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Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS)
and secondary reaction products for health benefit. The concomitant function of ROS as
intracellular second messengers and extracellular mediators governing physiological
redox signaling, and as damaging radicals instigating or perpetuating various
pathophysiological conditions will require selective strategies for therapeutic
intervention. In addition, the reactivity and quantity of the oxidant species generated, its
source and cellular location in a defined disease context need to be considered to achieve
the desired outcome. In inflammatory diseases associated with oxidative damage and
tissue injury, ROS source specific inhibitors may provide more benefit than generalized
removal of ROS. Contemporary approaches in immunity will also include the preservation
or even elevation of certain oxygen metabolites to restore or improve ROS driven
physiological functions including more effective redox signal ing and cell-
microenvironment communication, and to induce mucosal barrier integrity, eubiosis and
repair processes. Increasing oxidants by host-directed immunomodulation or by
exogenous supplementation seems especially promising for improving host defense.
Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and
acute inflammatory disease, and address emerging therapeutic strategies for ROS
augmentation to induce and strengthen protective host immunity.

Keywords: reactive oxygen species, NADPH oxidase, microbiota, host defense, immune signaling, redox medicine,
lactobacilli, glucose oxidase
INTRODUCTION

Reactive oxygen species (ROS) is a generic term referring to oxygen-derived compounds capable of
reacting with biological molecules through an oxidation-reduction (“redox”) mechanism. ROS include
a set of highly reactive radicals (e.g., superoxide anion, hydroxyl radical) as well as non-radical species
[e.g., hydrogen peroxide (H2O2)] produced enzymatically or chemically in eukaryotic and prokaryotic
cells. In mammals, one of the main intracellular sources of ROS is the mitochondrial electron
transport chain (ETC) during the establishment of the proton-motive force. Premature electron
leakage to molecular oxygen occurs mainly from complex I and III of the ETC during the serial
transfer of electrons, causing superoxide formation that is converted to H2O2 by superoxide dismutase
(SOD) (1, 2). In contrast to ROS generation as by-product of aerobic metabolism, of oxidation of fatty
acids or proteins, or of enzyme-substrate reactions (e.g., xanthine oxidase, lipoxygenase,
cyclooxygenase, monoamine oxidase), the NADPH oxidase family (NOX/DUOX) is solely
org June 2021 | Volume 12 | Article 6980421
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dedicated to ROS production and catalyzes the reduction of
molecular oxygen to superoxide or H2O2. Seven oxidase
isoforms have been characterized in humans, differing in their
catalytic core (NOX1-5 and DUOX1-2), their requirement for
additional components for complex stabilization and/or enzyme
activation, their subcellular localization and in tissue specificity
(3, 4). The NADPH oxidase prototype is the NOX2 enzyme, an
essential superoxide source for pathogen defense by neutrophils
and macrophages. The rapid increase of superoxide (‘respiratory
burst’) is accompanied by the formation of dismutation and
adduct products, including hypochlorite (generated by
myeloperoxidase, H2O2 and chloride ion) and peroxynitrite
(spontaneous reaction of superoxide with nitric oxide), both
strongly oxidizing and nitrating compounds that drive pathogen
killing in concert with activated proteases (5). Tight regulation of
ROS generation is essential, as ample and uncontrolled production
of highly reactive species over an extended time period will cause
irreversible redox modifications on biomolecules, thus promoting
oxidative damage.

ROS is not only produced during host defense or in
proinflammatory situations. Superoxide and H2O2 are
continuously generated, converted, and degraded in
physiological conditions (6, 7). H2O2 as a key intracellular
messenger mediating signal transduction in all cell types
maintains homeostasis and physiological host responses (8, 9).
H2O2-initiated redox signaling is essential for basic cellular
processes (e.g., proliferation, migration, secretion), thereby
supporting complex functions in mucosal immunity (e.g.,
barrier integrity, host-microbiota communication, host defense,
chemokine/cytokine generation, wound repair), driving innate
immune functions and regulating adaptive immunity. By
aquaporin-facilitated diffusion across the plasma membrane or
by release from intracellular organelles (e.g., redoxosomes,
microvesicles, mitochondria), H2O2 mediates directly or more
commonly via redox relays the reversible oxidation of distinct
amino acids, modifying the structure and function of targeted
proteins and consequently the activation state of the associated
signaling pathways. In mammals, thiol oxidation of certain
reactive cysteine residues occurs within redox-sensitive
proteins, including phosphatases and tyrosine kinases, leading
to activation or inactivation of the targeted protein (2, 10). Redox
signaling also drives the antioxidant response to prevent
excess ive ROS product ion. A notable condui t for
transcriptional activation of antioxidant genes is the KEAP1-
NRF2 pathway. H2O2-mediated oxidation of the redox-sensitive
adaptor KEAP1 disrupts its cytoplasmic complex with NRF2,
promoting nuclear translocation of newly synthesized NRF2
which will bind to antioxidant response elements (ARE)
located in the promoter region of NRF2 target genes such as
NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase
1 (HMOX1), glutamate-cysteine ligase (GCL) and glutathione S
transferases (GSTs) (11, 12).

Coupled oxidant-antioxidant pathways have been conserved
throughout evolution. For example, in bacteria dedicated
transcriptional regulators (e.g., OxyR, OhrR, PerR, SoxR) sense
ROS/RNS in order to induce an appropriate detoxification
Frontiers in Immunology | www.frontiersin.org 2
response (e.g., radical scavenging and metal sequestrating
systems), and to maintain intracellular oxidant levels within a
safe limit (13, 14). The H2O2 sensing transcriptional regulator
OxyR is a well-studied example in mainly Gram-negative
bacteria. When intracellular H2O2 exceeds a certain threshold
in Escherichia coli [~ 0.1-0.2 µM (15, 16)], oxidation of OxyR on
two cysteine residues prompts a conformational change due to
intramolecular disulfide bond formation, activating the
expression of OxyR-dependent antioxidant defense genes (17,
18). At mucosal surfaces physiological H2O2 levels mediate the
intricate redox communication between commensal
microorganisms and the host barrier tissue. For instance,
bacteria can induce or hinder physiological host signaling,
either by releasing H2O2 in the vicinity of host epithelia (e.g.,
lactobacilli) or by altering host enzyme-mediated ROS
generation via secreted compounds or physical interaction
with epithelial barrier cells (19–21). Likewise, H2O2 released by
host cells can alter bacterial signaling in response to a pathogenic
insult, particularly in low oxygen environments (22, 23).

It is important to distinguish these beneficial redox-mediated
mechanisms supporting health from conditions promoting
supraphysiological level of ROS and the resulting oxidative
damage. To ensure physiological conditions, the activation of
NADPH oxidases is usually regulated by multiple inputs (e.g.,
transcriptional, posttranslational, metal ions, nucleotides) and
ROS generation is coupled with decomposing and scavenging
systems (e.g., catalase, peroxidases, antioxidants) (2, 4, 21, 24).
Ongoing perturbation of ROS levels, either at high or low range,
has been associated with various pathophysiological states.
Persistent increase of highly reactive species (e.g., superoxide
anion, hydroxyl radical, peroxynitrite) has been associated with
chronic inflammatory and hyperglycemic (e.g., rheumatoid
arthritis, inflammatory bowel diseases, type 2 diabetes),
tumorigenic and neurological (e.g., Parkinson’s, Alzheimer’s)
diseases. Therapeutically decreasing ROS levels by non-specific
enzyme inhibitors or antioxidants has been pursued for many
decades (25, 26). However, the ill-defined and generalized action
of these molecules limits their efficacy and, in some cases,
exacerbated the underlying condition (27–32). More targeted
approaches, namely inhibition of a specific ROS source, may
provide more benefit. Conversely, permanently decreased ROS
generation due to loss-of-function variants in genes encoding for
NADPH oxidases or other ROS sources, or in genes providing an
essential upstream trigger for a superoxide/H2O2 generating
enzyme, have been linked to various pathologies, including
recurrent microbial infections, chronic inflammatory diseases,
and autoimmunity (33). In this case, a strategy to restore or
enhance ROS may prove beneficial.

