measure the antigen-specific
response and polyvalent goat-anti human IgG (Caltag
July 2021 | Volume 12 | Article 694759
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Medsystems, UK) to measure the total IgG response. PBS coated
wells were used as a negative control. On day six, cultured cells
were transferred to the ELISPOT plate and incubated for 18-20
hours before developing with an anti-human IgG (g-chain)
antibody conjugated to alkaline phosphatase (Calbiochem,
Germany) followed by a substrate buffer. Plates were counted
using an AID ELISPOT plate reader. Ex-vivo ASC ELISPOT
assays were performed exactly as above but using frozen PBMC
directly prepared and added to the ELISPOT plate with no
preceding 6 day culture.

SMFA
The ability of vaccine-induced antibodies to block the development
of P. falciparum strain NF54 was evaluated using the SMFA as
previously described (37). The percentage of mature Stage V
gametocytes was adjusted to 0.15% ± 0.05% and the male-female
ratio is stable (almost always 1male: 2–3 female). IgGwere purified
from each sample via Protein G affinity chromatography, and
adjusted to a final concentration of 40 mg/mL in PBS.
Gametocyte cultures were mixed with purified IgG at 15 mg/mL
concentrations without human complement; the positive control
mouse monoclonal antibody 4B7 was used at a concentration of
0.094 mg/mL. Gametocyte cultures mixed with samples were then
fed to 4–6 day old starved femaleAnopheles stephensi (SDA500) via
a parafilm®membrane. The mosquitoes were maintained at 26 °C
Frontiers in Immunology | www.frontiersin.org 4
and 80% relative humidity. After 8 days, midguts from twenty
mosquitoes per group were dissected, oocysts counted and the
number of infected mosquitoes recorded. Percent reduction in
infection intensity was calculated relative to the respective control
IgG tested in the same assay.

Statistical Analysis
Data were analyzed using GraphPad Prism version 6.07 for
Windows (GraphPad Software Inc., California, USA) and R
(version 3.5.1). All tests were two-tailed and are described in
the text. A value of P < 0.05 was considered significant.

RESULTS

Study Design
Healthy UK adult volunteers were enrolled into the VAC062 trial
to test the ChAd63/MVA Pfs25-IMX313 vaccine in an open-
label, dose-escalation study design. Fifty-three UK adult
volunteers were screened in total, of which twenty-six were
enrolled (Figure 1). The first five volunteers were recruited to
Group 1, however, one volunteer was withdrawn from Group 1
on the day of vaccination as they had been vaccinated with the
low dose in error (the volunteer should have been enrolled into
Group 2A and given the full dose). The remaining four
volunteers were vaccinated with 5x109vp of ChAd63 Pfs25-
FIGURE 1 | VAC062 flow chart of study design and volunteer recruitment. The VAC062 study took place between October 2015 and May 2017. All immunizations
were administered intramuscularly (IM) with sequential vaccines administered into the deltoid muscle of the non-dominant arm.
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IMX313. The next four volunteers were recruited into Group 2A
(vaccinated with 5x1010vp ChAd63 Pfs25-IMX313, eight
volunteers to Groups 2B (vaccinated with 5x1010vp of ChAd63
Pfs25-IMX313 followed by 1x108pfu of MVA Pfs25-IMX313)
and the last nine volunteers into Group 2C (one volunteer from
Group 2C withdrew and was replaced) (vaccinated with
5x1010vp of ChAd63 Pfs25-IMX313 followed by 2x108pfu of
MVA Pfs25-IMX313). 19 females and 7 males were enrolled into
the study. The mean age of volunteers was 31 years (range 21 –
50 years), and 22 volunteers completed follow-up. Vaccinations
began on 12th October 2015 and all follow-up visits were
completed by 25th May 2017. All vaccinees received their
ChAd63 Pfs25-IMX313 immunizations as scheduled. One
volunteer in Group 2C withdrew before receiving their MVA
Pfs25-IMX313 immunization (after the D28 follow-up visit) and
was replaced, as permitted in the study protocol. There were two
further withdrawals prior to the final D240 follow-up visit – one
in Group 2B and one in Group 2C.

