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The intestinal immune system has the difficult task of protecting a large environmentally
exposed single layer of epithelium from pathogens without allowing inappropriate
inflammatory responses. Unmitigated inflammation drives multiple pathologies, including
the development of colorectal cancer. CD4+T cells mediate both the suppression and
promotion of intestinal inflammation. They comprise an array of phenotypically and
functionally distinct subsets tailored to a specific inflammatory context. This diversity of
form and function is relevant to a broad array of pathologic and physiologic processes.
The heterogeneity underlying both effector and regulatory T helper cell responses to
colorectal cancer, and its impact on disease progression, is reviewed herein. Importantly,
T cell responses are dynamic; they exhibit both quantitative and qualitative changes as the
inflammatory context shifts. Recent evidence outlines the role of CD4+T cells in colorectal
cancer responses and suggests possible mechanisms driving qualitative alterations in
anti-cancer immune responses. The heterogeneity of T cells in colorectal cancer, as well
as the manner and mechanism by which they change, offer an abundance of opportunities
for more specific, and likely effective, interventional strategies.

Keywords: CD4+T cell, effector T cell, regulatory T cell (Treg), T follicular helper cell (Tfh), T follicular regulatory cell
(Tfr), lineage programming, plasticity, colorectal carcinoma
INTRODUCTION

Despite being exposed to billions of microbes and their products, the basal tone of a healthy gut
immune system is overtly tolerogenic. A strong tolerogenic capacity is beneficial to the host.
Inappropriate activation of gut immunity underlies multiple inflammatory diseases. Chronic
inflammation carries additional risk: it is a key factor in the development and progression of
colorectal carcinoma (CRC) (1). This suppression cannot be absolute, however. Overcoming it is
critical for mounting responses to pathogens, and for developing effective anti-cancer immune
responses. The capacity to switch between tolerogenic and inflammatory states is one of the most
critical aspects of gut immunity. This delicate balance is orchestrated by counteracting classes of
CD4+T cells.

Naïve CD4+T cells are pluripotent precursors that differentiate into phenotypically and
functionally distinct subsets uniquely tailored to operate in a specific inflammatory context. The
org August 2021 | Volume 12 | Article 6948331
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differentiation of naïve, antigen-inexperienced CD4+T cells is a
multi-step process and represents the integration of qualitative
and quantitative variations in diverse signaling events guiding
their development (2). Rational exploitation of CD4+T cell
differentiation and function represents a potentially powerful
avenue for therapeutic intervention. A nuanced understanding of
the molecular determinants guiding these processes is a
prerequisite for designing effective and safe therapies. Recent
evidence has challenged long held notions regarding the
conceptual and functional organization of T cell subsets, and
our understanding of the roles these cells play in health and
disease. These advances have illuminated an increasingly
complex web of overlapping transcriptional networks.
Emerging patterns hint at an underlying simplicity that may
instruct potential therapeutic strategies.
CD4+T CELL HETEROGENEITY –

A HISTORICAL PERSPECTIVE

Heterogeneity among CD4+T cells was first revealed by
Mossman and Coffman in 1986, with the identification of Th1
and Th2 cells (3). This groundbreaking work lead to a period of
intensive investigation and rapid discovery. The signaling and
transcriptional events guiding these cell fates were identified,
leading to the concept of ‘master regulator’ transcription factors
(4–6). Additional effector subsets, including Th17 and Th22 cells,
and the molecular determinants guiding their development, were
discovered (7–11). The manner in which these distinct effector
populations modulate cellular processes at the site of
inflammation was carefully scrutinized.

The possibility that CD4+T cells also suppress inflammation
was first proposed in 1970 by Gershon and Kondo (12, 13). The
field became mired in controversy, however, and was effectively
abandoned. The identification of distinct functional subsets by
Mossman and Coffman led to a re-examination of this putative
role. In 1995, Shimon Sakaguchi conclusively demonstrated the
existence of regulatory T cells (Tregs) (14).

The role of T cells in driving antibody responses was also re-
examined. T cells were known to be required for germinal center
formation and class switched affinity matured antibody
responses since the 1960’s, but the nature of this interaction
and the specific cells participating in it remained unknown (15).
Following establishment of the Th1/Th2 paradigm by Mossman
and Coffman, it was proposed that, while Th1 cells regulate
peripheral cellular events, Th2 cells functioned to provide help to
B cells. This inference was based on their production of
interleukin 4 (IL-4), which was shown to promote B cell
proliferation in 1982 (15). However, deletion of Th2 genes,
including IL4, failed to reduce germinal center and total IgG
levels. Identification of Treg cells by Sakaguchi effectively
overturned the nascent Th1/Th2 paradigm, and suggested
germinal centers could depend on an as yet undiscovered
subset. By the late 2000’s it was understood that help to B cells
was provided by a distinct functional subset of CD4+T cells,
termed T follicular helpers (Tfh) (16). Recently, a suppressive
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counterpart to Tfh, known as T follicular regulatory cells (Tfr),
were identified (17).

This heterogeneity of form and function is established via
competing developmental signals driving lineage defining
transcriptional events. The role of these cells, and the
molecular determinants guiding their differentiation, are
discussed below and summarized in Figure 1.
EFFECTOR CD4+T CELL SUBSETS

Th1
Th1 cells develop in response to intracellular pathogens (Type I
responses). They promote the destruction of infected cells by
inducing apoptosis and enhancing cytotoxic and phagocytic
activity. Th1 cells also promote destruction of cancer cells, and
drive much of the tissue damage seen during inflammation.
Differentiation of Th1 cells is initiated by interleukin-12 (IL-12), a
heterodimer consisting of a p35 and p40 subunit (Figure 1A) (18).
Ligation with the IL-12 receptor, IL12R, drives STAT4-mediated
expression of the transcription factor TBET (5, 19–21). Re-exposure
to antigen and IL-12 at the site of inflammation induces maturation,
allowing production of cytokines including interferon-g (IFN-g).
Autocrine IFN-g signaling further contributes to maturation of Th1
cells via STAT1-mediated stabilization of TBET (22).