Understanding redox regulation of vital physiological
processes and how alterations initiate or perpetuate disease is
important for developing new therapeutic avenues. In addition
to traditional therapeutic strategies aimed at counteracting
excessive ROS, contemporary approaches should include
preservation or even the elevation of certain oxygen
metabolites for physiological purposes. This review will
provide selected examples of beneficial ROS in protective host
June 2021 | Volume 12 | Article 698042
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immunity and will discuss emerging therapeutic strategies to
preserve or augment ROS with the aim of re-establishing
homeostasis and promoting host protection.
IMPORTANCE OF OXIDANTS IN
PROTECTIVE IMMUNITY

Homeostatic Redox Signaling
Physiological ROS levels modulate many immune functions by
redox-sensitive signaling. Not only H2O2, but also related second
messengers such as nitric oxide and possibly peroxynitrite
control signaling responses and thus these short-lived
molecules represent an integral part of immune regulation
(34–37). All redox-regulated pathways show analogous
features, namely inhibitory or activating modifications on
proteins and lipids (10, 38, 39), and are conserved across
different cell types and organisms. Redox modifications can
constrain or stimulate signaling pathways. An example for
inhibitory oxidative modifications is dual specificity
phosphatase 1 (DUSP1) which will be degraded after oxidation
or S-glutathionylation of an active site cysteine, resulting in
prolonged MAPK-induced proinflammatory gene transcription
(40). Reversible oxidative inactivation of protein tyrosine
phosphatase 1B (PTP1B) amplified interleukin (IL)-4 receptor
activation (41). On the other hand, redox-dependent oxidation
of two cysteine residues in the tyrosine kinase SRC caused
structural changes that impacted regulatory tyrosines, enabling
SRC kinase activation (42). In airway epithelial cells, epidermal
growth factor receptor signaling was linked to activation of the
NADPH oxidase DUOX1 and subsequent SRC oxidation (43).
Kinase activation can also occur by oxidation-driven dissociation
of an inhibitor-protein kinase complex as demonstrated for the
complex between thioredoxin and apoptosis signal-regulating
kinase 1 (ASK1) (44). The liberated form of ASK1 will then form
multimeric complexes with other signaling mediators and
positively regulate JNK/p38 MAPK pathways, while itself being
further controlled by dephosphorylation and deubiquitination
(45). More examples and details on redox regulation of signaling
pathways can be found in recent reviews (1, 46).

The initiation of redox signaling occurs mainly after ligand
stimulation of receptors (e.g., Toll-like receptors (TLR), G
protein-coupled receptors (GPCR), NOD-like receptors (NLR),
Fc receptors, chemokine and cytokine receptors, and others) and
may include one or several ROS sources concomitantly or
consecutively, depending on the context. For instance, redox
regulation triggered by TGF-b involves the NADPH oxidase
NOX4 as well as mitochondrial ROS (mROS) (47). NADPH
oxidases seem to be closely associated with TLR-stimulated
pathways where oxidase deficiency either inhibits or enhances
host cell responses. Loss of NOX1 in smooth muscle cells
increased TLR2-mediated MIP-2 generation but impeded
matrix metalloprotease 2 secretion and directed cell migration
(48). In epithelial cells NOX4 was reported to associate with
TLR4, regulating the transcription factor NF-kB (49). Loss-of-
Frontiers in Immunology | www.frontiersin.org 3
function mutations in any of the five subunits comprising the
NOX2 complex cause the inherited immunodeficiency chronic
granulomatous disease (CGD) (33, 50). One of the effects of
CGD in the immune system is the altered responsiveness to TLR
ligands, resulting in augmented cytokine generation and
hyperinflammation. Neutrophils, monocytes, and dendritic
cells isolated from CGD patients or Nox2 deficient mice
generated increased levels of cytokines upon TLR2 or TLR4
stimulation (51–54). A hyperinflammatory phenotype with
excessive secretion of pro- and anti-inflammatory cytokines
was also observed in CGD B lymphocytes stimulated with
TLR7 and TLR9 agonists (55). This cytokine overproduction
was associated with hyperactivation of p38 MAPK signaling,
which may indicate loss of inhibitory feedback signaling, likely
involving phosphatases, when the NOX2 enzyme is inactivated.
Increased levels of IFNg and IL-18 in CGD patient tissues was in
part traced to macrophages remaining in a proinflammatory M1
state (56). Innate immune cells derived from CGD patients or
mice also showed an exuberant IL-1 response to various
inflammasome activating stimuli, while the NRF2-controled
ant ioxidant response was dampened (57–59) . The
hyperinflammatory CGD phenotype in mice and man is
intensified by increased neutrophil recruitment to sites of
infection and tissue damage, which was recently linked to feed-
forward amplification of neutrophil generated leukotriene
B4 upon pulmonary zymosan challenge (60). Hence,
deficiency in NOX2 enzyme activity creates a proinflammatory
environment that is associated with several chronic
inflammatory conditions and can predispose to autoimmune
disease (61). The molecular mechanisms underlying various
facets of CGD hyperinflammation are still not resolved, but
NOX2-derived superoxide seems to be required for the precise
regulation of many immune cell functions including gene
transcription, autophagy, efferocytosis, and dendritic cell-
mediated antigen presentation (61–64).

In recent years, the role of mROS signaling in regulating both
innate and adaptive immunity received increased attention (65,
66), although in many cases molecular mechanisms are not well
characterized and mROS participation in signaling is mainly
inferred by using mitochondria-targeted ROS probes and/or
antioxidants. Chandel and coworkers linked early on a TNF
receptor-TRAF pathway to an increase in mROS (67), and by
now many different stimuli are recognized as triggers of
physiological mROS generation (6). Here we summarize recent
insights into mROS-mediated immune cell responses. Signaling
cascades driven by TLRs stimulate not only NADPH oxidase
activity, but also via TRAF6 the mitochondrial matrix protein
ECSIT that stimulates superoxide production from ETC complex
I (68). Others reported recently that pro-inflammatory cytokine
secretion by Listeria monocytogenes-infected macrophages is
contingent on mROS-induced disulfide bond formation in the
IKK complex regulator NEMO (69). Activation of the NLRP3
inflammasome by pathogen-associated or danger-associated
molecular patterns (PAMPS/DAMPS) is controlled by mROS,
resulting in release of the proinflammatory cytokines IL-1b and
IL-18 (70, 71). The precise sequence of events that may include a
June 2021 | Volume 12 | Article 698042
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transcriptional priming step, oxidized mitochondrial DNA, and
mROS-dependent interaction of NLRP3 with thioredoxin-
interacting protein is not yet fully established (72). In
macrophages NLRP3 inflammasome activation required
xanthine oxidase generated superoxide upstream of mROS
generation (73), while studies in superoxide deficient
peripheral blood mononuclear cells derived from CGD patients
revealed that NOX enzymes are not required for NLRP3-
mediated IL-1b secretion (74, 75). Cytosolic retinoic acid-
inducible gene I (RIG-I)-like receptors such as RIG-I and
MDA5 sense and bind distinct features of viral RNA, then
oligomerize, and associate with the adaptor protein MAVS at
outer mitochondrial membranes and mitochondria-associated
membranes. Oligomerization of MAVS recruits several effector
proteins to form the MAVS signalosome, driving IRF3/IRF7-
mediated transcription of type I/III interferon and NF-kB-
induced proinflammatory cytokine expression. MAVS
expression has been linked to NOX2 generated superoxide
(76), while others reported functional interactions involving
MAVS aggregation, mROS generation, and the cytochrome c
oxidase component COX5B that couple the antiviral response to
autophagy (77). The NLR family member NLRX1 cannot only
interact with MAVS at the outer mitochondrial membrane but is
also localized within the matrix and inner membrane of
mitochondria where interaction with the ETC complex III
associated protein UQCRC2 promotes mROS generation,
thereby stimulating transcription factors and JNK MAP kinase
(78). The signaling function of the immune response-induced
mitochondrial interactome is clearly connected to mROS
generation, in physiological and pathophysiological conditions,
and many more aspects of mitochondrial immune signaling and
connections between different ROS sources influencing each
other in these processes can be expected in the future.