ChAd63 and MVA Pfs25-IMX313 Vaccines
Show a Favourable Safety Profile in
Healthy UK Adult Volunteers
There were no serious adverse events (SAEs) or unexpected
reactions during the course of the trial and no volunteers
Frontiers in Immunology | www.frontiersin.org 5
withdrew due to vaccine-related adverse events (AEs). The
reactogenicity of the vaccines was similar to that seen in
previous malaria vaccine trials using the same viral vectors at
similar doses in healthy adults (28, 29, 32, 35), with the higher
doses of both vaccines associated with an increased number of
reported AEs (Figure 2 and Supplementary Table 1).

ChAd63 and MVA Pfs25-IMX313
Vaccination Induced IFN-g T Cell
Responses in Healthy UK Adult Volunteers
The kinetics and magnitude of the Pfs25-specific T cell response
were assessed over time using ex-vivo IFN-g ELISPOT
(Figure 3A) assay following re-stimulation of PBMC with 20mer
peptides overlapping by 10 amino acids (aa) (Supplementary
Table 2) spanning the entire Pfs25 insert in the vaccines (22).
Vaccination with ChAd63/MVA Pfs25-IMX313 induced antigen-
specific T cell responses in all volunteers, with individual
responses shown in Supplementary Figures 1A–D and median
responses to the total vaccine insert shown for each group in
Figure 3A. Following ChAd63 Pfs25-IMX313 prime, there was
no significant difference between median responses in the lower
dose Group 1 in comparison to Group 2 at the peak of the
response on D14 (median 262 [range 5 – 2993] vs 702
[range 0 – 4533] spot forming units (SFU)/million PBMC in
A B

DC

FIGURE 2 | Solicited AEs following vaccination with ChAd63 and MVA Pfs25-IMX313. The solicited local and systemic adverse events (AEs) recorded for 7 days
following ChAd63 Pfs25-IMX313 and MVA Pfs25-IMX313 are shown at the maximum severity reported by all volunteers. (A) Five volunteers received 5 × 109 viral
particles (vp) (Group 1), and (B) 21 received 5 × 1010 vp (Group 2) of ChAd63 Pfs25-IMX313. (C) Eight of the Group 2 volunteers went on to receive 1 × 108 plaque-
forming units (pfu) (Group 2B), or (D) Eight Group 2 volunteers received 2 × 108 pfu (Group 2C) of MVA Pfs25-IMX313.
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Groups 1 versus 2 respectively, n = 4 vs 20, P = 0.44 by Mann-
Whitney test) (Figure 3B). Administration of MVA Pfs25-
IMX313 significantly boosted these responses in all volunteers
as measured one week later on D63 (Groups 2B and 2C versus
2A, Kruskal-Wallis test with Dunn’s multiple comparison test)
(Figure 3C), reaching medians of 2953 [range 49–5988] and
3599 [range 736–4480] SFU/million PBMC in Groups 2B and
2C, respectively, versus 25 [range 11–49] SFU/million PBMC in
Group 2A. However, there was no significant difference between
the two groups who received the different doses of MVA Pfs25
(P=0.85, Mann-Whitney test). Following the peak at D63,
responses contracted but were maintained above baseline at
the end of the study period, with equivalently maintained
responses at D140 in Group 2C as compared to Group 2B
(Figure 3D). The T cell response to IMX313 was also
Frontiers in Immunology | www.frontiersin.org 6
measured as this was encoded in the viral-vectors (Figure 3E).
Vaccine induced T cells to IMX313 followed a similar kinetic to
Pfs25 responses but the magnitude of the response was much
lower, likely due to being represented by a single peptide pool vs
three for Pfs25.

At D0, D14 and D63 ELISPOT responses were also measured
against C4bp, the human analogue of IMX313, to ensure no self-
reactive T cells were induced. All responses were essentially
negative as expected (Supplementary Figure 2).