Th2
Type II responses to extracellular multicellular pathogens like
helminths drive production of interleukin-4 (IL-4), which
promotes STAT6-mediated transcription of GATA3 and
acquisition of a Th2 fate identity (Figure 1B) (6, 23).
Peripheral maturation of Th2 cells permits secretion of a
variety of cytokines, including IL-4 and interleukins 5 and 13
(IL-5, IL-13), which promote degranulation of eosinophils and
mast cells. Dysregulated Th2 development this leads to
hypersensitivity diseases, including asthma and allergy (24).

Th17
Th17 cells promote responses to extracellular single cell pathogens
(Type III responses). They recruit neutrophils and macrophages to
the site of inflammation and stimulate phagocytosis of the invading
microbes (25). Differentiation of Th17 cells is guided by the
transcription factor RORgt, which is expressed in response to the
cytokines TGF-b and interleukin 6 (IL-6) (Figure 1D) (7–11).
Priming of Th17 cells by IL-6 up-regulates the IL-23 receptor
(IL23R). Peripheral maturation of Th17 cells is driven by
interleukin-23 (IL-23), a heterodimer composed of the IL-12p40
subunit complexed with a p19 subunit (26). IL-23 and IL1-b can
activate STAT4 in Th17 cells, leading to induction of TBET and
IFN-g. Co-production of IFN-g is pathogenic in many autoimmune
and immune mediated diseases, though it is protective in anti-
tumor responses (discussed in greater detail below).

Th22
Th22 cells are critical regulators of epithelial barrier integrity and
remodeling (27–30). Th22 cells secrete the cytokines interleukin-
August 2021 | Volume 12 | Article 694833
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FIGURE 1 | Molecular determinants guiding CD4+ T cell differentiation. (A) Th1 development is initiated by IL-12 mediated STAT4 dimerization, driving expression of
TBX21. Activation of mTORC1, primarily by CD28, is also required. Maturation occurs in response to IL-12, and to STAT1 activation by autocrine IFN-g. (B) Th2
differentiation is driven by IL-4, which promotes STAT6-dependent transcription of GATA3, and by mTORC2. (C) Th22 cells form in response to IL-6 driven STAT3
activation, leading to production of AHR. The contributions of mTORC1 and mTORC2 to this process remain unclear. (D) IL-6 in the presence of TGF-b-mediated
SMAD activation and strong activation of mTORC1 drives transcription of ROR-yt, which primes cells to acquire a Th17 fate. Maturation occurs downstream of IL-23
mediated STAT3 activation. IL-23 and IL-1b can also promote STAT4-mediated induction of TBX21 in Th17 cells, leading to production of IFN-g and GM-CSF.
(E, F) nTreg cells develop in the thymus following exposure to self-antigen. pTreg cells develop in the periphery in response to foreign antigen. Both require TGF-b
and IL-2 to activate SMAD and STAT5 signaling, respectively, which drive transcription of FOXP3. While strong activation of AKT and mTOR favors effector cell
development, weak induction favors regulatory cells. (G) Strong TCR stimulation and ICOS ligation by dendritic cells promotes Tfh differentiation. ICOS activates AKT,
but also drives STAT3-mediated production of TCF1, which promotes expression of BCL6. Maturation requires continued TCR and ICOS stimulation by B cells. Recently
activated cells fated to become Tfh produce IL-2. Signaling is largely paracrine, and drives STAT5 mediated induction of BLIMP1, a mutual antagonist of BCL6, in non-
Tfh. (H) Events guiding Tfr differentiation overlap substantially with those of Tfh. Tfr are thought to be derived from FOXP3-positive precursors. As with Tfh, ICOS-
mediated STAT3-dependent induction of TCF1 promotes BCL6 expression. However, Tfr appear to depend exclusively on mTORC1, whereas Tfh require both mTORC1
and mTORC2. Similarly, induction of CXCR5 in Tfr appears to require NFAT2, which is dispensable for Tfh development. Created with BioRender.com.
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22 (IL-22) and tumor necrosis factor alpha (TNF-a), but do not
produce IL-17A or IFN-g. Development of Th17 cells requires
STAT3 activation by IL-6 in the absence of TGF-b (Figure 1C).
IL-23 enhances production of IL-22 from Th22 cells. Though no
single lineage specifying transcription factor has been identified,
aryl hydrocarbon receptor (AHR) is required for their optimal
development. Th22 cells also express TBET and RORgt, albeit at
levels below those seen in Th1 and Th17 cells, and deletion of
these transcription factors reduces Th22 numbers.

Tfh
Tfh cells orchestrate germinal center B cell responses. They are
required for most class-switched affinity matured antibody
responses (16). Strong antigenic stimulation and ICOS ligation
by dendritic cells (DCs) drives expression of the transcription
factor BCL6, the surface receptor PD-1, and the chemokine
receptor CXCR5 (Figure 1G) (31–34). Primed cells, sometimes
referred to as pre-Tfh, migrate to B cell follicles along a CXCL13
gradient. Maturation of Tfh cells occurs in response to sustained
TCR and ICOS stimulation by B cells (31, 32, 35). Tfh develop in
response to all major classes of pathogens. They are also seen
in autoimmune diseases, and play physiologically relevant roles
in response to some cancers (16). Abortive development of Tfh is
seen even in response to organisms like Listeria monocytogenes
that do not require or support germinal center reactions,
suggesting early commitment to Tfh fate may be a universal
feature of T cell activation (36).
REGULATORY CD4+T CELL SUBSETS

nTregs & pTregs
CD4+T cells are also essential for maintaining tolerance to self-
antigens, commensal microbes and dietary antigens (37).
Tolerance to self-antigens is mediated by natural regulatory T
cells (nTreg), which develop in the thymus in response to
moderately-high affinity antigen (38–40). Treg cells specific to
foreign antigens develop in the periphery (pTregs) (41–43).
While strong induction of the PI3K-AKT-mTOR pathway by
co-stimulation and cytokine-mediated activation of STAT3,
STAT4, or STAT6 promote pro-inflammatory outcomes, Treg
fate determination is favored by TGF-b-mediated SMAD
activity, STAT5 activation downstream of interleukin-2 (IL-2),
and weak PI3K-AKT-mTOR stimulation (Figures 1E, F) (44,
45). Development of Tregs requires the transcription factor
FOXP3. Suppression of inflammation by Treg cells is mediated
by contact-dependent mechanisms, including CTLA and PD-1
ligation, and secretion of the cytokine interleukin-10 (IL-10).
Importantly, their influence often manifests in unpredictable
ways: In many contexts, Treg cells are required for optimal
inflammatory responses (46).

