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Acute lung injury (ALI) results in acute respiratory disease that causes fatal respiratory
diseases; however, little is known about the incidence of influenza infection in ALI. Using a
ALI-mouse model, we investigated the pro-inflammatory cytokine response to ALI and
influenza infection. Mice treated with bleomycin (BLM), which induces ALI, were more
resistant to influenza virus infection and exhibited higher levels of type I interferon (IFN-I)
transcription during the early infection period than that in PBS-treated control mice. BLM-
treated mice also exhibited a lower viral burden, reduced pro-inflammatory cytokine
production, and neutrophil levels. In contrast, BLM-treated IFN-I receptor 1 (IFNAR1)-
knockout mice failed to show this attenuated phenotype, indicating that IFN-I is key to the
antiviral response in ALI-induced mice. The STING/TBK1/IRF3 pathway was found to be
involved in IFN-I production and the establishment of an antiviral environment in the lung.
The depletion of plasmacytoid dendritic cells (pDCs) reduced the effect of BLM treatment
against influenza virus infection, suggesting that pDCs are the major source of IFN-I and
are crucial for defense against viral infection in BLM-induced lung injury. Overall, this study
showed that BLM-mediated ALI in mice induced the release of double-stranded DNA,
which in turn potentiated IFN-I-dependent pulmonary viral resistance by activating the
STING/TBK1/IRF3 pathway in association with pDCs.
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INTRODUCTION

Acute respiratory distress syndrome (ARDS) is a fatal pulmonary disease characterized by
pulmonary fibrosis, hypoxemia, and infectious complications that are triggered by acute lung
org August 2021 | Volume 12 | Article 6971621
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injury (ALI) (1–4). Approximately 150,000 individuals in the
United States are diagnosed with ARDS annually with a survival
rate of approximately 40% over the 20 years after diagnosis (1, 5).
ALI can also be caused by exposure to silica and by pulmonary
viral infections, and the anticancer drug bleomycin (BLM) has
been used to develop a murine model of ALI (6–8).

Injury to lung epithelial cells results in the release of DNA
fragments that activate the cyclic GMP-AMP synthase (cGAS)-
stimulator of IFN genes (STING) pathway to stimulate type I
interferon (IFN-I)-dependent immune responses (6, 9, 10). IFN-I
is a crucial cytokine that regulates the response of the immune
system to viral infection (11). IFN-I binds to its receptor (IFNAR)
and induces the expression of IFN-stimulated genes (ISGs) such as
Mx1 and ISG15, which inhibit viral replication in host cells and
activate immune cells for effective viral clearance (12).

IFN-I is produced by various cell types in lung tissues,
including alveolar epithelial cells, alveolar macrophages, and
dendritic cells (DCs) (13). Plasmacytoid DCs (pDCs) recognize
self-DNA and viruses and robustly produce IFN-I that controls
viral infection via TLR7-, TLR9-, and cGAS-dependent pathways
(14, 15). In addition, pDCs sense apoptosis- or necrosis-derived
nucleotides and produce IL-10 and IFN-I to maintain tolerance
(16). By sensing released host DNA, pDCs repair damaged
epidermis in an IFN-I-dependent manner (17).

Patients with ARDS are reported to be vulnerable to bacterial
complications, but the incidence of respiratory virus infection in
patients with ARDS remains unknown (18). Using a mouse model,
we found that BLM-induced ALI releases self-DNA that activates the
STING/TBK1/IRF3 pathway to develop pulmonary virus resistance
in an IFN-I-dependent manner. Collectively, BLM-induced ALI
developed an antiviral environment in the lungs in an IFNAR1-
and pDC-dependent manner via prompting by self-DNA.
MATERIALS AND METHODS

Animal Model
Specific pathogen-free 8-week-old female C57BL/6 mice,
weighing 18–20 g, were purchased from Charles River
Laboratories (Orient Bio Inc., Sungnam, Korea). IFNAR1-/-

mice were purchased from B&K Universal Ltd. (Hull, U.K.).
All mice were bred and housed in the Animal Laboratory Center
of Kangwon University. To induce lung injury and pulmonary
fibrosis, mice were anesthetized by injecting a mixture of 100 mL
of ketamine (25 mg/mL) and xylazine (2 mg/mL), and then
intranasally injected with 1 mg/kg of BLM (Merck) dissolved in
30 mL PBS or PBS alone. On day 14, the mice were anesthetized
and infected i. n., with a sub-lethal (1 × 103 plaque forming units
[PFU]) or lethal (1 × 105 PFU) dose of A/PR/834 (A/PR8) in
20 mL PBS. DNase I (100 mg/mouse, Roche) and aIFNAR1 (100 mg/
mouse, BioXcell) were administered after BLM treatment.