ChAd63 and MVA Pfs25-IMX313 Induce
Serum Antibody Response in Healthy UK
Adult Volunteers
The kinetics and magnitude of the anti-Pfs25 serum IgG
antibody response were assessed over time by ELISA against
A B

D

E

C

FIGURE 3 | Ex-vivo IFN-g T cell response against Pfs25 and IMX313. (A) Median ex vivo IFN-g ELISPOT responses in PBMCs to the Pfs25 insert (summed
response across all the individual peptide pools) are shown for all groups. Individual responses are shown in Supplementary Figure 1. Median and individual
responses are shown at (B) day 14, (C) day 63, and (D) day 140. Symbols are coded according to group. *P < 0.05. Responses between Groups 1 (n = 4) and 2 (n
= 20) at day 14, and between Groups 2B (n = 7) and 2C (n = 8) at day 140 were assessed by Mann-Whitney test (B, D); responses between groups 2A (n = 4), 2B
(n = 7), and 2C (n = 8) at day 63 were assessed by Kruskal-Wallis test with Dunn’s multiple comparison test (C). (E) Median ex vivo IFN-gELISPOT responses in
PBMCs to the IMX313 insert (summed response across a single peptide pool) shown for all groups. SFU, spot-forming units.
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Pfs25 recombinant protein (Figure 4). Priming vaccination with
5 × 1010 vp ChAd63 Pfs25-IMX313 followed by MVA Pfs25-
IMX313 boost induced antigen-specific IgG responses in all
volunteers (Groups 2B and 2C), with individual responses
shown in Figures 4B–E and median responses shown for each
group in Figure 4A. Responses are reported in mg/ml following
conversion of ELISA arbitrary units (AU) by calibration-free
concentration analysis (CFCA) (Supplementary Figure 3).
Following ChAd63 Pfs25-IMX313 prime with 5 × 109 vp, 2
out of 4 volunteers seroconverted on D28, and after priming with
5 × 1010 vp 11 of 20 volunteers responded (median: 0.2992,
range: 0.04-1.24 µg/ml, n = 20) (P = 0.41, Mann-Whitney test)
(Figure 4B). The administration of MVA Pfs25-IMX313 boosted
these responses as measured on D74 (peak at 10.24 µg/ml)
(Figure 4A); this reached significance for Group 2B vs. 2A
(P =0.008, Kruskal-Wallis test with Dunn ’s multiple
comparison test) and Group 2C vs. 2A (P = 0.035, Kruskal-
Wallis test with Dunn’s multiple comparison test) (Figure 4D).
Serum antibody responses decreased by D140 but were
maintained above pre-boost levels. The responses in Group 2C
and 2B was significantly higher than Group 2A at this time point
(P= 0.0286 and P = 0.0075, respectively) Kruskal-Wallis test with
Dunn’s multiple comparison test) (Figure 4E).

We also tested the sera from vaccinated individuals for
reactivity to IMX313 in an ELISA. Anti-IMX313 IgGs were
detectable at D28 post-vaccination in the sera from all
immunization groups, and from D28, significantly increased at
D74 for Groups 2A (P= 0.0052, Kruskal-Wallis test with Dunn’s
multiple comparison test), 2B (P <0.000, Kruskal-Wallis test with
Dunn’s multiple comparison test) and 2C (P=0.0002, Kruskal-
Wall is test with Dunn ’s mult iple comparison test)
Frontiers in Immunology | www.frontiersin.org 7
(Supplementary Figure 4A). Generally, MVA boost did not
increase antibody responses to IMX313. Only a marginally
significant increase in anti-IMX313 antibody titers was
observed on D74 for Group 2B vs. 2A (P = 0.03890, Kruskal-
Wallis test with Dunn’s multiple comparison test), while no
difference was evident between the groups on D84
(Supplementary Figure 4B). In addition, levels of the anti-
IMX313 IgG antibodies positively correlated with the anti-
Pfs25 antibody titers for all time points examined (D28, 74
and 84) (P<0.0001) (Supplementary Figure 5).