Tfr
T follicular regulatory (Tfr) cells constrain germinal center (GC)
processes (17, 47, 48). They develop in a wide range of
inflammatory contexts, including infection, autoimmunity, and
Frontiers in Immunology | www.frontiersin.org 4
cancer. Tfr cells prevent production of auto-reactive antibodies
and taper GC reactions during resolution of inflammation. As
with Treg cells, the constraint provided by Tfr can also be
required for optimal inflammatory responses (49, 50). Tfr are
predominantly derived from nTreg cells, but can also develop
from naïve precursors (47, 51, 52). The preponderance of naïve
versus nTreg derived cells varies by tissue, with gut associated
lymphoid tissues containing higher numbers of Tfr specific to
foreign antigens and derived from naïve cells (53). Both BCL6
and FOXP3 are required for Tfr development, in parallel with
their pro-inflammatory Tfh and suppressive Treg counterparts
(Figure 1H) (47, 54). The molecular determinants guiding Tfr
fate acquisition overlap substantially with that of Tfr, and include
ICOS-mediated STAT3-dependent induction of TCF1, which
promotes transcription of BCL6 (55, 56). However, whereas
NFAT2 is dispensable in Tfh, it is required by Tfr.
Furthermore, while mTORC1 and mTORC2 contribute to Tfh
development, Tfr appear to depend exclusively on mTORC1
(57, 58).
OVERLAPPING TRANSCRIPTIONAL
NETWORKS

The historic progression of discoveries in the field of lymphocyte
biology led to a model whereby one master regulator
transcription factor is necessary and sufficient for one cell type.
Master regulator transcription factors are commonly understood
to be both necessary and sufficient for the acquisition of a cell
fate. While this framework proved useful in identifying
important transcriptional networks, further investigation
revealed these factors are not sufficient for complete lineage
programming and, in some cases, not absolutely required. For
example, RORgt is insufficient for complete Th17 programming,
Bcl6 is not sufficient for Tfh programming and ectopic Foxp3
expression confers only partial Treg identity (59, 60).
Cooperation with additional transcription factors is necessary
(61, 62).

Nor are these factors unique to specific populations. Indeed,
there is substantial overlap in genetic programming between
lymphocyte subsets. The Tfh compartment provides a useful
illustration of this phenomenon. Tfh exhibit similar
heterogeneity to that seen in non-Tfh effectors (63). During
type I responses, Tfh cells express low levels of TBET and IFN-g
(31, 64). They express GATA3 and IL-4 during type 2 responses,
and can produce IL-13 and IL-15 (65, 66). Tfh have also been
shown to express RORgt and IL-17A (67–69). Production of
these cytokines by Tfh guides isotype switching in B cells (70).

These transcriptional networks also regulate the function of
regulatory cells. Tfr cells transiently express TBET during Type I
responses. TBET, GATA3, and RORgt are expressed in a subset of
FOXP3+ Treg cells termed effector regulatory T (eTreg) cells (48,
71). eTreg cells are enriched in peripheral tissues and are the
primary mediators of suppressive functions. Expression is
dependent on the local inflammatory context, correlates with the
effector response, and is required to elicit optimal suppressive
August 2021 | Volume 12 | Article 694833
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capacity. Conversely, some eTreg cells demonstrate compromised
suppressor function and promote anti-tumor immunity, including
in colorectal carcinoma (CRC) (72). This phenomenon, discussed
in greater detail below, also appears dependent on expression of
canonical effector transcription factors.

Their influence extends beyond CD4+T cells. TBET is often
expressed in B cells, and is required for optimal antibody
production during Type I responses (73, 74). Both innate
lymphoid cells and invariant natural killer T cells express TBET,
GATA3, or RORgt depending on the inflammatory environment
(75, 76). Thus, rather than functioning as bona fide master
regulators, it appears these proteins may overlay context-specific
programming onto multiple lymphocyte lineages.

As traditional lines blur, others come into focus. BCL6 and
BLIMP1, encoded by the gene PRDM1, are mutually antagonistic
transcription factors. Tfh express BCL6, and effector cells
produce BLIMP1 (77, 78). This bifurcation begins soon after
activation. A limited and discrete subset of activated cells
produce the cytokine IL-2 (79). These cells are marked by early
expression of BCL6 and supply the Tfh compartment
(Figure 1G) (80). IL-2 signaling at early time points is largely
paracrine, inducing BLIMP1 in IL-2-negative cells via STAT5.
BLIMP1 inhibits BCL6 and IL-2, reinforcing a non-Tfh fate, and
collaborates with TBET and GATA3 to promote Th1 and Th2
development and function (Figures 1A, B) (81–84).

The role of IL-2, STAT5 and BLIMP1 in Th17 and Th22 cells is
less clear. In mice, activation of STAT5 downstream of IL-2
inhibits Th17 development (45). In humans, however, IL-2 is
crucial for optimal Th17 responses (85). In vitro primed murine
Th17 cells express little to no BLIMP1 (86). Early studies crossing
CD4-Cre or proximal Lck-Cre mice to PRDM1 floxed mice,
leading to deletion of PRDM1 in the thymus, revealed colonic
inflammation mediated by increased Th17 numbers, suggesting
BLIMP1 opposes Th17 function (87). However, thymic deletion
generates multiple developmental defects. Peripheral deletion of
BLIMP1 using distal Lck-Cre mice leads to a reduction in Th17
numbers and amelioration of Th17-mediated inflammation (88).
In this study, IL-23 was shown to mediate induction of BLIMP1
via STAT3, suggesting BLIMP1 may play a role in Th17
maturation (Figure 1D). Unfortunately, the role of BLIMP1 in
Th22 cells remains largely unexamined. Th22 cells
notwithstanding, this evidence suggests BCL6 and BLIMP1
mark pro-inflammatory cells that primarily support humoral
versus cellular responses across multiple inflammatory contexts.