Influenza Virus
A/Puerto Rico/8/34 influenza virus (A/PR8) incubated in
allantoic fluid was kindly provided by Prof. Baik Lin Seong at
Yonsei University.
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Isolation of Bronchoalveolar Lavage Fluid
The mice were euthanized, their tracheas were exposed, and a
catheter was inserted to flush the lungs with 1 mL of PBS.
Bronchoalveolar lavage fluid (BALF) samples were centrifuged at
500× g for 5 min to collect the cells. The supernatants were
centrifuged at 14,000 rpm for 1 min to completely remove
the cells.

Isolation of Total Lung Immune Cells
Lungs removed from the sacrificed animals were diced using
scissors. Tissue samples were suspended in 5 mL of digestion
buffer containing RPMI-1640 (Gibco), 2% heat-inactivated fetal
bovine serum (Gibco), 10 mM HEPES (Gibco), 1% penicillin-
streptomycin (Gibco), 400 U/mL of col lagenase D
(Worthington), and 0.01 mg/mL DNase I (Roche), and minced
using C-tube (MACS). The samples were incubated for 1 h at 37°C
with shaking at 200 rpm. The cells were collected in PBS containing
10 mM EDTA and centrifuged at 500× g for 5 min. The pellet was
resuspended in 1 mL RBC lysis buffer (Invitrogen) and incubated
for 1 min at room temperature (RT, 20°C). The cells were then
washed with PBS before use.

In Vitro Assays
Levels of TNF-a, IFN-g, IL-6, CCL2, IL-12p40 (Thermo Fisher),
and CXCL1 (R&D Systems) were measured using enzyme linked
immunoassay (ELISA) kits according to the manufacturer’s
instructions. Apoptotic cells in BALF were analyzed using the
Annexin V Apoptosis Detection Kit (Biogems) according to the
manufacturer’s instructions. Double-stranded DNA (dsDNA) in
BALF was measured using a DNA quantification assay kit
(Abcam) according to the manufacturer’s instructions.

mRNA Quantification
Total mRNA was extracted from the lung using TRIzol
(Invitrogen), and cDNA was synthesized using reverse
transcriptase (Promega) according to the manufacturer’s
instructions. The cDNA sequences were amplified using SYBR
Green pre-MIX (Promega). Target mRNA levels were
normalized relative to GAPDH mRNA expression. Primers
used for quantitative reverse transcription polymerase chain
reaction included those for GAPDH (forward, 5′-CAGCC
TCCAGATCATCAGCA-3′, reverse, 5′-TGTGGTCATG
AGTCCTTCCA-3′); Ifna4 (forward, 5′-TGATGAGCTACTAC
TGGTCAGC-3′, reverse, 5′-GATCTCTTAGCACAAGGA
TGGC-3′); and Ifnb1 (forward, 5′-CAGCTCCAAGAAAGGAC
GAAC-3′, reverse, 5′-GGCAGTGTAACTCTTCTGCAT-3′). All
primers were synthesized byMacrogen Inc. (Seoul, South Korea).

Plaque Assay
Whole lungs were removed from each mouse, weighed, and
homogenized in a 2 mL tube containing PBS and plastic beads.
The tissue samples were centrifuged at 12,000 rpm for 5 min, and
the supernatants were collected and stored at -80°C until use.
A549 cells were cultured in DMEM (Corning) supplemented
with 1× antibiotic-antimycotic (A/A) reagent (Gibco) and 10%
heat-inactivated fetal bovine serum, were seeded at 1 × 106 cells
August 2021 | Volume 12 | Article 697162
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per well in 6-well plates (Corning) 1 day before analysis. Samples
were serially diluted in 1 mL of DMEM supplemented with 1%
A/A and incubated with PBS-washed cells at 37°C and 5% CO2

for 1 h. The cells were washed with PBS and overlaid with
DMEM supplemented with 1% A/A and 1% agarose. After
incubation for 5 days at 37°C and 5% CO2, the overlay was
removed, and the cells were fixed in 4% formalin overnight at
RT. Fixed cells were stained with 1% crystal violet for 30 min at
RT and washed three times for 20 min each with 1% acetic acid,
and plaques were counted.

