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Significance, Immune Infiltration and
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Early-Stage Lung Adenocarcinoma

Bolun Zhou and Shugeng Gao*
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Chinese Academy of Medical Sciences and Peking Union Medical College, Beijjing, China

Recent publications have revealed that N6-methyladenosine (m®A) modification is critically
involved in tumorigenesis and metastasis. However, the correlation of m®A modification
and immune infiltration in early-stage lung adenocarcinoma (LUAD) is still uncertain. We
performed NMF clustering based on 23 m®A regulators and identify three distinct m°A
clusters and three m®A related genes clusters (M°A cluster-R) in early-stage LUAD. The
immune infiltrating levels were calculated using CIBERSORT, MCPcounter and ssGSEA
algorithms. And we established the mCA-predictive score to quantify m®A modified
phenotypes and predict immunotherapeutic responses. Based on the TME
characteristics, different immune profiles were also identified among three m°A gene-
related clusters. And the mPA-R-C2 was related to a favorable overall survival (OS),
whereas m®A-R-C3 had unfavorable overall survival. The m°A-predictive score was built
according to the expression levels of mPA-related genes, and patients could be stratified
into subgroups with low/high scores. Patients with high scores had poor overall survival,
enhanced immune infiltration, high tumor mutation burden and increased level of somatic
mutation. Besides, patients with high scores had unfavorable overall survival in the anti-
PD-1 cohort, whereas the overall survival of high-score patients was better in the adoptive
T cell therapy cohort. Our work highlights that m°A modification is closely related to
immune infiltration in early-stage LUAD, which also contributes to the development of
more effective immunotherapy strategies.

Keywords: m®A (N6-methyladenosine), lung adenocarcinoma, tumor microenvironment, immune
infiltration, immunotherapy
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INTRODUCTION

Lung adenocarcinoma (LUAD) is one of the most prevalent
cancers around the world, accounting for approximately 40% of
lung cancer patients (1). The study of LUAD has raised
considerable concerns because it has a high rate of invasiveness
and metastasis, which is the main cause of tumor-associated death
(2, 3). Although with the rapid progress of various treatments,
such as surgery, radiotherapy and chemotherapy, LUAD patients’
prognosis is still very poor (4-6). Some radiological approaches,
such as low-dose computerized tomography (CT), are implemented
to screen for LUAD and truly reduced the mortality of patients, but
radiological approaches cannot benefit every patient and the
diagnostic accuracy still has room for improvement (7, 8). Also,
in the treatment of early-stage LUAD, chemotherapy could not
reach the satisfactory efficacy among patients with negative driver
gene mutation and the use of immunotherapy has remained largely
unknown (9, 10). Thus, we need an in-depth investigation of
detailed molecular mechanisms to identify patients with a high
probability of death, which may contribute to the precise treatment
of patients with early-stage LUAD.

N6-methyladenosine (mP®A) has been regarded as the most
common RNA modification, which primarily focuses on
regulating splicing, translation and processing of the specific
RNA. And it serves as a critically significant factor in diverse
physiological and pathological processes (11-14). Generally
speaking, m®A modification is regulated by three regulatory
proteins: methyltransferases, binding proteins and demethylases
(also known as writers, readers, and erasers) (15). Recent studies
have indicated that m®A modification has a strong impact on the
occurrence and metastasis of cancer, which suggests that a more
comprehensive understanding of m°A modification’s detailed
mechanism may benefit patients with cancer (14, 16). For
example, Jin et al. have shown that m®A modification induced
by METTL3 can increase YAP translation, thus promoting drug
resistance and metastasis of non-small cell lung cancer (NSCLC)
(17). However, in the early-stage LUAD, the exact roles of m°A
modifications and their regulators remain largely unknown. Thus,
the exploration of m°A modifications is urgently needed and may
contribute to the development of m®A-based therapy.