Both Tfh and non-Tfh effector cells exist in mutual opposition
with a FOXP3+ suppressive counterpart. Intriguingly, BLIMP1 is
required for optimal production of IL-10 and suppression of
peripheral inflammation by eTreg cells (71, 89, 90). Expression
occurs downstream of TCR-mediated activation of IRF4, and
STAT5 phosphorylation by IL-2 (Figures 1E, F) (87). In
contrast, BCL6 is indispensable for Tfr. Thus BLIMP1 appears
essential to most, and possibly all, peripheral subsets, while BCL6
is required by central, follicular T cells. It is therefore tempting to
suggest the complexity of CD4+T cell differentiation may be
collapsed into outcomes along two functional dimensions. One
dimension describes a cooperative relationship between cells in
Frontiers in Immunology | www.frontiersin.org 5
distinct locations, the other an antagonistic relationship between
cells occupying the same niche (Figure 2).

There is reason to suspect this model may hold some validity.
The conceptual organization is reflected in the underlying
transcriptional programming, and is highly generalizable to
different inflammatory settings. Indeed, these four subsets may
be a necessary result of the both function and architecture of the
adaptive immune system. The ubiquity of host-pathogen
interactions and commensal microbial communities coupled
with the destructive nature of immune responses necessitate a
system capable of both driving and suppressing inflammation.
The low copy number and exceptional diversity of receptor
clonotypes necessitate localization in specialized tissues that
permit deep sampling of the repertoire. The need to modulate
events at the site of inflammation requires cell types that egress
from these tissues, while complicated highly compartmentalized
processes like germinal center reactions require cells dedicated to
central events. Given this, Tfh, Tfr, Treg and effector cells may
represent fundamental functional states, while overlapping
transcriptional networks modify these core states to suit
specific inflammatory settings, thereby increasing the diversity
of potential outcomes.
PLASTICITY OF EFFECTOR &
REGULATORY CD4+T CELL SUBSETS

The transcriptional programs that guide these fate outcomes are
not mutually exclusive, nor are they necessarily static.
Lymphocyte phenotypes change at the population level as
inflammatory responses mature. This is seen in multiple
contexts, including the late emergence of distinct cytokine
producing effector subsets, or the development of memory
cells. These changes can be accomplished via two non-
exclusive mechanisms; selective amplification of underlying
heterogeneity, and the conversion of cells from one phenotype
to another.

Data suggests the dynamic heterogeneity of effector responses
may in part be due to lineage plasticity (Figure 2). Naïve cells
primed in vitro under conditions promoting Th1, Th2 or Th17
differentiation can acquire different phenotypes upon re-
stimulation (91). Th17 cells appear to be particularly adept at
acquiring the functions and phenotypes of other lineages (92–94).
De novo co-expression of IFN-g by Th17 cells occurs in vivo and
represents a key source of IFN-g in multiple pathologies. In-vitro
generated Th17 cells can convert into IL-17A–negative IFN-g
producers in response to STAT4 activation downstream of IL-23
following adoptive transfer (95–97). At least one study utilizing IL-
17A fate reporter mice suggests trans-differentiation into Th1 cells
may also occur in vivo (97). TGF-b, a potent repressor of Th22 cells,
can also induce AHR and IL-22 in Th17 cells (98). Co-expression of
GATA3 and Th2 cytokines in Th17 cells is also documented (99).

Expression of TBET, GATA3, and RORgt, and their
associated cytokines, by Treg and Tfh cells is variably
described as plasticity in the literature. This terminology is
somewhat controversial. Co-expression of canonical effector
August 2021 | Volume 12 | Article 694833
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transcriptional modules is required for optimal function and
may simply represent normal developmental maturation. De
novo transition from one effector module to another in vivo has
not been shown. However, it seems reasonable to consider pro-
inflammatory eTreg cells in CRC an example of plasticity. While
these cells do not fully extinguish FOXP3, they alter their core
transcriptional networks and adopt a fundamentally different
functional state. Certainly this represents meaningful functional
plasticity, if not bona fide lineage conversion. Nevertheless, the
role of plasticity in driving the heterogeneity seen within Treg
and Tfh populations remains murky. Studies addressing the
duration and stability of these states in vivo are needed.

More substantial evidence indicates plasticity between
effector, Treg, Tfh and Tfr lineages may also occur (Figure 2).
nTreg cells supply the majority of the Tfr compartment. Some
studies suggest Tfr may convert into Tfh in vivo, and Tfh can be
converted into Tfr in vitro (53, 100–102). Fate mapping indicates
former IL-17A-producing cells can transition into pTreg cells
downstream of TGF-b-mediated induction of AHR (103).
Frontiers in Immunology | www.frontiersin.org 6
Lineage reporter mice also suggest Treg cells can lose FOXP3
and develop into pro-inflammatory ex-Tregs displaying Th1 or
Th17 effector phenotypes (104, 105). Conversion of effector cells
to Tfh appears negligible in many contexts. However, former IL-
17A producing cells can exhibit a Tfh-like phenotype and guide
IgA production in Peyer’s Patches (106). Similarly, while deletion
of IL-2 producing Tfh precursors does not affect Th1 and Th2
numbers, it can lead to a reduction in Th17 cells (80). These
findings suggest Tfh and Th17 development may be uniquely
related. Peripheral Tfh-like cells may also indicate overlap
between Tfh and effector lineages (107, 108). These cells
exhibit qualities consistent with both effector and Tfh lineages,
organize ectopic lymphoid tissues, and are capable of providing
help to B cells. However, it remains unclear if they represent Tfh
that migrated to the periphery, effectors that acquired a Tfh-like
phenotype, or the de novo generation of an intermediate
phenotype. Together these data suggest limited plasticity
between Tfh, Tfr, Treg and effector cells is possible. Notably,
interconversion between Tfh and Treg cells, and effector and Tfr
FIGURE 2 | Functional Bifurcations Among CD4+ T Cells. Following activation, naïve cells are programmed to modulate central or peripheral processes. Similarly,
activated cells either drive or suppress inflammation. These functional bifurcations are coincident and sufficiently independent to allow for the simultaneous generation
of all four potential outcomes. Pro-inflammatory T follicular helper (Tfh) cells organize germinal center responses, while traditional non-Tfh effector subsets promote
cellular responses at the site of inflammation. Both exist in mutual opposition with a suppressive counterpart. T follicular regulatory cells (Tfr) modify central events,
while peripherally induced regulatory T cells (pTregs) suppress peripheral inflammation. The dynamic heterogeneity of CD4+ T cell responses may be due in part to
plasticity between subsets (indicated by arrows). Created with BioRender.com.
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cells, has not been observed, suggesting plasticity may be
restricted along individual functional dimensions.