ChAd63 and MVA Pfs25-IMX313 Induce
B Cells in Healthy UK Adult Volunteers
Pfs25 and IMX313 -specific antibody-secreting cells (ASC)
responses were assessed by ex-vivo ELISPOT using frozen PBMC
collected at the D63 visit for volunteers in Groups 2B and 2C.
Median responsesof18 (Pfs25)versus34(IMX313)antigen-specific
ASC per million PBMCwere measured (Figure 5A). Percentage of
total number of IgG-secreting cells was also assessed (Figure 5B).
Previous studies have also reported that ASCs can be detected in
peripheral blood shortly after the MVA boost when using the
ChAd63/MVA regimen (31, 34).

Memory B cell (mBC) responses were also measured using an
established cultured ELISPOT protocol whereby ASC numbers
are measured using the same assay described above after the
mBCs are stimulated for 6 days to convert them to ASCs. These
were measured for volunteers in Groups 2B and 2C at the D84
time-point (4 weeks post-MVA boost) as this was the peak of the
response identified in previous trials (32, 35) and D74 more
recently identified as the likely peak of serum antibody responses.
Responses are reported as number of mBC-derived Pfs25 and
A B

D EC

FIGURE 4 | Serum antibody response against Pfs25. (A) Median anti–Pfs25 serum total IgG responses shown for all groups over time. Median and individual
responses are shown at (B, C) day 28, (D) day 74, and (E) day 140. The horizontal dotted line indicates the limit of detection of the assay. Symbols are coded
according to group. *P < 0.05, **P < 0.01. Responses between Groups 1 and 2 were assessed by Mann-Whitney test (B). Responses in groups 2A (n = 4), 2B
(n = 8), and 2C (n = 8) were assessed by Kruskal-Wallis test with Dunn’s multiple comparison test.
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IMX313 -specific ASC per million cultured PBMC (Figure 5C),
and as a % of total IgG-secreting ASC (Figure 5D). It was noted
that IMX313 specific mBC responses were observed to be higher
than Pfs25 responses at both time points though this was not
significant (median 31 vs 5), and there was no significant
difference in the responses between D74 and D84. Responses
to Pfs25 were notably lower than those to another previously
reported Plasmodium falciparum antigens delivered using the
ChAd63/MVA vaccine regime (30).

Functional Activity of Vaccine
Induced Antibodies
The functional activity of the IgG generated in Groups 2B and 2C
was tested using standard membrane feeding assay (Figure 6).
Total IgG was purified from individual volunteers via Protein G
affinity chromatography, mixed with in vitro cultured P.
falciparum NF54 gametocytes, and fed to Anopheles stephensi
mosquitoes (n = 20 per test sample) through a membrane feeder;
mosquitoes were then dissected, and the number of oocysts
counted. TRA was determined as the reduction in the number
of oocysts compared to a negative control lacking protective
antibody. SMFA with IgG at day 0 from Group 2C confirmed the
lack of non-specific TRA (Supplementary Table 3) and a pool of
Frontiers in Immunology | www.frontiersin.org 8
these samples was then used as negative control for further
assays. IgG at D74 from Groups 2B and 2C were tested at a
concentration of 15 mg/ml in one or two independent feeds,
respectively (Figures 6A–C and Table 1). Median TRA was 7.2%
(range -5.8% to 37.3%) in Group 2B and 25.3% (range 10.2% to
41.3%) in Group 2C. None of the individual in Group 2B showed
significant transmission-reducing activity in a single assay, while
combined analysis of feed#1 and feed#2 for Group 2C showed
that one out of eight individuals showed a weak, but significant,
inhibition of oocyst intensity (subject ID 1016, 41.3% TRA, P =
0.043) (Table 1).