Mucosal Barriers and Oxidants
The mucosal immune system in lung, gastrointestinal tract (GIT),
urogenital tract, oral and nasal passages employs structural,
chemical and immunological barriers to control the interaction
with the adjacent microorganism- and noxious substance-rich
environment. The importance of mucosal barriers as host defense
mechanism is reflected in these multiple layers of protection
together with the constant renewal of barrier epithelia, specialized
protective measures such as secretion of mucins or surfactant, and
highly efficient repair mechanisms. Superoxide and H2O2,
generated by host enzymes or commensal bacteria, are crucial
for various aspects of mucosal barrier maintenance as outlined
here in selected examples.

The structural integrity of mucosal epithelial barriers relies on
intercellular junctions, in particular tight junctions, and after a
breach occurred, on rapid proliferation and migration of
epithelial cells for wound repair. ROS regulate cytoskeletal
dynamics such as oxidative modification of b-actin and
tubulin, RhoA GTPase activation and deactivation depending
on the context, redox-induced integrin and focal adhesion kinase
(FAK) activation and oxidative modifications on other proteins
involved in cytoskeletal rearrangements (79, 80). As many of
Frontiers in Immunology | www.frontiersin.org 4
these physiological processes have not yet been conclusively
linked to a particular ROS source or studied in epithelial
barriers, we will present here only results that identified the
enzyme involved, were obtained by multiple approaches and if
possible in vivo. In the GIT, superoxide produced by NOX1
controls colon epithelial cell proliferation and migration, in part
by enhancing FAK phosphorylation due to oxidative inactivation
of the tyrosine phosphatases LMW-PTP and SHP-2 that will
initiate focal adhesion turnover, accelerate cell migration, and
improve wound closure (81–85). Others reported NOX1-
mediated oxidation of nucleoredoxin that released suppression
of the canonical WNT-b-catenin pathway, resulting in
transcription of growth promoting genes (86, 87). In airway
epithelial cells DUOX was localized at the leading edge of
migrating cells, augmenting wound healing (88). DUOX1
generated H2O2 regulated cell migration and epithelial repair
in cells and in a naphthalene airway injury model by promoting
epidermal growth factor receptor (EGFR)-STAT3 signaling
(89, 90).

An important part of the physical gut barrier is the protective
mucus layer, either single-layered in the small intestine and
pulmonary tract, or 2-layered with a dense, impenetrable layer
followed by a loose layer in the colon. Mucus is secreted and
continuously renewed by goblet cells and is composed of mainly
MUC2 mucin in the intestine, MUC1, MUC5AC and MUC6
mucins in the stomach, and MUC5AC and MUC5B mucins in
the lung epithelium (91). NADPH oxidase generated H2O2 has
been linked to intestinal mucin granule release by pathways
involving endocytosis, autophagy, and NLRP6 signaling (92, 93).
A severe colonic phenotype with partial loss of the dense mucus
layer was only observed in mice with combined inactivation of
Nox1-3 but not in single oxidase knockout mice (94), likely due
to in vivo compensation by another oxidase (or ROS source) or
by H2O2 producing lactobacilli colonizing the mucus layer. In
the airways EGFR and IL-13 signaling promoted mucin gene
induction (MUC5AC, CLCA1) viaDUOX1 (95, 96), while others
reported a TLR5-DUOX2 pathway regulating MUC5AC
expression in nasal epithelium (97).

The structural reinforcement of the intestinal barrier is
accompanied by chemical and immunological secretions.
Immunological secretions are immunoglobulin A (sIgA) and
various other antimicrobial factors including lysozyme,
regenerating islet-derived proteins 3, and cationic peptides
such as cathelicidins or defensins. Cationic peptides range
from a-helical (e.g., LL-37) to b-sheet (e.g., b-defensins)
conformation or random-coil structures and exert their activity
by bacterial membrane disruption and immunomodulatory
effects on host cells (98, 99). While their synthesis or secretion
has not been linked to a ROS source, the proper folding of some
bioactive cysteine-rich peptides such as b-defensin 3 require the
oxidative formation of several disulfide bridges (100). Lipocalin-
2 (LCN-2), secreted by intestinal epithelial cells or released from
neutrophil secondary granules, is often used as a biomarker of
inflammatory processes, but also limits bacterial growth by
binding iron-loaded siderophores (101, 102). A recent report
connected LCN-2 expression via atypical IkBz-dependent gene
June 2021 | Volume 12 | Article 698042
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transcription to NOX1 activity in colonic epithelial cells and
mice (103).

Mucosal barriers generate and release chemical compounds
such as superoxide, H2O2, nitric oxide and peroxynitrite when
pathogens or danger-associated molecules trigger host cell
responses. These chemicals may also be released constitutively
at low concentrations as repellent against commensal
communities, promoting a mutualistic host-microbiota
relationship essential for immunity (21, 104). This is supported
by reports that enteric bacteria regulate NADPH oxidase activity
by relatively undefined pathways (85, 105, 106), and vice versa
that ROS generated by mitochondria or epithelial cells control
the microbial population, thereby limiting the access of the
microbiota to the immune compartment (19, 107). This
scenario likely takes place in the small intestine with its loose,
single mucus layer and may involve the oxidase DUOX2.
DUOX2 expression is upregulated by microbiota, and its
localization at the apical surface of villi is ideally suited for
H2O2 release, thereby reinforcing the separation of host and
microbial communities (19). Additionally, peroxynitrite
generated by the combined activation of NOX1 and NOS2
may participate in the control of ileal homeostasis (108, 109).
Similarly, H2O2 release by DUOX1/DUOX2 and subsequent
lactoperoxidase-mediated conversion to secondary oxidants
(i.e., HOSCN) may repel bacteria in the airways (110).
Influenza A virus (IAV) infection stimulated H2O2 release
from air-liquid interface cultured primary human airway
epithelial cells in a calcium/flavoenzyme dependent manner,
suggesting DUOX activation (111).