The cellular sources and molecular mechanisms underlying
this apparent lineage plasticity remain uncertain. Many studies
indicate mature Treg, Tfh and effector cell phenotypes are
remarkably stable (109–113). In contrast, substantial evidence
supports the existence of a window early in T cell differentiation
in which activated cells maintain a state of pluripotency. Limiting
dilution adoptive transfer experiments indicate single naïve
CD4+T cells can give rise to both Tfh and effector cells (33).
Recently activated cells exhibit epigenetic instability that is
extinguished upon initiation of cell cycle progression and
developmental maturation (114, 115). Furthermore, some cells
transiently co-express multiple lineage programming
transcription factors shortly after activation (116, 117). Indeed,
this phenomenon complicates interpretation of lineage reporter
experiments and may underlie results initially interpreted as
supporting conversion of Treg cells to effectors (109, 110). Co-
expression is likely mediated by convergent signaling events.
Th17 development, in particular, exhibits substantial overlap
with other lineages. TGF-b is required for Th17 and regulatory
T cell development. STAT3 is required by Th17, Th22, Tfh and
Tfr cells. STAT4 promotes IFN-g production in both Th17 and
Th1 cells. Thus plasticity between functional states may plausibly
result from incomplete development following cell priming, and
partial overlap between competing developmental pathways.

Caution, however, is warranted in interpreting data regarding
cellular plasticity. Many studies utilize in vitro generated cells and
adoptive transfer techniques. But in vitro polarized cells are not
equivalent to mature in vivo effectors, and adoptive transfer into
inflamed hosts may not reflect normal physiologic processes. Even
in vivo experiments utilizing lineage reporter mice suffer from
limitations. The fidelity with which a reporter gene indicates a
given cell fate can be compromised, For example, while the vast
majority of IL17A producers are Th17 cells, some Tfh produce
IL17A, confounding efforts to address the relationship between
these cells. In addition, transient expression can permanently
activate a reporter construct without stable adoption of a cell
fate. However, even with these limitations in mind, the abundance
and diversity of data supporting plasticity strongly suggest it is
both real and relevant to many physiologic and pathophysiologic
contexts, including CRC.
COLORECTAL CANCER

Colorectal carcinoma (CRC) is the third most frequently
diagnosed cancer in both men and women in the United
States, with >140,000 cases diagnosed each year (CDC). It is
also the third leading cause of cancer deaths, depriving >50,000
patients of their lives each year. CRC represents 98% of colonic
cancers, and the WHO recognizes 6 distinct tumor subtypes.
Most tumors develop as a result of sequential mutations driving
progression along multiple potential pathways (118). Chronic
inflammation is a well-recognized driver of tumorigenesis (1).
Microbial dysbiosis is common in colorectal carcinoma, and may
Frontiers in Immunology | www.frontiersin.org 7
also contribute to tumorigenesis (119, 120). In the colon, Th1,
Th17, Th22, pTreg and nTreg cell subsets exist in a state of
dynamic equilibrium at epithelial barrier sites. Tfh additionally
modulate colonic inflammation via the organization of ectopic
lymphoid structures. Dysregulation of these cell populations can
lead to chronic inflammation and dysbiosis. Immunotherapy
therefore holds tremendous promise in treating CRC
(Figure 3) (121).
ROLE OF EFFECTOR CD4+T CELL
SUBSETS IN COLORECTAL CANCER

Increased tumor infiltration by Th1 cells correlates with better
prognosis (122, 123). This protection is likely mediated by the
anti-proliferative, pro-apoptotic and anti-angiogenic actions of
IFN-g, as well as through enhanced recruitment of cytotoxic CD8
T cells (124). Th17 and Th22 cells, in contrast, are elevated in
advanced disease and correlate with poor prognosis (125).
Limited production of IL-22 can protect against genotoxic
stress , but prolonged exposure drives uncontrolled
proliferation of colonic epithelium, and promotes cancer
stemness and chemo-resistance (126–129). IL-17A directly
stimulates tumor growth and progression (130–132). IL-17A
also stimulates angiogenesis via production of VEGF (133).
Tumorigenic Th17 cells accumulate in response to IL-23,
which is produced following microbial colonization of tumors
due to barrier defects (134). Evidence indicates effector lineage
plasticity may contribute to the pathogenesis of CRC. Th1-like
IFN-g+ Th17 cells exhibit potent anti-tumor properties (135,
136). In contrast, induction of IL-22 in Th17 cells downstream of
TGF-b and AHR ligand promotes tumorigenesis (98).