When the relationship between anti-Pfs25 IgG antibody
concentration at day 74 of Groups 2B and 2C, and TRA was
investigated a positive correlation was observed (Spearman r =
0.5176; P = 0.0423). In particular, the subject ID 1016 in Group
2C showing significant inhibition is the one with the second
highest levels of Pfs25-specific IgG antibodies.
DISCUSSION

Successful malaria vaccines that can contribute to malaria
elimination will also need to have an impact on malaria
A B

DC

FIGURE 5 | B cell response to vaccination. (A) Pfs25 and IMX313 –specific antibody-secreting cell (ASC) responses were assessed by ex-vivo ELISPOT using Pfs25
and IMX313 proteins and frozen PBMCs from the day 63 time point in Groups 2B and 2C. Individual and median responses are shown for each group and reported
as Pfs25 and IMX313 –specific ASCs per million PBMCs used in the assay, or as (B) percentage of total number of IgG-secreting cells. (C) Pfs25 and IMX313 –

specific memory B cell (mBC) responses were assessed by ELISPOT assay using Pfs25 and IMX313 proteins. Frozen PBMCs were thawed and underwent a 6-day
polyclonal re-stimulation during which ASCs were derived from mBCs, before testing in the assay. Individual and median responses are shown from the day 74 and
day 84 time point and are reported as mBC-derived Pfs25–specific ASCs per million cultured PBMCs or as (D) percentage of total number of IgG-secreting cells.
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transmission. In order to break the cycle of malaria
transmission, TBVs will require mass administration to a
broad population. Thus, developing a TBV with highly
satisfactory safety profile and a formulation with minimally
perceived risk are both mandatory for rapid clinical
development. The results in our study showed the ChAd63/
MVA Pfs25-IMX313 vaccine formulation demonstrated a
favorable safety profile, being well tolerated at all dose levels,
with most local and systemic adverse events being mild in
severity, no apparent increase in adverse events with boost
vaccination, and no participants withdrawn due to adverse
events. Reactogenicity of the ChAd63/MVA Pfs25-IMX313
vector was similar to that seen consistently with the same
doses of vectored vaccines encoding the P. falciparum pre-
erythrocytic and erythrocytic malaria antigens (27–30, 32).
Thus, our study supports the safety of clinical use of ChAd63/
MVA delivery. In addition, confirming previous report in
humans (21), no antibody or T cell-mediated cross-reactivity
was detected in any of the study groups to the oligomerisation
Frontiers in Immunology | www.frontiersin.org 9
domain of human C4bp, which is likely due to the limited
similarity between the IMX313 and human C4bp (22).

The ChAd63/MVA heterologous prime-boost immunization
regimen induced both B and T cell responses and a modest level
of anti-Pfs25 serum IgG titers. The ChAd63/MVA delivery
platform has routinely been shown to induce a mixed antigen-
specific CD4+/CD8+ T cell response in humans (38–40). Similar
to data in other P. falciparum antigen studies in humans using
these vaccine vectors (28, 29, 32, 41), the results presented here
show that IFN-g T cell responses were induced and peaked at
median levels of greater than 2,000 SFU/million PBMCs
following the MVA boost. The contribution of T cell responses
to anti-Pfs25 immunity still remains unclear. However, a recent
study, using Pfs25 encapsulated into synthetic vaccine particles
as a vaccine in nonhuman primates, demonstrated that Pfs25-
specific T cells may play a role in blocking malaria parasite
transmission, by stimulating increased Ab avidity (18). In
addition, another study demonstrated that the antibody
response against Pfs25 was enhanced by carrier protein-
A B

DC

FIGURE 6 | Transmission-reducing activity (TRA) in Groups 2B and 2C as measured by standardized membrane feeding assay. (A) Transmission-reducing activity
of IgG from individuals of Group 2B. (B, C) Transmission-reducing activity of IgG from individuals of Group 2C. (D) Correlation between anti-Pfs25 specific IgG
concentrations and TRA in individual of Groups 2B (in red) and 2C (in black); subject ID showing significant transmission-reducing activity is indicated. Total IgG was
purified from D72 serum from volunteers vaccinated with ChAd63/MVA expressing Pfs25-IMX313. The purified IgG (15 mg/mL) was mixed with P. falciparum NF54
cultured gametocytes and fed to A. stephensi mosquitoes (n = 20 per test group) in SMFA. Midguts were dissected 7 days post-feeding. A pool of D0 vector
immunized Group 2C volunteers was used as negative control.
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dependent T-cell priming (40), suggesting that effector T cells
may be important to induce the optimal antibody response
against Pfs25.

