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Low-molecular weight chemical compounds have a longstanding history as drugs. Target
specificity and binding efficiency represent major obstacles for small molecules to become
clinically relevant. Protein kinases are attractive cellular targets; however, they are
challenging because they present one of the largest protein families and share
structural similarities. Bruton tyrosine kinase (BTK), a cytoplasmic protein tyrosine
kinase, has received much attention as a promising target for the treatment of B-cell
malignancies and more recently autoimmune and inflammatory diseases. Here we
describe the structural properties and binding modes of small-molecule BTK inhibitors,
including irreversible and reversible inhibitors. Covalently binding compounds, such as
ibrutinib, acalabrutinib and zanubrutinib, are discussed along with non-covalent inhibitors
fenebrutinib and RN486. The focus of this review is on structure-function relationships.

Keywords: BTK inhibitors, ibrutinib, acalabrutinib, zanubrutinib, fenebrutinib, protein-inhibitor interactions,
covalent and non-covalent binding, structure-function relationship

INTRODUCTION TO BRUTON TYROSINE KINASE (BTK)

The B-cell-receptor (BCR) signaling pathway includes several components among which Bruton
tyrosine kinase (BTK) is one of the key players (1, 2). The B-cell surface receptor is activated upon
binding of a ligand (antigen). This in turn initiates a cascade of intracellular signaling events in
which BTK is involved. BTK belongs to protein tyrosine kinases (PTKs), which transfer the gamma
phosphate of adenosine triphosphate (ATP) to specific tyrosine residues in the target proteins (3, 4).
BTK is an essential signaling molecule for the development, differentiation and survival of B-cells (2, 5).
It is expressed in the majority of the cells of the hematopoietic lineage, except for the T- and plasma
cells (6, 7).

BTK is encoded by the BTK gene (2, 5) and is a member of the Tec family of PTKs along with
BMX non-receptor tyrosine kinase (BMX), IL2 inducible T cell kinase (ITK), tec protein tyrosine
kinase (TEC), and TXK tyrosine kinase (TXK). Apart from TXK, they all have five structural
domains. In the N-terminus, pleckstrin homology (PH) domain, which has a membrane-localizing
function, is followed by the Tec homology (TH) region, which is unique for the Tec family. PH
domain is a versatile docking domain that has numerous binding partners. The PH domain and
BTK motif are missing in TXK. Between the TH region and the C-terminus there are the Src
homology 3 (SH3), SH2 and kinase domains. The SH2 and SH3 domains have binding functions,
whereas the kinase domain catalyzes the phosphorylation of tyrosine residues in target molecules.
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PTKs are key components in cellular signal transduction
pathways. Their activity is tightly controlled. This is crucial
since they regulate a variety of cellular functions, such as cell
growth, differentiation and malignant transformation. Gain-of-
function variants activate signalling pathways even in situations
when they should be silenced. Such active pathways are harmful
and are related e.g. to various forms of cancer (8).

The human kinome consists of 518 protein kinases (including
atypical ones) (9), among which BTK contains the largest number
of different disease-causing variations. Variations in BTK can, for
example, lead to a rare primary immunodeficiency called
X-linked agammaglobulinemia (XLA) (XLA, MIM #300755)
(5), which is characterized by low B-cell numbers and lack of
immunoglobulins leading mainly to bacterial infections in
patients (10). Antibody substitution therapy is an efficient
treatment but requires lifetime management. XLA is caused by
loss-of-function variations. Variations in BCR signalling pathway
can lead to constitutive signalling and are common in B cell
malignancies. Gain-of-function variants have been identified e.g.
in Waldenstrom macroglobulinemia (11) and in chronic
lymphocytic leukemia (CLL, MIM #151400) (12) and in some
other B cell malignancies, for which there are efficient treatments
(13, 14). BTK gain-of-function variants have been studied in the
laboratory (15, 16).