While some microbial species promote tumorigenic Th17
cells, others predict enhanced responses to chemo- and immune-
therapy (137–140). Colonization by protective organisms is
associated with increased numbers of Tfh and the development
of ectopic lymphoid structures (141). Accumulation of Tfh is
associated with prolonged survival in humans (142). In mouse
models, both Tfh and B cells are required for the protective
effects conferred by these microbial species. Intriguingly, Tfr cells
also accumulate at tumor sites, and may regulate Tfh
functions (143).
ROLE OF REGULATORY CD4+T CELL
SUBSETS IN COLORECTAL CANCER

Treg cells exhibit conflicting roles CRC. Preclinical and clinical
studies indicate Treg cells suppress effector T cell-mediated
immune responses to cancer (144, 145). Treg infiltration in
CRC has been associated with tumor progression, lymphatic
invasion and metastasis (146–148). However, eTregs, which are
abundant in the intestine, can also promote anti-tumor
immunity to, and induce regression of, intestinal cancers (149,
150). Indeed, tumor infiltrating Treg cells are associated with
improved prognosis in many studies (72, 151–153).
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These discordant results may be due to heterogeneity within
the Treg compartment. During inflammatory responses, Treg
cells can be divided into 3 main compartments; Suppressive
CD45RA+ FOXP3-high naïve-like cells, suppressive CD45RA–
FOXP3-high eTreg cells, and pro-inflammatory CD45RA–
FOXP3-low eTreg cells. ROR-gt+ IL-17A+ FOXP3-high eTreg
cells exhibit potent T cell suppression, but fail to restrain innate
inflammation. They increase with tumor stage in human CRC,
and promote tumor development in colitis-associated mouse
models (154, 155). In contrast, FOXP3-low eTreg cells exhibit
Frontiers in Immunology | www.frontiersin.org 8
reduced T cell suppressive capacity and promote anti-tumor
immunity (156, 157). Indeed, tumors harboring FOXP3-low
eTreg cells that secrete IL-17A and/or IFN-g are associated
with significantly better prognosis (72). Tumors containing
these cells exhibit increased expression of IL-12, has been
speculated promote acquisition of this pro-inflammatory state.
Cell lineage and target antigen may also influence this functional
divide: While TCR sequences of Th17-like eTreg cells overlap
with pTreg cells, Th1-like eTregs appear to be thymically
derived (158).
FIGURE 3 | Multilayered roles of various subsets of CD4+ T Cells in Colorectal Carcinoma. Chronic inflammation, driven by Th17 cells in response to commensal
organisms, promotes tumor development. Sustained exposure to IL-22, produced by Th22 cells, contributes to tumorigenesis. Th1 cells promote tumor cell
destruction via production of IFN-g. Treg cells oppose tumor development by suppressing chronic inflammation, but contribute to progression by opposing optimal
tumor responses. Some types of pro-inflammatory eTreg cells, in contrast, promote tumor immune responses. Tumor colonization by protective commensal species
drives accumulation of Tfh, which organize tertiary lymphoid structures. These structures enhance tumor immune responses and predict responses to chemo- and
immune-therapeutics. Arrows indicate positive modulation; perpendicular lines indicate inhibitory relationships. Green indicates an overall anti-tumor effect, while red
indicates an overall pro-tumorigenic effect. Created with BioRender.com.
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TARGETING SUBSETS OF CD4+T CELLS
IN CRC: THERAPEUTIC IMPLICATION

Treatment of CRC is guided by tumor stage and grade, but
commonly involves surgical resection (159). Peri-operative
chemotherapy is the standard of care for Stage III and IV
tumors, and may be considered for stage II tumors. Established
nearly two decades ago, Oxaliplatin, 5-fluorouracil and
leucovorin (FOLFOX) still remains the first line regimen,
although inhibition of VEGF or Ras signaling may offer
statistically significant but limited improvement of outcomes in
some cases. However, overall survival of localized, regional and
metastatic CRC is only 91%, 72% and 13%, respectively (159).
Therefore, additional therapeutic options are needed for
therapeutic intervention.

Given the importance of T cells in modulating its
pathophysiology, therapeutic approaches targeting lymphocyte
function represent a promising addition to CRC treatment
regimens. Defective mismatch repair (dMMR) leads to an
abundance of tumor neoantigens. dMMR tumors are heavily
infiltrated by Th1 cells and confer improved prognosis (122).
Furthermore, dMMR tumors commonly exhibit elevated
expression of PD-1 and PD-L1. Increased neoantigen burden
and PD-1/PD-L1 mediated immune evasion suggest these
tumors may be susceptible to checkpoint inhibition. Indeed,
early trials examining the efficacy of PD-1 inhibition in dMMR
tumors generated promising results (160). However, dMMR
tumors are more commonly identified in earlier stages, and
represent only 3-6% of advanced cases. Interventions targeting
lymphocyte functions independent of checkpoint blockade are
likely required for therapeutic efficacy in the majority of tumors.

Three general approaches to targeting CD4+T cells could be
considered for CRC therapy: A. Direct inhibition CD4+T cell-
derived tumor promoting factors. B. Interventions manipulating
heterogeneity within CD4+T cell functional categories (Th1,
Th17, Th22, Treg, eTreg, Tfh, Tfr etc.). C. Manipulation of the
colonic microbiota. Importantly, successful implementation of
each approach is currently impeded by an incomplete
understanding of the relevant biology. Limited insight confers
a limited capacity to intervene.

Direct Inhibition of CD4+T Cell-Derived
Tumor Promoting Factors
Direct inhibition of effector cytokines known to drive tumor
progression may improve outcomes. The suppressive cytokine
IL-10 is a potential target to elicit a robust anti-tumor immunity.
Serum IL-10 is positively correlated with tumor stage and
negatively correlated with prognosis in CRC patients (161,
162). IL-10 is increased in the CRC microenvironment, and
IL-10RA levels correlate with KI67 staining (163). IL-10 blocking
antibodies drive accumulation of tumor-infiltrating lymphocytes
(TILs), release of granzyme B, and tumor cell necrosis in an in
vitro human CRC culture system (164). Systemic blockade of IL-
10 or IL-10RA, however, carries substantial risk. Targeted
approaches may be required. Intra-tumor injection of lentivral
vectors encoding IL-10 shRNA reduces IL-10 expression and
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potentiates bone marrow derived dendritic cell vaccine efficacy in
a mouse model of CRC (165). IL-10 shRNA alone was not
effective, and IL-10 production by T cells was unaffected.
Caution, however, is warranted. Mouse models indicate IL-10
can actually augment cancer responses. Indeed, exogenous IL-10
is being investigated as a therapeutic option in multiple cancer
types, including CRC (166, 167). Identification of the specific
cellular sources of IL-10 that inhibit tumor immunity and
targeted suppression of IL-10 production in those cells, or
inhibition of IL-10RA signaling in tumor cells, may offer
improved safety and efficacy. Regardless, the seemingly
contradictory findings surrounding IL10 make it abundantly
clear that our understanding of the underlying biology is
profoundly limited. It is difficult to predict outcome of actions
without an accurate model of what is being acted upon.