Western Blot
Lung tissue was lysed with protein extraction solution (iNtRON)
containing 1× protease inhibitor cocktail (Sigma) and 1×
phosphatase inhibitor cocktail (GenDEPOT). The lysates were
centrifuged at 4,000 rpm for 10 min, and the supernatants
were collected. Protein concentrations in the supernatants were
measured using a BCA protein assay kit (ThermoFisher).
Samples (30 mg) were loaded onto 10% polyacrylamide gels,
which were electrophoresed at 120 V for 90 min using a Mini-
PROTEAN Tetra Cell (Bio-Rad). The proteins were transferred
to nitrocellulose membranes using Trans-Blot SD (Bio-Rad) at
250 mA for 90 min. The membranes were blocked with 5% (w/v)
skim milk in 1× TBS-T (20 mM Tris base, 150 mM sodium
chloride, and 0.05% Tween-20, pH 7.6) prior to incubation with
mouse anti-mouse antibody or in 1× TBS-T containing 5% BSA
prior to incubation with rabbit anti-mouse antibody. The
membranes were incubated with primary antibodies, including
rabbit anti-STING (#13647, Cell Signaling), rabbit anti-phospho-
STING (#85735, Cell Signaling), rabbit anti-TBK1/NAK (#3013,
Cell Signaling), rabbit anti-phospho-TBK1/NAK (#5483, Cell
Signaling), rabbit anti-IRF3 (#4302, Cell Signaling), rabbit anti-
phospho-IRF3 (#4947, Cell Signaling), and mouse anti-b-actin
(sc-47778, Santa Cruz) according to the manufacturer’s
instructions. The membranes were washed three times for 20
min each with 1× TBS-T at RT and incubated for 2 h at RT with
goat-anti-rabbit-HRP-conjugated antibody, diluted 1:2500 in 1×
TBS-T containing 2.5% BSA, or mouse-anti-mouse-HRP-
conjugated antibody, diluted 1:5000 in 1× TBS-T containing
5% skim milk. The membranes were washed three times for 20
min each with 1× TBS-T at RT. Binding was detected using
chemiluminescent reagents (G-BIOSCIECNE) and captured
with PXi gel doc system (Biorad). Arbitrary units were
determined using ImageJ software (NIH).

Flow Cytometry
The collected lung immune cells were incubated with anti-CD16/
CD32 (2.4G2) and in the dark for 30 min at 4°C with various
combinations of fluorescent-conjugated antibodies against
CD11c (N418), CD11b (M1/70), F4/80 (BM8), Ly6C (HK1.4),
Ly6G (1A8), PDCA1 (HM1.2), CD45 (30-F11), CD3 (145-
2C11), CD4 (RM4-5), CD8 (53-6.7), CD19 (6D5), and NK1.1
(PK136) (all from BioLegend). DAPI or 7-ADD were used to
separate live and dead cells. The cells were sorted using a FACS
Verse flow cytometer (BD Bioscience), and the data were
analyzed with FlowJo version 10.5.3 software (BD Bioscience)
(Supplementary Figure 1).
Frontiers in Immunology | www.frontiersin.org 3
In Vivo Cell Depletion
Mice were injected intraperitoneally three times with 300 mg of
aNK1.1 (PK136) and 300 mg of aCD8 (Lyt2.1) 7 days before A/
PR8 infection. Mice were subsequently injected intraperitoneally
with 80 mg of aCD317 (PDCA-1) 1 day before and 6 and 13 days
after BLM treatment and 3 days after A/PR8 infection. All
depletion antibodies were purchased from BioXcell.
RESULTS