Chemical messengers are ideally suited to relay signals from
the host to the microbiota and vice versa. This interkingdom
communication will shape microbiota diversity and composition
and provides a stimulus for homeostatic barrier host responses.
While aberrant ROS production in inflammatory disease will
increase the abundance of certain bacterial communities and
may lower overall diversity, decreased levels or loss of NADPH
oxidase-generated ROS, as observed in certain patient
populations, will also favor dysbiosis, indicating that a tightly
balanced mucosa-associated microenvironment is indispensable
for gut homeostasis. While CGD is mainly associated with
recurrent life-threatening infections, 40-50% of these patients
will develop inflammatory bowel disease with some features of
Crohn’s disease. When comparing the microbiota of CGD
patients to healthy individuals an increased abundance of
mucus foraging Ruminococcus gnavus was noted (112). This
study included only a limited number of patients (10 individuals)
and might be skewed due to the required antibiotic maintenance
of these patients. In a CGD mouse model (i.e., p47phox

deficiency) the microbiome signature was altered by high
abundance of Akkermansia muciniphila (113). This mucolytic
bacterium is considered a beneficial probiotic, but can also
disturb mucus homeostasis in the host, thereby acting as a
pathobiont or aggravating inflammation induced by intestinal
pathogens (114–116). In the ileum of Nox1 knockout mice
increased abundance of Bifidobacteria and Turicibacter was
detected (117). Global inactivation of the oxidases Nox1-3 in
Frontiers in Immunology | www.frontiersin.org 5
mice (Cybanmf333) resulted in increased abundance of
Proteobacteria, Ruminococcaceae and Mucispirillum schaedleri
(94). An increase of M. schaedleri was also noted in mice with
combined Nod2/Nox2 deficiency (118). This mucus dwelling
bacterium interfered with Salmonella enterica serovar
Typhimurium virulence factor expression and decreased
pathogen invasion in wildtype mice (119), but it also promoted
inflammation in Nod2/Nox2 double knockout mice. Inactivation
of all four murine Nox enzymes by global or intestinal epithelium
restricted deletion of the essential Nox partner protein p22phox

(Cyba-/-, CybaVil-cre) induced compensatory upregulation of H2O2

producing lactobacilli as a host protective, mutualistically
beneficial mechanism (120). These results in mice suggest that
H2O2 generation, mucus changes and overgrowth of mucus-
dwelling or mucolytic bacteria are closely linked. Thus, ROS
maintain and protect the stable microenvironment required for
balanced and interconnected host-commensal cooperation and
homeostatic barrier function.

Specialized Roles of Oxidants in Innate
Immune Cells
Macrophage Polarization
The versatile role of ROS in regulating the intracellular
signalosome in a constantly evolving microenvironment
underpins their role in promoting polarization of immune cell
populations and supporting specialized functions. A pertinent
example is altering the polarization and activation state of
macrophages in the broad categories of M1 (classical) and M2
(alternative), categorized by a proinflammatory, host defense
connected phenotype versus an anti-inflammatory, tissue
remodeling phenotype (121). NOX2 is expressed in M1 and
M2 macrophages and regulates the transition between
phenotypes in a context dependent manner. Nox2 deficient
bone marrow derived macrophages (BMDM) upregulated
STAT3 activation and anti-inflammatory cytokine expression
(i.e., IL-10), while others reported no differences between
wildtype and Nox2 knockout M2 macrophages (122, 123).
Conflicting results in the literature stem likely from the range
of protocols used for macrophage differentiation (e.g.,
conditioned media versus recombinant GM-CSF or M-CSF for
various time periods, LPS content of fetal bovine serum) and the
inclusion or omission of further Th1 or Th2 type polarization.
M1 polarized BMDM express not only Nox2 but also Nox1
(124). When M-CSF differentiated BMDM or peritoneal
macrophages derived from wildtype, Nox1, Nox2 or Nox1/
Nox2 knockout mice were further polarized by LPS+IFNg or
IL-4+IL-10, only Nox1/Nox2 deficient macrophages exhibited
reduced M2-type polarization while M1 polarization and pro-
inflammatory functions were preserved (123). Expression of
Nox4 in macrophages and its downstream effects seem to be
determined by the microenvironment. Using a similar M1/M2
polarization protocol as described above Helfinger and
coworkers observed in Nox4 deficient mouse macrophages
amplification of the M1 phenotype, suggesting an anti-
inflammatory role for Nox4 (125). On the other hand, NOX4
expression was induced in human monocyte-derived
June 2021 | Volume 12 | Article 698042
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macrophages by low-density lipoprotein (OxLDL) that
stimulates a pro-inflammatory response (126), and in
profibrotic M2 alveolar macrophages (127). A mechanistically
poorly defined link between NOX4 and mROS has been
proposed (i.e., ROS-induced ROS) that could play a role in
conferring the divergent metabolic signatures observed in M1
versus M2 macrophage polarization (127–131). H2O2-mediated
intercellular communication between various innate immune
cells can also drive macrophage skewing. In vivo phenotypic
conversion of pro-inflammatory to pro-resolving macrophages
was dependent on neutrophil Nox2 and H2O2 generation,
further confirming that activated neutrophils contribute to
resolution of inflammation (132–135). While less characterized,
neutrophils can, analogous to macrophages, polarize towards
distinct phenotypes. N1 and N2 neutrophil populations are
mainly defined by their functional phenotype with N1
considered pro-inflammatory and anti-tumorigenic, and N2
pro-tumorigenic. A role for ROS in this phenotypic conversion
has not yet been defined.

Dendritic Cell Function
Dendritic (DC) cells are antigen-presenting cells that are
essential for inducing naïve T cell activation and effector
differentiation. After taking up antigens and microbes by
phagocytosis or endocytosis DCs generate MHC peptide
complexes. For activation of CD4 + T helper cells, antigens are
degraded in lysosomes for MHC class II presentation, while
activation of CD8 + cytotoxic T cells requires that antigens are
presented in MHC class I by cross-presentation that occurs via
lysosomal and cytosolic pathways. Interaction of mature DCs
with T cells takes place in secondary lymphoid organs such as
lymph nodes, spleen, and Peyer’s patches, initiating adaptive
immune responses (136). Superoxide production by NOX2 is an
intricate part of antigen processing, generation of MHC-peptide
complexes and cross-presentation. Work by Amigorena and
coworkers revealed that active NOX2 regulates the phagosomal
pH in DCs by sustained superoxide generation, maintaining it
close to the optimal pH 7.4 despite of proton import by V-
ATPase. In DCs derived from CGD patients or CGD mice the
phagosomal pH acidified and the cross-presentation of antigens
was impaired (137, 138). In addition, NOX2 activity preserved
antigens from proteolysis by inhibiting endosomal and lysosomal
proteases via oxidation (139). Recent work connected NOX2 to
antigen release from the endocytic lumen into the cytosol during
cross-presentation. NOX2-derived superoxide caused lipid
peroxidation, thereby disrupting membranes to enable antigen
leakage from endosomes, a process that was impaired in DCs
derived from CGD patients (140). Further study of a specialized
subset of DCs, plasmacytoid DCs (pDCs), distinguished from
conventional DCs by morphology and function, revealed that in
this cell type antigen protection and cross-presentation is Nox1-
and Nox2-independent. Here, mROS generated by pDCs after
TLR7 stimulation promoted antigen cross-presentation and the
capacity to trigger CD8+ T cells responses, as well as facilitating
additional functions such as IFN-a production (141). Antigen
presentation is also linked to macroautophagy that serves not
only as mechanism for nutrient recycling and host defense
Frontiers in Immunology | www.frontiersin.org 6
against intracellular bacteria, but also for presenting MHC II
molecules to CD4+ T cells. Recruitment of autophagy proteins to
phagosomal membranes occurs when antigens are recognized by
immune receptors such as TLRs, FcRs or dectin-1, resulting in
LC3-associated phagocytosis (LAP) (142, 143). LAP requires
NOX2-generated superoxide for recruitment and lipidation of
the autophagy protein Atg8/LC3 to phagosomes, and fungal
antigen storage in innate immune cells was compromised in
CGD patients (144, 145). NOX2 activity was also involved in
antimicrobial LAP in endothelial cells (146). Autophagy
processes involved in cellular maintenance seem to be coupled
to oxidase-derived ROS in many cell types including to NOX4 in
cardiomyocytes and to a NOX family member in goblet cells (92,
94, 147), but putative ROS source(s) facilitating pathogen uptake
due to LAP or other processes in epithelial cells, an important
consideration for mucosal barrier host defense, have not yet
been defined.