BTK PROTEIN STRUCTURE

In this review we concentrate on the BTK kinase domain. It is the
only catalytic part in the Tec family PTKs. It consists of about
250 residues and is connected to the preceding SH2 domain by a

and lower lobe in yellow. Lower lobe was used for the superimposition.

long linker. Figure 1A shows the overall arrangement of the SH3
(yellow in the figure), SH2 (pink) and kinase domains (cyan) in
mouse BTK (PDB id 4xi2) (17) for which there is the longest
experimentally defined structure in the Tec family. The full
structure with all domains has not been determined for any
protein kinase. The overall structures of PTKs are flexible. Kinase
domains can appear in active and inactive conformations. In the
case of BTK, an elongated structure has been determined with
small-angle X-ray scattering (SAXS) (18), however, there are
likely several different conformations depending e.g. on the
phosphorylation status and interactions between domains and
with other proteins and compounds.

The kinase-domain scaffolding in PTKs is formed of two
lobes and the catalytic site is between the lobes (Figure 1B) (PDB
id 5p9j) (19). The smaller N-terminal lobe contains antiparallel
[B-sheets and one or two o-helices. The lower, C-terminal lobe
usually has seven helices and some short -strands. ATP that
provides the phosphate group for the transferase reaction is
bound in a cleft between the two lobes. This site is occupied by
covalent inhibitors. Ibrutinib binding to BTK is shown in
Figure 1B. Orientations of the two lobes vary. When the
enzyme is in the active, also called a closed, conformation the
lobes form ATP and ligand binding regions. In the inactive form,
the enzyme has an open conformation and cannot effectively
bind to ATP, the cofactor of the reaction. Figure 1C indicates
how the BTK upper lobe turns while the lower lobe remains
largely similar in the conformations for closed structure with
ibrutinib (5p9j) (19) and open form (1k2p) (20).

The upper lobe rotates in relation to the lower lobe during
activation. Phosphorylation of a tyrosine residue in the activation
loop (Y551 in BTK) is required for activity. Structural changes

FIGURE 1 | (A) Spatial organization of mouse BTK SH3 (yellow), SH2 (pink) and kinase domains (cyan). Linkers are in gray. The SH2 and SH3 domains are
indicated by their positions in the dimer (PDB id 4xi2). (B) Human BTK kinase domain with ibrutinib (red) bound covalently (magenta) to C481 (blue) (5p9j). The upper
lobe is in cyan, the lower lobe in yellow and inhibitor in red. (C) Superimposition of closed (5p9j) and open BTK kinase conformation (1k2p). Upper lobe is in cyan
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during activation include rotation of the upper lobe to lock the
ATP molecule between the two domains. During this process,
some reorganization of secondary structural elements and loops
happens. Following BCR engagement, BTK translocates to the
plasma membrane with the help of the PH domain. It leads to
Y551 phosphorylation by a Src family kinase, mainly LYN.

The flexibility and dynamics of the kinase domain is
facilitated by the linker between the lobes (Figure 1C). A
single polypeptide chain connects the two lobes and minor
changes in this flexible region lead to different relative
orientations of the lobes. Depending on the binding ligand, e.g.
an inhibitor, the angle between the domains varies implying a
dynamic “rigid body” movement, where the entire lobes are
turned in relation to each other.

ATP-Binding Pocket

The overall sequence similarity of PTKs is rather low, still they
show conserved protein folds. The ATP binding site is among the
most conserved regions. Figures 2A, B show the amino acids
involved in ATP binding in BTK based on the corresponding
residues when ADP is bound to ITK (4m15) (21). Amino acids
within 5 A distance from the cofactor were identified. The binding
site is formed by amino acids folding together from different parts
of the protein, within a stretch of about 140 amino acids. The
majority of the PTK targeting drugs have been designed to
intervene ATP binding and thereby inhibiting the catalytic
activity. There are enough differences between PTKs to facilitate
the development of rather specific inhibitors. Some other inhibitors
have been designed to target outside of the ATP binding pocket.