BLM Treatment Increases the Resistance
of Mice to Influenza Virus Infection
To test whether BLM-induced lung injury can affect
susceptibility to viral infection, female B6 mice were treated
with BLM (1 mg/kg) or PBS and housed for 14 days until their
body weight returned to normal. Groups of mice were then
infected with sub-lethal doses (1 × 103 PFU) of A/PR8; body
weight was then monitored daily for 8 days. A/PR8 infection
reduced the mean body weight by approximately 20% in PBS-
treated mice compared with a reduction of less than 5% in BLM-
treated mice (Figure 1A). To test whether BLM also induced
resistance to a lethal dose of A/PR8, mice were infected with 1 ×
105 PFU of A/PR8, and the survival of mice was monitored for 14
days. BLM-treated mice showed a higher survival rate (87.5%)
than PBS-treated mice (12.5%) (Figure 1B), indicating that BLM
induces resistance to both sub-lethal and lethal doses of A/PR8.
A/PR8 infection markedly increases the production of pro-
inflammatory cytokines and cellular infi l trates, and
consequently results in severe pulmonary inflammation with
cytokine storm (19). To test whether BLM treatment could
reduce A/PR8-mediated pulmonary inflammation, mice treated
with BLM or PBS were infected with sub-lethal doses of A/PR8,
and the concentrations of cytokines and the population of innate
immune cells were analyzed in BALF and lungs at 3 days post-
infection (d.p.i). The levels of TNF-a, IFN-g, CCL2, and CXCL1
were significantly lower in BLM-treated mice than those in PBS-
treated mice following A/PR8 infection. There was no significant
change in the level of IL-6 (Figure 2A), whereas the level of IL-
12p40 increased in BLM-treated mice than those in PBS-treated
mice (Figure 2A). The infiltration of neutrophils in the lung was
also significantly decreased in BLM-treated mice compared with
those in PBS-treated mice; however, the infiltration of monocytes
and the number of tissue resident alveolar macrophages were
comparable between BLM-treated mice and PBS-treated mice
(Figure 2B). Collectively, these results suggest that pretreatment
of mice with BLM attenuates influenza-mediated lung
inflammation and induces resistance to influenza infection
in mice.

BLM Treatment Exerts an Antiviral Effect
Through Type I IFN Receptor Signaling
Since BLM treatment increased the expression of IL-12p40, a
subunit of IL-12p70 (20), which activates natural killer (NK) cells
and cytotoxic CD8+ T lymphocytes (21, 22), we then confirmed
that these cells are associated with controlling influenza
August 2021 | Volume 12 | Article 697162
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infection. We used depletion antibodies to remove both NK and
CD8+ T cells, although this did not significantly affect the
susceptibility of BLM-treated mice to A/PR8 infection
(Supplementary Figure 2). These results indicate that
although NK cells and CD8+ T cells are important immune
cells for controlling viral infection, BLM-mediated attenuation of
influenza infection is not due to their increased activity.
Frontiers in Immunology | www.frontiersin.org 4
IFN-I is a major cytokine that inhibits viral replication by
inducing the expression of ISGs (23). To assess whether BLM
treatment affects IFN-I expression, IFN-I transcription was
analyzed in lung tissues of BLM- and PBS-treated mice 1 day
after infection with a lethal dose of A/PR8. The level of Ifna4
mRNA expression was higher in BLM-treated mice than that in
PBS-treated mice. In contrast, there were no significant
A B

FIGURE 1 | Bleomycin (BLM) treatment increases resistance to influenza virus infection. Mice were intranasally administered BLM or PBS 14 days before infection.
(A) Mice were intranasally infected with sub-lethal doses and body weights were monitored for 7 days (●, n = 2; ■, n = 3; ●, n = 8; ■, n = 11). (B) Mice were
intranasally infected with lethal doses, and survival rates were monitored (●, n = 4; ■, n = 4; ●, n = 8; ■, n = 8). Data are expressed as mean ± SEM and
representative of 2 independent experiments. Statistical analyses of body weight and survival rates were performed using Two-way ANOVA and the Mantel-Cox test,
respectively (*p < 0.05, ***p < 0.001).
A

B

FIGURE 2 | Proinflammatory cytokines and cells were decreased in BLM-treated mice after influenza virus infection. BLM-treated mice were infected intranasally
with sub-lethal doses and sacrificed 3 days later. (A) BALF was extracted and TNF-a, IFN-g, CCL2, CXCL1, IL-6, and IL-12p40 concentrations were measured by
ELISA (□, n = 4; ■, n = 4; ■, n = 8; ■, n = 7). (B) Absolute numbers of neutrophils, monocytes, and alveolar macrophages (AMs) in the lungs were analyzed by
FACS (□, n = 9; ■, n = 6; ■, n = 10; ■, n = 9). Data are expressed as ± SEM and representative of 2 independent experiment. Statistical analyses of column were
performed using One-way ANOVA (*p < 0.05, **p < 0.01, ***p < 0.001). ns, not significant.
August 2021 | Volume 12 | Article 697162
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differences in Ifnb1 transcription between PBS- and BLM-treated
mice (Figure 3A).