Host Defense and Oxidants
Respiratory and intestinal barrier epithelia are the first line of
defense against airborne or foodborne pathogens. When the
initial protective mechanisms (e.g., colonization resistance,
antimicrobial secretions, mucus layer) have failed, epithelial
sensing pathways will be activated. In the mucosal
compartment, sensing of conserved microbial motifs by
epithelial cells induces ROS production due to upregulation
and/or activation of mucosal NADPH oxidases (e.g., DUOX1/2
in airways, NOX1/DUOX2 in GIT) that participate in the
antimicrobial response (97, 110, 148–150). Transient or stable
expression of the NOX1 or DUOX2 complex in several epithelial
cell lines decreased pathogen attachment and invasion without
affecting bacterial viability (151, 152). NOX1 or DUOX2
mediated H2O2 release interfered with the pathogenicity of
bacteria by inducing irreversible oxidative modifications in
bacterial enzymes and proteins essential for maintaining
virulence factor synthesis (22, 23). Duox inactivation in mice,
achieved by deleting the essential partner protein Duoxa,
increased gastric colonization with Helicobacter felis, reflecting
the protective effect of H2O2 in host defense (153). Infection of
these mice with Salmonella Typhimurium augmented systemic
dissemination of the pathogen, suggesting that Duox is an
integral component of the protective mucosal barrier in the
small intestine (19). In murine airways Duox silencing
increased the Influenza A virus (IAV) load by interfering with
viral replication, at least in part by affecting the nuclear splicing
machinery and assembly of virions (111). Recent studies in
DUOX2 knockdown primary human nasal epithelial cells and
in Duox2 inactivated mutant mice linked this oxidase isoform
further to IAV host defense (154). Nox1 has also been connected
to host protection in IAV infection as Nox1 deficiency resulted in
increased chemokine and proinflammatory cytokine generation,
and extensive 3-nitrotyrosine modification of murine lung tissue
(155). In IAV infected mouse macrophages Nox2-derived
endosomal ROS caused suppression of TLR7-dependent
antiviral cytokines, suggesting distinct roles of phagocyte Nox2
(i.e. detrimental) in contrast to a beneficial role of Nox1 during
IAV infection (156).
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Pathogen recognition by epithelial cells induces chemokine
production, leading to the recruitment of neutrophils and
macrophages to the site of injury. Innate immune cells engage
in proteolytic and oxidative killing of pathogens, mainly
mediated by secondary reactive species such as hypochlorous
acid and peroxynitrite that rely on NOX2, mitochondria,
myeloperoxidase and iNOS (157–159). Superoxide generated
by NOX2 is essential for host protection against pathogens, as
mutational inactivation of NOX2 complex subunits, a
characteristic feature of CGD patients, profoundly impedes the
ability to clear certain bacterial and fungal infections (160).
Studies using murine CGD hosts have advanced our
understanding of the mechanisms associated with host
protection by Nox2 that seem to depend on the pathogen and
the microenvironment encountered. For instance, intestinal
colonization by Salmonella Typhimurium was increased in
streptomycin pretreated Nox2 deficient mice (i.e., Cybb-/-)
(161). Conversely, these mice were not more susceptible to
infection with the murine pathogen Citrobacter rodentium
(120). Superoxide produced by Nox2 played only a minor role
in protection againstMycobacterium tuberculosis (Mtb) infection
in contrast to reactive nitrogen species (RNS)-associated
immunity, which seems preponderant in the control of murine
lung infection with Mtb (162–165). Evasion of ROS-mediated
killing (mROS and Nox2) was recently associated with Mtb
virulence factor secretion and macrophage fatty acid
catabolism, thereby improving mycobacterial survival in
macrophages (166, 167).

These observations support the idea of a complex interaction
between antimicrobial ROS, environmental factors, and
virulence mechanisms employed by pathogens (e.g. ,
detoxification enzymes), all impacting infection outcome and
host protection (168). Redox-dependent mechanisms triggered
by pathogen recognition in innate immune cells include the
pathogen itself (e.g., size, type), and driving superoxide
production in the appropriate subcellular compartment (e.g.,
phagosome, endosome, extracellular environment) by a specific
source (e.g., NOX2, mitochondria) (169, 170). Upon pathogen
uptake the phagosome is the main compartment where primary
and secondary ROS accumulate in high concentrations.
Assembly and activation of NOX2 at the phagosome
membrane triggers the so-called ‘phagocyte oxidative burst’
that together with proteases supports killing of bacterial and
fungal pathogens. In addition to phagosomal NOX2 activity,
bactericidal ROS generation in the phagosome is maximized by
mitochondria, with both ROS sources cooperating in pathogen
killing (171). Mitochondria are recruited to the phagosome of
infected macrophages, where they deliver mitochondria-derived
effector molecules, including mROS in mitochondria-derived
vesicles, to support intraphagosomal killing of pathogens (68,
172–174). Mitochondria mobility to the phagosome is promoted
by the protein kinases Mst1/2. Upon phagocytosis, TLR-
mediated signaling activates Mst1/2, triggering a TRAF6-Rac
signaling axis involved in cytoskeletal rearrangements (172). The
NOX2 complex localizes also to the plasma membrane, where it
releases superoxide into the extracellular space in response to
Frontiers in Immunology | www.frontiersin.org 7
microbial patterns or large microorganisms that cannot be
classically engulfed by phagocytic cells.

Neutrophils employ as additional host defense mechanism
the release of nuclear chromatin, forming neutrophil
extracellular traps (NETs). NETs act as defense mechanism
against pathogens via entrapment and antimicrobial activity
(175, 176). The sequence of events for NET formation is not
completely defined (177), but it appears that NET release can be
triggered in a ROS dependent or independent manner according
to the pathogen or stimulus encountered (178–180). Neutrophils
derived from CGD patients show an impairment in NET
formation and ineffective control of Aspergillus species in the
airways, leading to invasive aspergillosis. The importance of a
functional NOX2 complex in restricting A. nidulans conidia and
hyphae by NET formation was confirmed in a CGD patient
undergoing gene therapy (181). The real-life situation of the
severely compromised host immunity in CGD emphasizes the
importance of ROS in host defense and serves as a reminder that
certain disorders or disturbed mucosal environments may
greatly benefit from improving oxidant production.
IMPROVING ROS LEVELS AS
THERAPEUTIC INTERVENTION