A
410 420 430 440 450 460 470 480 490 500
DLTFLKELGTGQFGVVKYGKWRGQYDVAIKMIKEGSMSEDEFIEEAKVMMNLSHEKLVQLYGVCTKQORPIFIITEYMANGCLLNYLREMRHRFQTQQLLE
ibrutinib +++ + + + + 44+ +
zanubrutinib +++ + + + + F++ A+ 1+
fenebrutinib .+ + + b+
RN486 +HHH++ + + + + ++tttttt
510 520 530 540 550 560
MCKDVCEAMEYLESKQFLHRDLAARNCLVNDQGVVKVSDFGLSRYVLDDEYTSSVGSKEP
ibrutinib P +
zanubrutinib + o+ +++ +
fenebrutinib + ++ + + o+t +
RN486 + o+t ++ o+t +
0
N=—/ o) W P P P.
y w07 N0 N0 o
HN y OH OH OH
\ OH
NS HO

Ibrutinib, Fenebrutinib

FIGURE 2 | ADP and inhibitor binding. (A) BTK sequence indicating amino acids within 5 A radii from ADP or inhibitors. For ATP binding, residues corresponding to
interacting amino acids in BTK are shown in red. Crosses indicate the interacting amino acids in inhibitor complexes. (B) Upper panel: Chemical structure of ATP,
adenine is highlighted in blue. Lower panel: ADP bound to ITK kinase domain (4m15). Residues within 5 A from ADP are in green. Atoms in the ADP are colored
based on the elements, carbon gray, nitrogen blue, oxygen red, and phosphorus orange. (C) Differences in the binding modes of the covalent inhibitor, ibrutinib
(blue, 5p9j), and non-covalent inhibitor, fenebrutinib (orange, 5vfi), to BTK. C481 is in blue.
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Although the ATP binding sites are conserved in PTKs, each
one shows unique features. The ATP-binding site holds the
terminal phosphate group in a position in relation to the
catalytic residue D521 and the ligand to be phosphorylated.
The phosphorylation reaction requires a complex structure and
many interactions. The substrate recognition region interacts
with the ligand and holds it in a proper orientation in relation to
ATP and the catalytic residues, which again are oriented by an
extensive and intricate network of interactions including proper
orientation of the kinase lobes and a Mg”* ion essential for the
catalysis (22).

A large group of PTK inhibitors have been designed to occupy
the ATP-binding pocket, and therefore they can be considered as
“ATP-like” compounds partially sharing a similar chemical
structure with adenine (Figure 2B). These inhibitors form
hydrogen bonds with the amino acid residues in the region
between the two kinase lobes (23, 24). The corresponding H-
bonds are naturally formed by the endo- and exocyclic amino
groups of adenine in ATP. The selectivity of the inhibitors can be
conferred through extended interactions with the surrounding
regions including those, otherwise, occupied by the ribose moiety,
the hydrophobic part and the triphosphate group of ATP.

BTK INHIBITORS

The number of chemical compounds developed to inhibit BTK
activity is continuously increasing, and three compounds are
already approved as drugs by the U.S. Food and Drug
Administration (FDA) and the European Medicine Agency
(EMA). These are ibrutinib, acalabrutinib and zanubrutinib
(Table 1) (25). The majority of BTK inhibitors target the ATP-
binding site and they are classified into two categories based on
their binding mode as reversible or irreversible inhibitors. For
additional recent reviews on BTK inhibitors see (26, 27) for the
chemical point of view and the development of BTK inhibitors in
cancers, respectively.

Despite markedly different binding modes of irreversible and
reversible inhibitors, they share many common interacting
residues. Covalent inhibitor ibrutinib (5p9j) (19, 28) and non-
covalent inhibitor fenebrutinib (5vfi) (29) represent the two
classes in Figure 2C. Residues around 410, 430, 480 and 540
(Figure 2A) are involved in interactions with both types of
inhibitors. In addition, there are group- and inhibitor-specific

interactions. The covalent inhibitors ibrutinib and zanubrutinib
(Figure 3) have slightly smaller number of possible interactions
(19 and 22, respectively) than the non-covalent drugs (Figure 5)
fenebrutinib and RN486 (29 and 26, respectively). This could be
explained by the size of the molecules and by the fact that non-
covalent inhibitors may need more interactions to achieve the
affinity required from a drug. These inhibitors, from both
categories, are discussed in the following sections.