We then used IFNAR1-/- knockout mice to confirm the role of
IFN-I in antiviral effects after BLM treatment. Ablation of IFN-I
signaling nullified the effect of BLM pretreatment on antiviral
resistance as the pulmonary influenza burden was increased
following A/PR8 infection (Figure 3B). In addition, the
attenuation of A/PR8 infection-mediated weight loss was
reduced in IFNAR1-/- mice in the BLM-treated group
(Figure 3C). Similarly, treatment with IFNAR1 blocking
antibody (aIFNAR1) in BLM-pretreated mice infected with
sub-lethal doses of A/PR8 showed reduced body weight for 7
days, suggesting that BLM treatment did not inhibit influenza
infection (Figure 3D). These results suggest that BLM
pretreatment attenuates influenza virus infection by activating
IFN-I signaling in mice.

BLM Treatment Increased dsDNA Which
Activates the cGAS-STING Pathway for
IFN-I Production
BLM treatment induces apoptosis in alveolar epithelial cells and
leads to the release of apoptosis-induced DNA fragments (24,
25). Increased dsDNA binds to cGAS and activates the STING
pathway, which phosphorylates IRF-3 to produce IFN-I (26). We
hypothesized that BLM-induced self-DNA leakage activates the
cGAS-STING pathway, which results in enhanced IFN-I
Frontiers in Immunology | www.frontiersin.org 5
expression in response to further stimuli. BLM treatment
induced apoptosis of cells and increased dsDNA in the BALF
(Figures 4A, B). The levels of proteins downstream of the cGAS-
STING pathway were assessed in lung tissues of BLM- and PBS-
treated mice. Although the BLM treatment did not changed the
ratio of phosphorylated (p)-STING to total STING, expression of
STING, p-STING, p-TBK1, and p-IRF3 in lung tissue was clearly
elevated, suggesting that BLM treatment activates the cGAS-
STING pathway (Figure 4C).

To assess whether dsDNA-induced cGAS-STING pathway
enhanced IFN-I expression, the mice were treated with DNase I
after BLM treatment (Figure 5A). BLM-treated mice showed
increased Ifnb1 transcription at 7 days after treatment but co-
treatment with DNase I suppressed Ifnb1 transcription to the
level of PBS-treated control mice (Figure 5B). This observation
suggests that sensing the DNA in BLM treatment mice may
protect mice by inducing IFN-I. Indeed, BLM and DNase I-co-
treated mice showed significantly decreased body weight
compared to that of BLM control mice (Figure 5C).

pDCs Are Required for BLM-Mediated
Antiviral Activity
Alveolar epithelial cells, macrophages, and pDCs in the lungs
have been reported to produce IFN-I following infection with
influenza virus (27). pDCs are the major source of IFN-I in
response to viral infection or dsDNA (28). Thus, we assumed
A B

DC

FIGURE 3 | BLM treatment enables antiviral effects via an IFN-a-dependent manner. BLM-administered mice were intranasally infected with lethal doses and
sacrificed after 1 or 2 days post infection (d.p.i.) (A) Measurement of host Ifna4 and Ifnb1 mRNA at 1 d.p.i. by qRT-PCR (●, n = 8; ■, n = 8). (B) Viral activity of lung
tissue from BLM-treated wild type (WT) and IFNAR1-/- mice infected with a lethal dose at 2 d.p.i. using the A549 cell line (●; n = 4, ■; n = 4). (C) BLM-treated WT
and IFNAR1-/- mice were infected with 1 × 103 PFU and body weight was monitored for 7 days (●, n = 2; ■, n = 2; ●;, n = 6; ■, n = 8). (D) aIFNAR1 was
administered at -1, 2, and 5 d.p.i., and mice were infected with sub-lethal virus dose, and body weight monitored for 7 days (●, n = 3; ■, n = 3; ■, n = 4). Data are
expressed as mean ± SEM of representative of 1 experiment for (B, D) and 2 independent experiments for (A, C). Statistical analysis was performed for (A, B) using
t-tests and in (C, D) by Two-way ANOVA (*p < 0.05, ***p < 0.001). ns, not significant.
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that pDCs may up-regulate their activity by sensing self-DNA via
the cGAS-STING pathway (29). Although the total number of
pDCs was comparable in the lungs of mice obtained from 14
days after BLM or PBS treatment (Figure 6A), the depletion of
pDCs using anti-PDCA1 Ab substantially reduced resistance to
A/PR8 infection in BLM-treated mice (Figures 6B, C). Overall,
these results indicate that BLM treatment stimulates IFN-I
secretion in pDCs to enhance resistance to influenza virus
infection (Figure 7).
Frontiers in Immunology | www.frontiersin.org 6
DISCUSSION