In pathological conditions ROS have been linked to ‘oxidative
stress’ for decades. Oxidative stress is often retrospectively
inferred when observing oxidatively modified proteins, lipids
and DNA, yet without definite identification of the ROS
generating enzyme(s) involved or how the damaging sequence
of events was initiated. Moreover, several disease-causing genetic
variants and disease-associated genetic risk factors have shed
light on the harmful consequences of insufficient ROS
production for H2O2-induced oxidative modifications, redox
signaling and host defense (e.g., CGD, hypothyroidism,
inflammatory bowel disease) (33). To date most strategies
targeting oxidative stress (i.e., antioxidant therapy) are based
on the delivery of ROS scavengers, ROS converting or degrading
compounds or on non-selective enzyme inhibitors to protect
tissues and organs, but clinical results of antioxidant treatments
in inflammatory diseases have so far been disappointing (182–
184). More recently, treatments aimed at generating excessive
concentrations of ROS or at inhibiting cellular antioxidant
defense systems at a designated target location (i.e., prooxidant
therapy) have been developed to promote cancer cell death or
antimicrobial killing through oxidative damage (185, 186). In
contrast, ROS/redox-modulating therapies take a different,
nontraditional approach. The goal of this strategy is a middle
path intended to restore physiological levels of primary ROS
(superoxide, H2O2) or, in certain circumstances, to moderately
augment beneficial oxidants. This approach will require
innovations in pharmaceutical drug technology such as
nanotechnology and smart materials (e.g., liposomes, hydrogels,
nanocarriers) enabling controlled delivery of therapeutic agents
(e.g., ROS producing or converting systems) to a target site due to
utilization of stimulus-sensitive materials (187–190). In some
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settings ROS deficiencies may be partially compensated by
pharmacological manipulation of endogenous oxidant
producing enzymes. While still in their infancy science-based
fine-tuning and balancing oxidant therapies are poised to deliver
prophylactic and remedial benefits, namely improving
homeostasis and host defense. This is particularly relevant for
primary ROS with their essential role in redox signaling and
dedicated immune functions. Here we summarize concepts for
restoring physiological levels of beneficial oxygen-derived species
in terms of technological approaches and therapeutic applications
(Figure 1).

Established and Emerging Strategies for
Oxidant Generation
Use of Hydrogen Peroxide
In the past, external application of H2O2 has been used for
medicinal purposes (191, 192). Although high concentrations of
H2O2 have well-known antiseptic properties, tissue damage may
occur. On the other hand, application of lower concentrations of
H2O2 (0.15-1.25 µmoles/wound) improved the rate of wound
closure in wildtype mice and in mice deficient in Nox2-derived
Frontiers in Immunology | www.frontiersin.org 8
superoxide, thereby accelerating tissue regeneration (193, 194).
Topical application of micromolar H2O2 promoted the
phosphorylation of tyrosine residues in FAK that supported an
angiogenic response via vascular endothelial growth factor
(VEGF) signaling. Removal of H2O2 by addition of the H2O2

degrading enzyme catalase delayed wound healing and impeded
angiogenesis (193). While these experiments may suggest direct
exposure of skin to H2O2 as wound healing treatment, the
therapeutic window is too narrow for safe and efficient tissue
restitution. Further, internal administration of H2O2 solutions
poses serious health risks and should not be promoted. To
achieve a health benefit, technologies permitting modified
release of a standardized dose of nanomolar H2O2 to specific
target areas will be required. Strategies promoting controlled
H2O2 delivery may include the utilization of nano systems,
diffusible molecules, and stimulus-sensitive compounds (195–
198). Stimulus-responsive materials are particularly attractive to
target specific disease-associated microenvironments such as
changes in pH due to inflammation (189, 199, 200). In accord,
one can imagine the development of redox-sensitive materials
actively releasing appropriate oxidants until a certain threshold is
FIGURE 1 | Enhancing H2O2 as therapeutic intervention. Strategies to restore or improve ROS in a controlled manner may include a) administration of selected
probiotics or genetically-modified (GM) bacteria producing H2O2, b) innovative drug technology delivering recombinant H2O2 generators to a target area, c) pre-/post-
biotics and d) drugs and agonists modulating ROS-generating host enzymes or endogenous microbiota to augment H2O2 production.
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achieved and the system self-inactivates. Moreover, the vehicle
strategy is important. For instance, hydrogels are commonly
used as drug carriers for clinical use, owing to their tunable
mechanistic and physicochemical properties (201). Controlled
and continuous release of H2O2 was achieved with an in situ
forming hydrogel that can be used as antimicrobial wound
dressing (202).

Lactobacillus as H2O2 Source
Lactobacilli, widely used probiotic bacteria that belong to the
gastrointestinal and vaginal microbiota (203), are the microbial
prototype for controlled release of nanomolar H2O2. Many
Lactobacillus strains utilize oxygen to generate H2O2 by
various enzymes including flavin reductase (nfr), NADH
oxidase (nox) or pyruvate oxidase (pox) (204–207). Lactobacilli
colonizing the mucus layer are close enough to the oxygen
gradient emanating from host epithelial barrier cells (up to 3%
O2) to secrete nanomolar H2O2 continually (208–210). A recent
report linked Lactobacillus generated H2O2 to increased
colonization resistance, protecting the host from C. rodentium
infection (120). A decline in host-derived H2O2 due to genetic
deletion or loss-of-function mutations in NADPH oxidases gives
rise to microbiota dysbiosis, which is likely niche-driven and tied
to changes in the intestinal microenvironment. Thus,
manipulation of the microbiota with lactobacilli constitutes a
potential strategy to promote microbiota diversity for improved
colonization resistance. This approach can be extended to the
airways colonized by their unique microbiota. Intranasal
administration of probiotics (including various Lactobacillus
strains) was recently proposed to modulate local immunity and
epithelial barrier function (211, 212). In addition to living
lactobacilli, administration of prebiotics to selectively stimulate
the growth or activity of resident lactobacilli may improve the
barrier redox environment and stimulate host immunity. For
example, abundance of lactobacilli seems to increase following
the consumption of galacto-oligosaccharides, a common
prebiotic generated from the decomposition of lactose, with
reported beneficial effects on immune function (203, 213).

Early findings that H2O2 promotes cell migration match with
the positive effects of lactobacilli on wound healing. Lactobacilli
secrete not only H2O2 but numerous other compounds such as
lactic acid and bacteriocins that improve the wound
environment. Nevertheless, the ability of L. johnsonii to
generate H2O2 was directly linked to accelerated recovery and
tissue restitution in murine colitis (210). Transformation of
lactobacilli to express exogenous proteins can further improve
their wound healing capacity as demonstrated recently for L.
reuteri secreting CXCL12 (214). Lactobacilli may also release yet
undefined compounds that trigger intracellular ROS generation
by host cells, for example by the oxidase Nox1, to improve
mucosal repair (85, 105). Bacteria or microbial-derived products
can drive expression of ROS-generating enzymes in the host,
likely associated with increased H2O2 levels. Ileal colonization
with commensal segmented filamentous bacteria (SFB) increased
expression of the oxidase Duox2 (19). Intraperitoneal
administration of SFB-derived flagellin was sufficient to
upregulate Duox2 in the small intestine, suggesting that
Frontiers in Immunology | www.frontiersin.org 9
microbial regulation of Duox2 expression may be TLR5
dependent (215).

Most studies linking lactobacilli to antimicrobial defense,
mucosal healing and microbiota modification have been
conducted in mice. In clinical trials the outcome of probiotic
therapy in IBD has been mixed (216–219). Possible explanations
range from poor standardization and viability of bacteria to
insufficient colonization due to the human intestinal
environment including the mucus layer, as well as to
differences between mouse and human physiology such as the
presence of a Lactobacillus reservoir in the murine forestomach.
Another confining factor is using living organisms, which can
lead to systemic bacterial dissemination. Several reports outline
the risk for Lactobacillus bacteremia and septicemia in
immunocompromised patients, after surgical procedures and
in colitis patients (220–223). Even in mice septicemia was
observed when either the orally administered dose of L.
johnsonii was increased ten-fold or L. johnsonii overproducing
H2O2 was administered, indicating that H2O2 production should
not exceed an optimal physiological range for health benefit
(210). Current developments in the field are focused on
standardization, design of consortia and recombinant
probiotics, but other inventive strategies as outlined below
could address some shortcomings of probiotics as
H2O2 generators.