Irreversible Inhibitors

Protein inhibitors can be equipped with a reactive functional
group, which is able to form a covalent bond with an amino acid
residue. One major advantage of covalent kinase inhibitors is
that high selectivity can be obtained through a combination of
both non-covalent and covalent interactions. Side chains in both
cysteine and serine are frequently targeted by irreversible kinase
inhibitors. For example, the aliphatic thiol (SH) group within the
side chain of cysteine, specifically in its deprotonated form
(thiolate anion), is an excellent nucleophile, which can react
with an electrophilic functional group in the inhibitor designed
specifically to form a stable covalent bond.

The ATP binding site in BTK includes a cysteine (C481),
which has been examined as a target for several irreversible
inhibitors. This residue is not highly conserved in PTKs, but
several PTKs have been targeted at the corresponding amino
acid. Sequence alignment of BTK and Src family kinases and
screening of first-generation inhibitors that bind to the ATP-site
revealed that C481 in BTK could act as a nucleophile and form a
covalent bond with an inhibitor (30). This led to the birth of
ibrutinib, the first irreversible BTK inhibitor, which is approved
as treatment for several B-cell malignancies (25, 31).

As Figure 2A indicates, many of the residues involved in
ADP binding are essential also for inhibitor recognition. These
data were obtained by recognizing amino acids within 5 A
distance from the inhibitors. This distance allows for minor
adjustments in the structures as well as interactions mediated by
solvent (water) molecules. Crystallographic structures have been
determined both for ibrutinib and zanubrutinib (Figure 3), the
corresponding complex for acalabrutinib has been modelled
(Figure 4) (32). Backbone amide groups of E475 and M477
form hydrogen bonds with the pyrazolopyrimidine core, which
extends towards T474 and the area close to o-C-helix (5p9j and
5kup) (19, 33). Residues E475 and M477 are involved in binding
of all the presented inhibitors (Figure 2A).

TABLE 1 | Examples of reversible and irreversible BTK inhibitors.

Inhibitor Molecular weight (g/mol) PDB ID? Mode of binding
lbrutinib 440.5 5p9j covalent irreversible
Acalabrutinib 465.5 - covalent irreversible
Zanubrutinib 471.5 6j6m covalent irreversible
Fenebrutinib 664.8 Svfi non-covalent reversible
RN486 606.7 5p9g non-covalent reversible
LOXO 305 479.4 - non-covalent reversible
BMS-986142 572.6 - non-covalent reversible
Rilzabrutinib 665.8 - covalent reversible

D for the entry used in the analysis and text.
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is in magenta. The structures have the same pose as in Figure 2C.

Although ibrutinib binds efficiently to BTXK, it also recognizes
some other kinases. These off-targets have a cysteine within the
ATP binding pocket, and hence bind irreversibly (34, 35).
Ibrutinib binds to the other Tec family PTKs ITK, TEC, BMX
and TXK (36, 37), as well as to BLK (BLK proto-oncogene, Src
family tyrosine kinase), JAK3 (Janus kinase 3) (34, 35) and
VGEFR2 (38).

Zanubrutinib (6j6m Figure 3B) is an efficient irreversible BTK
inhibitor (39). The compound has some preference for BTK versus
TEC and it does not inhibit ITK. Zanubrutinib forms H-bonds
with the hinge region residues E475 and M477, similar to ibrutinib.

Acalabrutinib has a reactive butynamide group that can bind
covalently to C481 in BTK (37) (Figure 4). The structural
properties of this compound differ from ibrutinib, thereby it has
decreased off-target binding; for example, epidermal growth factor
receptor (EGFR) and ITK are not inhibited by acalabrutinib.