Infection with influenza can damage alveolar epithelial cells,
induce ALI, and result in chronic inflammation and pulmonary
fibrosis (4, 30). However, it is unclear whether influenza virus
infection is detrimental to patients with ALI and advanced
idiopathic pulmonary fibrosis (IPF). Influenza virus has been
reported to aggravate IPF symptoms (31, 32), whereas other
studies found that the influenza virus was undetectable or
A B

C

FIGURE 4 | Bleomycin (BLM)-induced lung injury activates cGAS-STING pathway. Mice were administered BLM intranasally, and the lungs were analyzed after 7
days. (A) Apoptotic cells in BALF were measured using FACS (■, n = 4; ■, n = 4). (B) dsDNA in BALF was quantified (■, n = 4; ■, n = 4). (C) Immunoblots of
STING, p-STING, TBK1, p-TBK, IRF3, p-IRF3, and b-actin expression in lung homogenates and normalized expression of each of phosphorylated form to its total
form indicated (PBS, n = 3; BLM, n = 3). Data are expressed as ±SEM and representative of 1 experiment. Statistical analysis was performed using t-tests
(*p < 0.05, **p < 0.01). ns, not significant.
A B C

FIGURE 5 | DNase I treatment reduces IFN-I transcription and resistance to influenza virus infection in BLM-treated mice. (A) Mice were administered BLM
intranasally and DNase I intraperitoneally following the scheme. (B) Gene expression of Ifnb1 in lung was analyzed (●, n = 7; ■, n =7; ▲, n=7). (C) Body weight was
monitored for 7 days (●, n = 6; ■, n = 6; ■, n = 8). Data are expressed as ±SEM and representative of 2 independent experiments. Statistical analysis was
performed with One-way ANOVA for (B) and Two-way ANOVA for (C) (*p < 0.05, **p < 0.01). ns, not significant.
August 2021 | Volume 12 | Article 697162

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Seo et al. Lung Injury Enhances Antiviral Responses
A B

C

FIGURE 6 | pDCs contribute an antiviral effect after BLM-induced acute lung injury. Mice were sacrificed 14 days after BLM treatment. (A) Analysis of the number of
pDCs in the lung by FACS (●, n = 9; ■, n = 7). (B) aPDCA-1 and isotype were administered intraperitoneally (i.p.) to mice following the scheme; mice were then
infected with a sub-lethal virus dose intranasally (i.n.). (C) Body weight was monitored for 7 days (●, n = 5; ●, n = 6; ■, n = 4, ■; n = 5). Data are expressed as
mean ±SEM and representative of 2 independent experiments. Results in (A) were analyzed statistically using t-tests and in (B) using Two-way ANOVA (**p < 0.01,
***p < 0.001). ns, not significant.
FIGURE 7 | Bleomycin-induced lung injury releases self-DNA that activates cGAS-STING pathway. Activated cGAS-STING pathway affects to enhanced IFN-I
transcription, and pDCs are responsible for increased antiviral effects.
Frontiers in Immunology | www.frontiersin.org August 2021 | Volume 12 | Article 6971627
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asymptomatic in patients with IPF (33–35). The results reported
here suggest that asymptomatic or insignificant viral infection in
IPF patients is due to the enhanced antiviral immunity conferred
by increased IFN-I signaling.

DNA sensors, including cGAS-STING and TLR9, are crucial for
IFN-I-dependent antiviral responses (36, 37). In a pulmonary injury
model, the cGAS-STING pathway was reported to play a more
prominent role than that of TLR9 in the IFN-I response (6, 38).
DNA fragments leaked from damaged tissues activate STING
signaling, leading to the activation of the transcription factors
IRF3 and NF-kB, which are essential for IFN-I production (39).
Indeed, silica-induced injury results in self-DNA-mediated IFN-I
production in the lungs (6, 7). However, another study using a
cisplatin-induced renal fibrosis model showed that STING induced
NF-kB expression rather than that of IFN-I in an IRF3-independent
manner (40). In addition, tubular cell lines exposed to cisplatin
showed phosphorylation of TBK1 and p65 but not that of IRF3 (40).
The present study confirmed that BLM-induced pulmonary injury
employed activation of IRF3 downstream of STING activation.
Combined with the results obtained in the silica-induced lung injury
model, these findings indicated that ALI induced by BLM activated
STING/TBK1/IRF3 signaling, resulting in the production of IFN-I.
Increased ISGs are detected in tracheal samples of children with
ARDS and IPF patients (41, 42). Although the level of cGAS is
increased in IPF patients who have severe inflammation, the
association of STING/TBK1/IRF3 signaling in IPF disease
prognosis is not clearly reported (42). Activation of a number of
pathogen recognition pathways could increase STING production.
TLR9 is well known for recognizing self-DNA as well (43–47) that
might be related with increased STING production. Further study is
required to elucidate whether TLR9 and STING signaling are
associated with increasing STING production, which could
explain the STING and pSTING levels.