Application of Recombinant Enzymes
Recombinant enzymes involved in ROS generation or
conversion can be used to modulate the oxidative
microenvironment. The enzyme superoxide dismutase (SOD)
catalyzes the dismutation of superoxide into oxygen and H2O2.
Several isoforms of this enzyme are expressed in both
mammalian and bacterial hosts, where they serve as part of the
protective antioxidant system. SOD-mediated superoxide
conversion limits the generation of secondary, highly reactive
oxygen and nitrogen metabolites (e.g., hydroxyl radical,
peroxynitrite) that can cause irreversible modification of
proteins, lipids or DNA (224, 225). Therefore, SOD-based
applications have been mainly used as antioxidant strategy
aiming to decrease secondary ROS levels for prevention of
inflammatory diseases. A more universal utilization of SOD as
physiological H2O2 source at mucosal surfaces is compromised
by its mode of action, including reliance on inflamed conditions,
in conjunction with unattainable dosing standardization, and
poor enzymatic stability (226).

Many oxidoreductases generate H2O2 as a byproduct of their
intended enzymatic reaction including carbohydrate oxidases
[e.g., glucose oxidase, galactose oxidase and many others (227)],
cholesterol oxidase (228), alcohol oxidase (229) and D-amino
acid oxidase (230). We will discuss here as example glucose
oxidase (GOx), a prominent representative of carbohydrate
oxidases that catalyzes the oxidation of b-D-glucose to D-
glucono-1,5-lactone with further hydrolysis to gluconic acid.
GOx contains the flavin adenine dinucleotide (FAD) cofactor
as initial electron acceptor, which undergoes reduction to
FADH2, followed by FADH2 oxidation by molecular oxygen,
and reduction of oxygen to H2O2 (231). GOx is found
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predominantly in fungi (i.e., Aspergillus and Penicillium spp) and
its high specificity for glucose renders the enzymatic reaction an
attractive tool for monitoring blood glucose levels. Various GOx-
based biosensors have been developed for glucose monitoring,
sometimes in diabetes therapy in conjunction with insulin
release (232, 233). Stability of the enzyme is important for
these applications, and thus technology advancements have
resulted in genetically engineered GOx modifications in
combination with encapsulation strategies for improved long-
term enzymatic activity (234). Dermatological applications of
GOx as tunable H2O2 generator may hold some promise for
therapy. Incorporation of GOx in a collagen dressing improved
wound healing and tissue regeneration of rodent skin,
presumably due to sustained release of H2O2, although oxidant
measurements were not provided. This GOx treatment induced
an antioxidant response by the host tissue with upregulation of
SOD and catalase (235). GOx is naturally present in honey at low
concentrations where it has been studied for its dual function,
namely for aiding wound healing and as antimicrobial agent. A
medicinal honey (SurgihoneyRO™) with enhanced
antimicrobial activity is on the market as a wound antiseptic
dressing (236, 237). Due to its GRAS (generally recognized as
safe) FDA status GOx is used by the food industry as stabilizing
and antibacterial agent (238).

The GRAS status supports considering GOx for internal
applications such as hydrogels or oral administration of the
enzyme. A gelatin hydrogel incorporating glucose and varying
GOx concentrations released micromolar H2O2 for 24-48 hours
in a controlled manner and improved the proliferation of
cultured endothelial cells. This effect was accompanied by a
transient increase of intracellular ROS (measured as DCFH-
DA signal) as well as enhanced neovascularization in a CAM
model, indicating modulation of redox signaling by GOx-
generated H2O2 (239, 240). For oral administration, the
protection of GOx’s enzymatic activity can be achieved by
microencapsulation. Diet delivered glucose might be sufficient
for GOx-mediated H2O2 generation in the small intestine, while
supplementation of the GOx drug carrier with compartmentalized
glucose will be necessary for affecting the large intestine. Targeted,
controlled delivery of GOx/glucose presents a promising
opportunity to modulate intestinal redox signaling, mucosal
healing and immune defense while limiting oxidative damage.
Therapeutic applications of GOx/glucose or similar H2O2

generators will partially mimic the current use of lactobacilli,
albeit with superior standardization, more limited dependence
on the barrier microenvironment and superior safety in vulnerable
patient populations. An additional benefit of the GOx/glucose
reaction is the generation of the prebiotic gluconic acid as a
secondary reaction product, which stimulates butyrate
production in the intestine (241). Examples for potential
treatment modalities are gut health improvements (e.g., barrier
reinforcement, microbiota diversity), accelerated tissue restitution
after injury in patients with intestinal inflammatory diseases, or
prophylactic long-term modification of the intestinal environment
in patients with insufficient H2O2 generation. Prime examples for
the last point are certain patient populations in the categories very
Frontiers in Immunology | www.frontiersin.org 10
early onset IBD (VEO-IBD), CGD-IBD or IBD linked to variants
upstream of ROS-generating enzymes (21, 242–244). Variants in
genes encoding components of NOX enzymes including NOX1,
NOX2 and DUOX2 confer susceptibility to VEO-IBD (152, 245–
248), while NOX2 complex variants associated with CGD due to
absent or minimal output of superoxide manifest in 40-50% of
CGD patients as CGD-associated IBD. Functional evaluation of
NOX1 and DUOX2 patient variants in model systems revealed
decreased ROS production and impaired antimicrobial defense
(152, 246, 247). The compromised immune defense of these hosts
in combination with the ensuing dysbiotic microbiota affects not
only the overall colonization resistance but also more specialized
immune defense mechanisms. Diffusion of nanomolar H2O2 into
extracellular pathogens is not bactericidal but can downregulate
virulence factors. Nanomolar H2O2 blocked bacterial
phosphotyrosine signaling required for virulence factor synthesis
by irreversibly modifying tyrosine phosphorylated enzymes and
proteins (22, 23). In addition, nanomolar H2O2 inhibited LEE
pathogenicity island regulation in enteropathogenic bacteria
(C. rodentium) due to impeded expression of the major
transcriptional regulator ler, which was associated with lower
pathogen colonization and improved recovery of mice (120).
While the precise molecular mechanism of LEE downregulation
has not yet been resolved, these studies hold great promise for
H2O2-mediated interference in enteric bacterial infections.
Supplying nanomolar levels of H2O2 via GOx/glucose or similar
means may provide multiple benefits including host protection,
reinforcement of the intestinal barrier and mucosal healing.
Stimulation of Endogenous ROS Sources
Instead of providing ROS by an exogenous source, agonists or
drugs that stimulate expression and/or activation of a ROS-
generating enzyme or alter mitochondrial function can be used
to improve immune responses. Currently this area is dominated
by improving innate immune cell-derived superoxide, but one
can envision that future applications will be directed at epithelial
superoxide/H2O2-producing enzymes. Neutrophils and
macrophages are crucial for pathogen defense with NOX2-
derived superoxide playing a key role in this process.
Enhancing the neutrophil activation status, and in particular
the oxidative burst, will not only be desirable in infections but
also in inflammatory disorders (249–251). Activating NOX2 can
be achieved by targeting upstream pathways. One approach
focusses on developing formyl peptide receptor (FPR1, FPR2)
agonists selectively binding to a receptor conformation that will
favor one signaling output over another (i.e. biased signaling)
without accelerating receptor desensitization (249). In
neutrophils FPRs regulate directional migration, secretion of
inflammatory mediators and superoxide generation by NOX2.
While FPRs are usually triggered by microbial derived
formylated peptides, endogenous proteins or lipopeptides,
small compounds and peptides acting as exogenous FPR
agonists have been identified. Examples are the FPR1 agonist
RE-04-001, FPR2 agonists BMS-986235 and Act-389949, and
dual FPR1/2 agonists such as compound 17b (252–255).
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Biased FPR agonists causing functional selectivity in neutrophil
responses, namely either inducing chemotaxis or superoxide
production, can be used as NOX2 activators (252, 256). Nox2
activity has been associated with the resolution of inflammation
in colitis (133), and the pro-resolving Fpr2 agonist Annexin-A1
accelerated wound healing of the murine colonic epithelium via
the oxidase Nox1 (81).