A drawback of irreversible inhibitors is that drug resistance in
malignant diseases can develop when BTK variations at the
catalytic site and the gatekeeper are not able to bind efficiently
to irreversible inhibitors in treated patients (40, 41). This is a
rather common event in patients treated with irreversible
inhibitors and who have a relapse.

Reversible Inhibitors

Many clinical and preclinical kinase inhibitors compete with
ATP and bind in a non-covalent manner (Table 1). These
compounds are recognized in a structure-based mode and

FIGURE 3 | Chemical structures and binding of covalent BTK inhibitors, (A) ibrutinib (5p9j), and (B) zanubrutinib (6j6m). Residues within 5 A distance from inhibitor
are shown in green. Atoms in the inhibitors are colored based on the elements, carbon gray, nitrogen blue, oxygen red. Covalent bond between C481 and inhibitor

achieve selectivity through recognition of unique features of
target protein kinases. Moreover, the emergence of BTK
variations at C481 or T474 gatekeeper position following
treatment with irreversible inhibitors prompted efforts to
design and synthesize new reversible kinase inhibitors.

Fenebrutinib (Figure 5A) was discovered through a
structure-activity-relationship study of a series of precursor
and analogue compounds (29). Fenebrutinib-BTK complex
structure revealed specific interactions, which may explain its
selectivity (25). This compound also showed retained activity
in vitro towards BTK carrying the single and double variations
C481S, T474A and T474S/C481S, respectively (32).

The reversible inhibitors interact with many amino acids that
also interact with covalent inhibitors (Figure 2A) despite largely
different binding orientation. M477 in BTK forms an H-bond
with the pyridone oxygen in fenebrutinib and pendant NH group
of the adjacent 2-aminopyridine (5vfi) whereas the pyridonyl
ring packs against E408 and G480 (29).

In the search of new BTK reversible inhibitors with enhanced
selectivity for the treatment of rheumatoid arthritis (RA), RN486
(Figure 5B) was developed and examined in in vitro binding and
competition studies, as well as in cell-based assays (42). The
compound showed efficient binding to BTK at subnanomolar
concentration and exhibited anti-inflammatory effects in mice
with collagen-induced arthritis (43). The structure of RN486-
BTK complex (5p9g) (19) indicates quite similar binding mode
of RN486 and fenebrutinib, see also Figure 2A.
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FIGURE 4 | Chemical structure of acalabrutinib and molecular model
showing binding of the covalent inhibitor in BTK. Atoms in the inhibitor are
colored based on the elements, carbon gray, nitrogen blue, and oxygen red.
Covalent bond between C481 and inhibitor is in magenta. The structure has
the same pose as in Figure 2C.

Several additional small-molecules, which bind to BTK in a
non-covalent manner, are currently under investigation,
including LOXO-305 (44, 45) and BMS-986142 (46). An
Interesting covalent reversible inhibitor is rilzabrutinib
(PRN1008). The compound encompasses a functional nitrile
group, which acts as the electrophile that reacts with the thiol of
cysteine, thereby forming a covalent bond. The reactivity of this
complex confers a possibility to reverse the reaction under
in vitro and cellular conditions (47, 48). Pre-clinical studies of
rilzabrutinib indicated anti-inflammatory effect in animal
models of immune-mediated diseases (49).

Inhibitor Binding and Selectivity

The binding affinity and activity of reversible and irreversible
inhibitors are typically evaluated using in vitro biochemical and
cellular assays, and are often translated into the value
corresponding to the half-maximal inhibitory concentration
(ICsp) of the compound. ICs, can serve as a quantitative
measure of the potency of reversible inhibitors. However,
frequently used methods to estimate the binding and activity
of kinase inhibitors in terms of ICs, values do not account for the
two-step process of kinase inhibition by irreversible compounds.
Furthermore, compound selectivity for one kinase over others

are frequently determined based on IC5, values. However, these
values differ depending on the assays used and in some cases lack
kinetics measurements (25). Consequently, more accurate
determination of the selectivity of irreversible inhibitors
towards various kinases could be achieved through additional
assays, such as the measurement of inactivation kinetics. This in
turn may provide a better correlation with potential off-target
activities and thereby explain certain adverse effects observed in
treated patients (50, 51).