pDCs respond to pathogen-associated molecular patterns and
mainly produce IFN-I, triggering inflammation and immune
tolerance (28). pDCs also restrict viral replication by modulating
lipid biosynthesis or metabolism (48, 49). IFN-I modulates lipid
metabolism by increasing 2,5-hydroxycholesterol, which inhibits
viral replication (48, 50). pDC-derived IFN-I also enhances fatty
acid oxidation in non-hematopoietic cells that repress A/PR8
replication (51). These findings indicate that various IFN-I-
related functions are generally responsible for the antiviral
effects of pDCs. Although depletion of pDCs resulted in a
partial loss of protective antiviral effect, this may have been
due to other cell types that compensated for IFN-I production
after pDC depletion. While the influenza virus expresses non-
structural 1 (NS1) protein to counteract IFN-I and escape lipid-
dependent antiviral effects (52), the present study suggests that
pDC-derived IFN-I efficiently suppresses the replication of
influenza virus in BLM-induced ALI.

In general, cytotoxic lymphocytes are crucial for the removal
of invading viruses (53). However, in the present study, we found
that depletion of CD8+ T cells and NK cells had little effect on
viral clearance. Since induced IFN-I-controlled early virus
infection is more efficient in BLM-treated lungs, the role of
cytotoxic lymphocytes may be less prominent. Although CD8+ T
Frontiers in Immunology | www.frontiersin.org 8
cells and NK cells were not required for the antiviral effects of
BLM, recruitment of these cells was significantly enhanced in the
lungs of BLM-treated mice. CD8+ T cells and NK cells are the
lymphocytes most prominently recruited to the lungs to
attenuate BLM-induced pulmonary inflammation (54, 55).
Recruited lymphocytes stimulate fibroblasts to express more
collagen and contribute to tissue restoration (56). However, the
depletion of CD8+ T cells or NK cells did not significantly alter
the antiviral effect of BLM. Thus, the increased level of IL-12p40
in BALF after BLM treatment might be associated with the tissue
repair since IL-12p40 is one of subunits of IL-23. IL-23 promotes
differentiation of naïve CD4+ T cells to TH17 (20) which
produces diverse cytokines such as IL-17, IL-17F, IL-21 and
IL-22. Among them, especially, IL-17 promotes inflammation
and fibrosis to recover damaged tissue (57). It also increases
TGF-b, the master cytokine that causes lung fibrosis (58).

Type III interferon (IFN-l) is transcribed along with IFN-I
upon phosphorylation of IRF3 or IRF7, then binds to its receptor
IFNLR1/IL-10R2 that activates IRF9 to induce ISGs by
phosphorylating STAT1 and STAT2 as IFN-I does (59).
Although IFN-l shares the signaling cascade to express ISGs
with IFN-I, IFN-l has distinct role in controlling viral infection.
IFN-l is reported to regulate influenza virus A infection by
increasing basal ISGs gene expression in the absence of IFNAR1
and also induces resistance to sub-lethal influenza virus A
infection by attenuating IFN-I-induced excessive inflammation
(60, 61). In the current study, although IFN-l could also be
associated with the increased antiviral effects by BLM, the
blockade of IFANR1 in BLM-treated mice showed decrease in
BLM-induced viral resistance. However, further study is required
to identify the role of IFN-l in BLM-induced viral resistance.

Overall, these findings suggest that patients with ALI-induced
ARDS show attenuated symptoms in response to pulmonary
virus infection. In this respect, drug candidates that utilize
dsDNA to activate the STING/TBK1/IRF3 pathway may be
promising for controlling pulmonary virus infection.
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