In agreement with our preclinical data in mice (22), the
ChAd63/MVA prime-boost regimen also induced anti-Pfs25
specific serum IgG antibody responses in healthy malaria-naive
adult volunteers. Around 50% of participants had detectable
antibody responses after the prime, with rapid boosting
achieved after MVA Pfs25-IMX313 administration, when
antigen-specific antibodies were induced in all volunteers.
Boosting with the higher dose of MVA Pfs25-IMX313
(Group 2C) did not increase the antibody concentrations
significantly, suggesting that beyond a certain vaccine dose
threshold, the immunogenicity of MVA Pfs25-IMX313 does
not improve. However, in another clinical study where
malaria-naïve healthy adults received up to four doses of
Pfs25-EPA conjugates formulated with Alhydrogel (5), the
anti-Pfs25 antibody concentration was 10-fold higher
compared to the level we observed in this study, suggesting
that recombinant protein-in-adjuvant formulations may be
Frontiers in Immunology | www.frontiersin.org 10
superior over viral vectored vaccines in inducing antibody
responses against mosquito stage malaria parasites.

We subsequently assessed the functional anti-parasitic
antibody activity using the SMFA. These findings demonstrate
weak transmission-reducing activity of antibodies in the serum
of human volunteers vaccinated by ChAd63/MVA Pfs25-
IMX313, when only one of sixteen vaccinated volunteers
showed significant reduction in transmission activity. The TRA
values of individual sera were low and highly variable, but weakly
correlated with antibody concentrations measured by ELISA.
However, oocyst counts in infected mosquitoes in the field are
naturally much lower, in the range of 2–10 (42, 43), therefore the
measured ex-vivo level of inhibition of oocyst development in the
SMFA might be an under-estimation of the effect that could be
achieved in the field challenge setting.

In contrast to the clinical trial data, our preclinical data in mice,
confirmed that, in response to the samevaccines used in this clinical
trial, high-titer functional anti-Pfs25 antibodies were induced,
achieving extremely effective transmission-blocking activity.
Consequently, information obtained from animal studies which
TABLE 1 | Transmission-reducing activity of IgG from individuals of Groups 2B and 2C.