The two steps that govern the activity of irreversible inhibitors
are binding affinity and formation of the covalent bond. The
kinetics of the latter is a key parameter; however, not always
included in the analysis and comparison of various BTK
irreversible inhibitors. For example, in a recent study the
relative selectivities were determined for the irreversible
inhibitors ibrutinib and acalabrutinib towards BTK and TEC
using both binding affinity and time-dependent activity (52).
Drug selectivity was then evaluated in a cell-based occupancy
assay in a Waldenstrom macroglobulinemia patient cell line and
in CLL patient samples. In this system, ibrutinib and
acalabrutinib showed comparable selectivity for BTK over TEC
despite the fact that higher binding affinity, determined as ICsy,
was reported for acalabrutinib in BTK versus TEC (53, 54).

Further side-by-side comparisons of binding efficiency,
kinetics and selectivity of BTK inhibitors in combination with
structural profiling and molecular modeling would likely provide
valuable pre-clinical predictions on the performance of both
irreversible and reversible BTK inhibitors.

STRUCTURE-FUNCTION RELATIONSHIP
(SFR)

XLA is caused by loss-of-function BTK variants. BTKbase, a
database for BTK variants, was originally established 1994 (55)
among the very first locus specific variation databases (LSDBs)
and being the first one for primary immunodeficiencies.
Currently, BTKbase contains information covering over 1800
individuals with 1928 DNA variants of which 985 are unique,
originating totally from 1277 families (56).

In Figure 6A are shown the positions of XLA-causing variants
in the kinase domain as reported in BTKbase. Similar to the other
domains in BTK, disease-related variants are quite evenly
distributed along the polypeptide chain (56). The presence of
these variants can have several different biological consequences,
whether of structural, functional, regulatory or other type. Some of
them affect the ATP and ligand binding or catalytic or regulatory
sites. Many variants likely alter the structure or function of the
protein. Substitutions and splice site variants preventing protein
expression are rather common. It has been predicted that about
two thirds of the single nucleotide substitution-caused amino acid
variations (SNAVs) and similar proportion of all possible single
amino acid variants in the BTK kinase domain are likely harmful
and disease-causing (57, 58). This is a relatively high proportion,
however likely correct as there are many important sites and
amino acids in the kinase domain.
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the same pose as in Figure 2C.

FIGURE 5 | Chemical structures and BTK binding of non-covalent inhibitors (A) fenebrutinib (5vfi) and (B) RN486 (5p9g). Residues within 5 A distance from inhibitor
are shown in green. Atoms in the inhibitors are colored based on the elements, carbon gray, nitrogen blue, oxygen red, and fluorine pale green. The structures have

Gain-of-function variants are rare in any protein and gene.
Such variants in PTKs are harmful since the activity regulation
mechanisms are not functional resulting in constitutive
activation of the downstream signaling pathways (as far as the
variant kinase is expressed and stable). Random mutagenesis
screening for BTK gain-of-function variants revealed that single
variants T474M and E513G, as well as T474 double variants with
either L512M, E513G, F517L or L547P markedly increased the
kinase activity (16). Apart from T474, these residues are located
further away from the ATP binding site (Figure 6B) and the
exact mechanism of increased activity is not known. The
Catalogue Of Somatic Mutations In Cancer (COSMIC) does
not contain known cancer variants of these types.

A gain-of-function variation, E41K, is known in the PH
domain (15), thus activating variants can occur also in the
other domains.

Variants at amino acids T474 and C481 lead to tolerance of
covalent inhibitors in CLL and other B-cell malignancies. Effects
of several variants and their combinations were recently
investigated and shown to impair inhibitor binding leading to
drug resistance (32). These two positions are indicated
in Figure 6B.