Given the roles of Th17 and Th22 cells in promoting tumor
development, IL-17A, IL-17F, and IL-22 are also promising
targets in CRC. Deletion of Il17a or Il17f reduces tumor
development in an APC-driven mouse model of CRC (130,
168). Blockade of the IL-17/IL-17RA axis may also improve
the efficacy of anti-VEGF therapies. Anti-IL22 antibodies inhibit
CRC cell proliferation in vitro (169). Gene therapy designed to
drive expression of IL-22BP, a secreted binding protein that
inhibits IL-22 signaling, reduces tumor burden in mice (170).
Again, caution is warranted as some studies indicate disruption
of Th17 and Th22 cell function can promote tumor development
and progression (171). The cause of these disparate outcomes is
not fully understood, but may relate to the specific mechanism of
CRC pathogenesis and the role of T cells in promoting
appropriate versus chronic, dysregulated inflammatory
responses. Further elucidation of the role of these cells in CRC
is required.

Interventions Manipulating Heterogeneity
Within CD4+T Cell Functional Categories
T-bet, GATA3 and RORgt are key regulators of lymphocyte
behavior. Interventions designed to modulate these factors could
influence functional heterogeneity within multiple lineages
simultaneously. They are potentially powerful therapeutic
targets. TBET and RORgt are particularly important in CRC.
Expression of T-bet in both effector and regulatory lineages
correlates with enhanced tumor response and improved
outcome. RORgt exhibits more nuanced effects. Effector and
regulatory cells that express RORgt promote tumor progression.
Co-expression with T-bet, however, confers potent anti-tumor
activity. Interventions should be designed to promote activation of
the T-bet transcriptional program and minimize the proportion of
RORgt single-positive cells. Complete abrogation of RORgt,
however, could prove counterproductive. A balance may have to
be found.

The mechanisms by which to exert this pressure must also be
determined. TGF-b is one potential source of influence. It
promotes Treg differentiation, type III (RORgt-mediated)
inflammation, and inhibits TBET. Empiric evidence indicates
potential utility. Elevated TGF-b is a marker of poor prognosis in
CRC (172). Upregulation of Smad7, a negative mediator of
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TGF-b signaling, drives accumulation of TBET+ Th17 cells and
improves tumor responses in a mouse model of CRC (136).
Furthermore, antibody-mediated inhibition of TGF-b signaling
in a mouse model of CRC promotes a rapid and long lasting Th1
response far more potent than checkpoint inhibition and capable
of preventing metastasis (173). In mice with pre-existing
metastases, TGF-b blockade renders tumors susceptible to
checkpoint inhibition. Disruption of TGF-b signaling is an
excellent candidate for therapeutic intervention in CRC.

The IL-6/STAT3 pathway is another promising target. IL-6
favors RORgt and is aberrantly activated in many tumor
microenvironments. Myeloid-derived soluble IL-6 receptor can
blunt Th1 and CD8 responses (174, 175). Concurrent inhibition
of IL-6 and PD-1 leads to elevated Th1 levels and enhances
response to checkpoint blockade in multiple mouse models (176,
177). Blockade of IL-6 signaling may yield similar effects in CRC.
Pharmacologic inhibition of SIRT1, required for dimerization of
STAT3 downstream of IL-6, reduces Th17 numbers in CRC
patients and tumor development in mice (178). Care must be
taken, however, to examine potential effects on dual Tbet+
RORgt+ cells when blocking this pathway.

IL-23, which also signals through STAT3, promotes
tumorigenic Th17 cell differentiation in CRC. Blockade of IL-
23 may therefore blunt pathogenic Th17 differentiation and, as
with STAT3 inhibition, redirect developing cells to a Th1-like
phenotype. But IL-23 is a member of the IL-12 family of
cytokines and can promote IFN-g production in Th17 cells via
STAT4. Interference with this pathway also has the potential for
unintended consequences.

Direct administration of IL-12 can promote type I (TBET-
mediated) responses. When administered to mice harboring a
toxigenic strain of B. fragilis, IL-12 monotherapy leads to
increased tumor CTL numbers, though no change in tumor
burden was seen. Co-administration of IL-10 also reduces tumor
Th17 numbers, and dramatically improves tumor burden (167).
This cooperative effect is promising, and suggests additional
interactions could be similarly exploited. But its mechanism is
incompletely understood, and it is difficult to anticipate which
additional combinations will prove beneficial.

Selective amplification of Tfh may represent an alternative
potential therapeutic avenue. Given its role in Tfh development,
ICOS stimulation may promote accumulation of Tfh-like cells
and development of ectopic lymphoid structures in CRC. ICOS
levels correlate with survival in CRC, while its expression is
reduced in distant metastases (179). ICOS ligation may
additionally modulate the effector response. Intratumor ICOS+
T cells exhibit elevated TBET and IFN-g expression, and ICOS-
based chimeric antigen receptor T cells generate anti-tumor
bipolar TBET+ RORgt+ effectors cells (179, 180).