Group 2B Mean OOCA % TRAB 95% CI Low 95% CI High p valuec

Sample

4B7E 8.5

Day 0 PoolF 46.5

Day 0 PoolF 42.9

Day 0 PoolF 47.0

1015 31.1 31.7 -38.9 68.3 0.307

2217 42.0 7.7 -96.2 57.5 0.801

2223 42.4 6.7 -92.9 59.4 0.835

2212 48.1 -5.8 -123.0 49.1 0.897

1014 44.6 1.8 -106.4 56.7 0.911

2222 28.5 37.3 -31.9 71.7 0.228

1001 30.5 32.3 -47.8 70.5 0.324

1017 45.2 0.5 -113.1 56.1 0.972

Group 2C Feed#1 Feed#2 Cumulative analysis of the two feeds

MeanOOCA % TRAB Mean OOCA % TRAB % TRAB 95% CI Low 95% CI High p valuec

Sample

4B7E 1.6 1.8H

Day 0 PoolF 20.0 27.3

Day 0 PoolF 21.3 25.2

Day 0 PoolF 17.6 23.3

1006 12.3G 37.5 19.8 21.7 30.0 -18.6 59.7 0.181

2227 12.8 34.7 19.7 21.9 28.6 -18.7 58.9 0.192

1016 14.7 25.0 11.6 54.0 41.3 1.7 66.2 0.043

1019 11.7 40.3 20.2 20.1 30.9 -13.1 61.6 0.147

1021 17.0 13.3 21.2 15.9 14.6 -45.7 50.8 0.565

1023 16.4 16.6 24.4 3.4 10.2 -51.1 48.8 0.652

1024 13.6 30.6 25.7 -1.7 16.0 -47.3 51.3 0.514

1026 13.2 32.8 22.9 9.4 22.0 -33.0 56.7 0.322
July 2021 | Vo
lume 12 | Articl
AArithmetic mean of oocysts from 20 mosquitoes. BPercent inhibition of mean oocyst intensity (95% CI). CTwo-tailed p values testing whether %TRA is significantly different from zero.
EAssay positive control. FPool of IgG at day 0 from Group 2C, tested in triplicate (total of 60 mosquitoes used for each feed, instead of 20). GFor 1006 in feed#1 only 18 mosquitoes had
eggs. HFor 47B in feed#2 only 19 mosquitoes had eggs.
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assess efficacyofPfs25asaTBVcandidatemaynot faithfullypredict
the results of human immunization. Notably in this regard, Cheru
et al. demonstrated that the concentration of anti-Pfs25 human
antibodies needed to inhibit 50 percent of oocyst development
(IC50) in the membrane feeding assay varied among species,
reporting that at least a 5-fold higher concentration of anti-Pfs25
human IgG antibodies (85.6µg/ml) was needed in comparison to
mouse anti-Pfs25 IgG concentration (15.9 µg/ml) (19). In another
Phase I clinical trial, following immunization with Pfs25-EPA/
Alhydrogel®, the IC50 was estimated to be 57.2 mg/ml (5). In our
study, amaximumof approximately 10µg/ml anti-Pfs25 antibodies
were induced in the human serum, providing an explanation as to
why transmission blocking activity was not observed by the SMFA
in this clinical trial.

The lack of significant inhibition of oocyst intensity following
ChAd63/MVA Pfs25-IMX313 makes further progression of this
vaccination unlikely. Nevertheless, our findings highlight the
need to explore the immunological basis for the inefficient TRA
conferred by the ChAd63/MVA Pfs25-IMX313 vaccine, with a
goal to improve future TBV immunization strategies. It will be of
importance to further characterize the cellular and antibody
responses, as it seems likely that differences in antibody
function, avidity, IgG subclass profile, fine epitope specificity,
as well as the potential requirement for tailored T-helper cell
responses may all explain the weak inhibition of parasite growth
mediated by this vaccine. With regards to other vaccine
candidates, whilst a Phase I clinical trial of Pfs25 protein using
Montanide ISA-51adjuvant had to be stopped due to safety issues
(15), other Phase I studies in healthy adults (using either the plant-
produced Pfs25 virus-like particles or Pfs25H-EPA conjugate
vaccine with Alhydrogel®) suggested that a more immunogenic
formulation is needed to effectively interrupt malaria transmission
(5, 17). When Pfs25H-EPA in Alhydrogel® was further tested in a
naturally exposed population, it induced significant functional
activity that blocked parasite transmission in a laboratory assay;
however, this activity was only seen at peak titers after four vaccine
doses, and antibody titers rapidly waned (44). Recent data from a
clinical trial testing Pfs25 and Pfs230 conjugated to EPA reported
that anti-Pfs230 antibodies have better functional activity thananti-
Pfs25 antibodies (45). This highlights the need for testing additional
antigens in clinical trials as pre-clinical animal studies are unable to
underscore these differences.

Nevertheless, these prior trials in congruence with our study,
suggest that transmission blocking immunity in humans using a
Pfs25-based vaccine is feasible, but immunogenicity needs to be
improved for this antigen, if 10x higher antibody concentrations
are to be achieved, allowing this to be an effective constituent of a
future multi-component malaria vaccine. New strategies to
improve vaccine efficacy and well-tolerated formulations that
consistently induce higher responses of longer duration are
required, especially as Pfs25 is not naturally presented to the
human immune system, natural boosting will not occur
Alternate approaches, such as particulate delivery to improve
immunogenicity and epitope-display, as well as alterations in
schedule and dosing to improve qualitative and quantitative
responses are being explored (46–48). Although efficacy is too
Frontiers in Immunology | www.frontiersin.org 11
low for this vaccine to have a role in public health in its present
form, Pfs25 may be combined with other TBV, or pre-
erythrocytic and/or erythrocytic vaccines which could permit
use of more contemporary adjuvant formulations, with a
potential to confer malaria protection.
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