Structural Aspects of Adverse Effects

BTK inhibitors have been investigated in hundreds of clinical
trials. Important part of these studies has been charting the
adverse effects, which have been reported in detail elsewhere
(25). The adverse effects vary among BTK inhibitors, and within

the two major groups, reversible and irreversible inhibitors, as
well as the treated diseases. Although bleedings, skin
manifestations, diarrhoeas and cardiovascular diseases have
been reported for certain covalently binding inhibitors, the
molecular mechanisms causing these side effects are only
starting to be discovered. Noteworthy, it is assumed that the
adverse effects of covalent inhibitors are mainly due to off-target
binding to other kinases that have cysteine in their binding site.
On the other hand, ibrutinib, for example, binds also reversibly
to additional kinases that do not have a cysteine in their binding
pocket (35). These interactions inhibit additional pathways
apparently with unwanted and harmful consequences.

In addition to the BCR signaling pathway, BTK is involved
also in other signaling cascades initiated by Toll-like receptors or
Fc-like receptors (59). A study of nine covalent and non-covalent
BTK inhibitors indicated clearly different effects on these
pathways (19). Covalent inhibitors as ibrutinib behaved
differently from many reversible inhibitors. Thus, the reported
adverse effects may emerge from the involvement of
numerous pathways.

The positioning of Y551 and the surrounding activation loop
differ markedly depending on the phosphorylation and on the
ligand- or inhibitor binding status. Following Y551
phosphorylation, the activation loop is tightly bound to the
structure, whereas in unphosphorylated form it is flexible and
not even seen in many X-ray structures. RN486 and some other
inhibitors change the loop conformation so that Y551 folds back
to the protein, thereby “sequestering” it and making it solvent
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inaccessible (19). This effect is accompanied with differential
outcomes in the signaling pathways and may contribute to
different adverse effects.

CONCLUDING REMARKS

BTK is a central signaling macromolecule in several pathways and
variations in the BTK gene and protein may lead to the
development of a range of diseases. Originally, it was identified
as the causative protein for XLA due to loss-of-function variants.
Subsequently it was implicated in B-cell malignancies, and more
recently even in multiple sclerosis. The fact that several cancers are
related to constitutive BCR signaling, including BTK activity, has
rendered BTK as an important therapeutic target including small-
molecule inhibitors. Numerous inhibitors have been developed
and tested. First on the clinical practice were irreversible inhibitors
that bind to the ATP binding site where C481 on the wall of this
pocket forms an irreversible covalent bond with the inhibitor.
More than 500 protein kinases are known in man and since all of
them use ATP as the cofactor, the inhibitors are somewhat
unspecific. Consequently, there is always some cross-reactivity,
which can cause unwanted side effects (25). New compounds have
been claimed to be significantly more specific than the first
products examined and approved in the clinics. However, long-
term clinical trials are not yet available for several new BTK
inhibitors, including reversible compounds.

The residues C481 and T474 in BTK are both crucial for
(irreversible) inhibitor interactions. Somatic variations in these

FIGURE 6 | Loss- and gain-of-function variations in BTK kinase domain. (A) XLA-causing variants (cyan) are distributed all along the kinase domain. (B) Sites of
ibrutinib resistance conferring amino acids C481 (red) and T474 (green) along with gain-of-function variants at positions 512, 513, 517 and 547 (yellow), note that
variant at 474 alone and together with other variants lead to gain-of-function activities. The structures are for ibrutinib (pink) complex with BTK (5p9j).

sites lead to tolerance for irreversible inhibitors, which will no
longer bind efficiently to the target site. These variants are quite
common when cancer patients are treated with irreversible
inhibitors. Reversible inhibitors, on the other hand, could be
better in this respect as they form several specific interactions to
achieve high enough affinity, and variation in one of these sites
may not be detrimental for recognition.
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