Exploitation of Treg biology represents one of the most
promising mechanisms for combatting CRC. Tumors can be
classified into two groups based on the relative abundance of
FOXP3-high and FOXP3-low eTregs. Infiltration by FOXP3-low
eTregs confers significantly better prognosis (72). Conversion of
FOXP3-high eTreg cells to pro-inflammatory FOXP3-low eTregs
would release the pressure pro-inflammatory cells and potentiate
Frontiers in Immunology | www.frontiersin.org 10
interventions design to promote them. Unfortunately, very little
is known about the signaling and transcriptional events that
guide this transition. Both IL-12 and TGF-b are elevated in CRC
tissue infiltrated by FOXP3-low eTregs, suggesting these factors
could promote acquisition of a pro-inflammatory phenotype.
Augmentation of IL-12 signaling may therefore benefit Treg
responses as well, but enhanced TGF-b signaling may have
undesirable effects on the balance of Th17 and Th1 cells, and
could potentially increase total Treg numbers. Similarly, BLIMP1
has been shown to prevent production of inflammatory
cytokines in RORgt+ Treg cells. But inhibition of BLIMP1
would be expected to have deleterious effects on the effector
response. As with other proposed interventions, targeted
approaches localizing effects to specific cell populations might
be required. Bi-specific antibodies, for example, could be used to
block signaling events in specific subsets of T cells, including
Tregs. Even so, these interventions are highly speculative. Our
understanding of eTreg cell states is limited. The molecular
determinants guiding their development must be elucidated
before viable interventions can be developed.

Manipulation of the Colonic Microbiota
Tumors preferentially develop in the distal colon and rectum,
which harbors the highest concentration of microbial species
(181). Early studies using germ free animals confirmed a role for
microbial organisms in the development of CRC (182). 16S
rRNA sequencing has identified differences in fecal and tumor
mucosal microbiota between CRC patients and healthy controls
(183). This dysbiosis is transferable, as fecal transplantation from
tumor-bearing mice to conventionalized germ-free mice results
in increased colon inflammation and tumorigenesis (184). Fecal
transplants from CRC patients into germ-free mice also results in
increased tumor burden (185). Interestingly, microbial patterns
and signatures vary substantially between colon cancer tissue and
adjacent non-malignant colon tissues (186). Thus, localized
dysbiosis of intestinal microbiota can trigger inflammation
leading to an increased permeability of the epithelial barrier
and enhanced bacterial translocation, which in turn, promotes
chronic inflammation by provoking a persistent immune
response. This generates reactive oxygen and nitrogen species
that lead to oxidative stress, DNA damage, and abnormal cellular
proliferation, eventually culminating in the development of CRC.

While disparities between studies preclude the identification
of a CRC-specific microbiome, substantial evidence supports
causal roles for some species, including Fusobacterium
nucleatum and Bacteroides fragilis. Fusobacterium is enriched
in human CRC mucosa, predicts poor response to chemotherapy
and prognosis and promotes tumor development in mice (183).
Colonization persists even in distal metastases (187). Toxigenic
Bacteroides fragilis is also enriched in CRC lesions, and promotes
tumor development in mice. Interestingly, while toxigenic strains
of B. fragilis promote tumor development, non-toxigenic strains
confer protection by promoting infiltration of Tfh and
development of ectopic lymphoid structures (137, 141).

Interventions should be designed to alter microbial
populations to promote a beneficial immune response. Due to
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the localized nature of dysbiosis, direct sampling of colonic
mucosa may be required to identify relevant organisms.
Species level identification may not be sufficient given the
strain dependent effects of B. fragilis. In addition, commensal
organisms form a complicated, inter-dependent network.
Manipulations affecting single species could prove insufficient
to alter function. More sophisticated approaches should be
considered. The potential therapeutic utility is apparent but, as
before, our ability to exploit this potential is hampered by an
abridged appreciation of biology.
CONCLUSION & PERSPECTIVE

The gastrointestinal (GI) tract is a large surface lined by a single
layer of epithelium exposed to trillions of microbes and
innocuous substances from the diet. It harbors the largest
collection of immune cells in the body. The gut immune
system maintains a state of dynamic equilibrium, monitoring
luminal contents to sustain tolerance to dietary and commensal
antigens while retaining the ability to rapidly respond to
invading pathogens. CD4+ T cells are essential for both arms
of this delicate balancing act. In recent years, increasing
awareness of the diversity of CD4+ T cell form and function,
and the relationships between these cells, has exposed limitations
to the established paradigm. Many fundamental questions will
have to be addressed before a new model can be developed. The
increasing complexity of lineage diversity and functional
heterogeneity have made these questions harder to answer. But
they must be answered. CD4+ T cells are a tremendously
powerful tool. It will be very difficult to wield this tool for
clinical benefit without understanding how it works.

A deeper understanding of the intersection between CD4+ T
cells and CRC is also needed. What underlies the seemingly
contradictory roles played by some cells? Both nTregs and
pTregs are beneficial in controlling the inflammation that
serves as the nidus for CRC, but are harmful after
inflammation leads to cancer. And yet some Tregs shed their
suppressive role, become eTregs, and participate in anti-cancer
immune responses, much as effector cells do. Similarly, Th17 and
Th22 cells promote pathogen clearance and epithelial barrier
function, respectively. Effective clearance and barrier integrity
minimize exposure of epithelial cells to noxious inflammatory
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stimuli. But the sustained activity of these cells promotes tumor
development. In contrast, Th17 cells that also express TBET are
an important component of anti-cancer responses. Similarly, the
concerted influence of follicular T cells and the colonic
microbiota can both promote and oppose CRC. The
development of these populations, and their influence on
inflammatory responses to CRC, must be resolved in greater
detail so that they can be exploited to improve disease outcomes.

Regardless of the target, interventions must be designed with
pleiotropic, combinatorial effects in mind. Independent effects on
both effector and regulatory cell populations must be examined
carefully. Potential effects on follicular T cells should also be
considered, as should interactions with innate, epithelial and
tumor cells. Given potentially counterproductive effects on
disparate cell types, targeted interventions may afford
enhanced efficacy.

In summary, the manipulation of CD4+T cells represent a
potentially powerful tool in CRC. Current attempts are limited
by an incomplete understanding of the underlying biology. A
more nuanced understanding of lineage diversity and plasticity
in inflammatory responses during CRC is needed. The
contributions of specific cell populations must be better
delineated to understand the best way to implement
therapeutic approaches. The relationships between these cells,
and the molecular determinants guiding their development,
must be understood. Much remains to be done. But we are
close enough to see the reward far outweighs the cost.
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