Another approach is using the cytokine granulocyte-
macrophage colony-stimulating factor (GM-CSF) to augment
NOX2 derived superoxide production by acting as priming
agent in neutrophils while elevating the phagosomal pH in
macrophages (257–259). The efficacy of GM-CSF administration
as immunostimulatory adjuvant has been evaluated in clinical
trials. In a randomized trial involving critically ill patients,
subcutaneous injections with GM-CSF increased neutrophil
phagocytic capacity but did not improve superoxide production
(EudraCT 2011-005815-10), while an earlier trial using
intravenous delivery of GM-CSF had reported statistically
significant enhancement of neutrophil superoxide generation
(260). GM-CSF has also been assessed in the context of CGD
patients. While reconstitution of the oxidative burst in isolated
neutrophils was not achieved, as expected for a disease caused by
genetic mutations, GM-CSF has shown some promise in treating
CGD-IBD by undefined mechanism(s) (261–263). In non-CGD
patients biased targeting of NOX2 activating pathways may hold
promise, and analogous strategies should be feasible for
development of activators of other NOX/DUOX enzymes or of
other ROS sources.

Generation of Compensatory ROS
Therapeutically enhancing ROS production in CGD or VEO-
IBD patients is imperative for antimicrobial defense, for
resolution of inflammation and for repair processes. In these
patients gene editing, administration of exogenous ROS
generators or stimulation of other endogenous ROS sources are
the only options to improve their ROS status. Kuhns and
coworkers showed that modest residual superoxide production
is sufficient to prevent life-threatening infections in CGD
patients (264). Partial restoration of macrophage and dendritic
cell superoxide in functional Ncf1 rescue mice was adequate to
dampen hyperinflammation (265). These considerations are the
basis for screening and identifying compounds capable of
compensating partially for NOX2 enzyme activity.

The first compound in this class is the peroxisome
proliferator-activated receptor g (PPARg) agonist pioglitazone,
a drug approved for Type 2 diabetes. As proof of concept,
pioglitazone treatment of cultured CGD patient-derived
monocytes or of Nox2 deficient mice increased mROS
production and subsequently the bactericidal capacity of
immune cells (266). Pioglitazone and the related rosiglitazone
induced mROS and NETs in CGD neutrophils (267). Monocytes
from CGD patients and Nox2 deficient macrophages were
impaired in PPARg signaling, impacting their efferocytosis
function which was restored by pioglitazone treatment (268,
269). Increased mROS generation and restoration of efferocytosis
were also observed in monocytes isolated from two CGD patients
after 30 days of oral pioglitazone treatment, supporting the
Frontiers in Immunology | www.frontiersin.org 11
effectiveness of pioglitazone therapy for superoxide production
and improved immune cell function (269). A clinical study
reported the effects of daily pioglitazone treatment in an infant
with CGD. Using dihydrorhodamine (DHR) fluorescence as
readout for ROS an increase in DHR positive granulocytes
after 25 days of treatment was observed. The increase in the
phorbol ester stimulated DHR signal was relatively low in
comparison with healthy donor cells but it was maintained
over several weeks, and the clinical condition of the patient
progressively improved (270). Efficacy and safety of pioglitazone
was assessed in a clinical trial enrolling CGD patients with severe
infection. Phase 2 of the study was terminated when the DHR
fluorescence signal did not improve in neutrophils after 90 days
of treatment with pioglitazone (clinicaltrials.gov NCT03080480).
Long-term administration of pioglitazone did not lead to drug-
related adverse effects or exacerbation of infection (271).
The variation in outcomes might be attributable to different
pioglitazone dosage, or to the often required combination
therapy with antibiotics and/or interferon IFN-g. Further
studies are necessary to determine if pioglitazone will provide a
therapeutic option for CGD patients, for example as adjuvant
therapy in severe bacterial infections or as prophylaxis. At
this point only hematopoietic stem cell transplantation, gene
therapy or gene editing with CRISPR-Cas9 offer a cure for
CGD (272).

Future Directions
The field of redox medicine has blossomed over the last decade,
but further progress will depend on connecting more tightly
distinct oxidant species and their enzymatic sources to
physiological or pathophysiological processes. Another
important factor will be uncovering and manipulating specific
microenvironments. The chemical milieu, in particular oxygen
availability, is a limiting factor for ROS production, but the
hypoxia developing due to ROS production (e.g., via the
neutrophil oxidative burst) in a low oxygen environment can
have beneficial effects such as resolution of inflammation and
accelerated tissue restitution (133). The presence and
concentration of H2O2 and secondary oxidants (hypochlorous
acid, peroxynitrite) will modify the barrier environment and the
interactions between host and microbiota, leading to changes in
microbiota diversity, composition, and the microbial
metabolome that can be beneficial or harmful for the host.
Case in point is the intestinal dysbiosis and appearance of
pathobionts in NADPH oxidase deficient mice (94, 113). The
nanomolar H2O2 released from mucosal barriers is inadequate
for bactericidal activity, but its interference with the fitness and
virulence of certain microorganisms supports its use as a
promising alternative to antibiotics (273, 274). However, this
antivirulence strategy will require the identification and targeting
of specific pathogens to avoid the subversion of these oxidants
for their own advantage as reported for some pathogenic bacteria
(275–281).

Given the essential role of ROS for basic physiological
functions, future therapeutics should include careful
modulation of the redox state. Therapeutic interest today
focuses on the margins of the ROS continuum, namely anti- or
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pro-oxidant interventions, but new approaches to modify
physiological redox processes will be vital for improving health
and well-being. Current limitations are the lack of targeted drugs
modulating the activity of specific enzyme isoforms or of drugs
that can adapt their mode of action by sensing ROS levels in situ.
Sophisticated delivery systems for novel small molecule- or
peptide-based activators will help restoring or enhancing
beneficial ROS (mainly H2O2) at a predetermined location in
order to achieve a positive outcome and to prevent undesired
side effects linked to toxicity. For this purpose, exploitation of
natural properties of commensals or their genetic modification,
discovery of agonists stimulating ROS-generating enzymes,
design of functional materials and delivery vehicles releasing
H2O2, for example by utilizing recombinant enzyme-substrate
pairs, will provide therapeutic options for infections,
inflammatory diseases, and regenerative medicine. Next
generation treatments will likely include strategies for altering
Frontiers in Immunology | www.frontiersin.org 12
the chemical environment at defined locations in a sustainable
manner, with ROS being one of the key targets.
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