Increasing evidence has revealed that multiple types of immune
cells in the tumor microenvironment (TME) play a critically
important role in tumorigenesis and metastasis (18).
Furthermore, specific immune checkpoint inhibitors (ICls), such
as anti-PD-1/L1 and anti-CTLA-4, are widely applied in today’s
immunotherapy and have been proven to be helpful in LUAD
patients with specific immunophenotype (19-21). Thus,
identifying particular characteristics of the TME may help to

Abbreviations: m°A, N6-methyladenosine; LUAD, lung adenocarcinoma; NMF,
non-negative matrix factorization; NSCLC, non-small cell lung cancer; TME,
tumor microenvironment; ICIs, immune checkpoint inhibitors; IEN-y, interferon-
gamma; FPKM, fragments per kilobase million; TPM, transcripts per kilobase
million; DEGs, differentially expressed genes; GSVA, Gene set variation analysis;
GSEA, Gene Set Enrichment Analysis; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; ssGSEA, Single sample gene set
enrichment analysis; IPS, Immunophenoscore; RF, random forest; ROC,
receiver operating characteristic.

predict the immunotherapeutic responses, which could
contribute to the development of more effective therapy in
early-stage LUAD patients (22, 23). In addition, several studies
have indicated a close relationship between m®A modification and
immune infiltrating cells in the TME. Su et al. have revealed that
deletion of FTO, an m°A regulatory protein, could inhibit the
expression of LILRB4, thus dramatically attenuating the reprogram
immune response of the leukemia stem cell. Due to the
downregulation of FTO, leukemia cells were more sensitive to T
cell cytotoxicity and immune evasion could be avoided (24). Also,
Han et al. reported that the knockdown of YTHDFI in dendritic
cells could improve cross-priming of CD8+ T cells and cross-
presentation of tumor neoantigens, suggesting YTHDFI served as a
critical biomarker in immunotherapy (25). However, we still lack a
more comprehensive study focusing on all of the m®A regulatory
proteins in early-stage LUAD. Therefore, exploring the relationship
between m°A modification and immune infiltration may help us
understand the regulation of the immune system and promote
research in tumor immunotherapy.

In this study, we systematically analyzed the relationship
between immune infiltrating levels and m®A modification clusters
by using the genomic and transcriptomic data of 1230 early-stage
LUAD patients. We have utilized nonnegative matrix factorization
(NMEF) clustering and identified three m°A clusters with different
immune phenotypes, indicating m°A modification served as a non-
negligible factor in affecting individual TME profiles. Furthermore,
we also constructed the m®A-predictive score, which can be used to
evaluate m°A modification, predict immune infiltrating levels and
patients’ immunotherapeutic responses, suggesting its indispensable
utility in clinical diagnosis and treatment.

MATERIALS AND METHODS

The Collection of Available Datasets

We downloaded the genomic and clinical information of the
early-stage LUAD from the GEO database (http://www.ncbi.nlm.
nih.gov/geo/) and the TCGA database via UCSC Xena (https://
xena.ucsc.edu/). According to the staging system of the
American Joint Committee on Cancer (AJCC), LUAD of stage
IA, IB, IIA and IIB could be defined as early-stage LUAD. 1230
patients were analyzed in this study, including patients from
TCGA-LUAD (n = 374), GSE29013 (n = 22) (26), GSE30219
(n=281) (27), GSE31210 (n = 226) (28), GSE37745 (n = 89) (29),
GSE50081 (n = 127) (30) and GSE72094 (n = 311) (31). The
baseline information of all of the early-stage LUAD patients was
presented in Table S2. As for the TCGA-LUAD dataset, we
obtained the copy number alteration data and the DNA
methylation data (data of FMR1 was lack) from the cBioportal
database (https://www.cbioportal.org/) and the somatic
mutation data from the UCSC Xena. We analyzed the somatic
mutation data using the “maftools” R package (version 2.6.05)
(32). And we transformed the RNA-seq data of the TCGA-
LUAD from the fragments per kilobase million (FPKM) format
to transcripts per kilobase million (TPM) and log2(TPM + 1)
format. Due to the same microarray platform (Affymetrix Human
Genome U133 Plus 2.0 Array) used by GSE29013, GSE30219,
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GSE31210, GSE37745 and GSE50081, we obtained the raw CEL
data and used the “gcrma” R package (version 2.62.0) to correct
the background and normalize. Next, we used the ComBat
function of the sva R package (version 3.38.0) to combine these
five GSE datasets into a meta-GEO cohort (33). To increase the
comparability among all the datasets, we utilized the scale
transformation in the meta-GEO and GSE72094 cohorts before
constructing the m6A-predictive score. Besides, we averaged
expression values of genes that had multiple probe set signals.

Consensus Clustering With NMF

We collected the 23 m°®A regulators via retrieving previous
publications correlated with m®A modification (Table S1) (13, 34—
37). According to 23 m°A regulators’ expression levels, NMF
clustering was performed to stratify distinct m°A clusters. The
“NMF” R package (version 0.23.0) was utilized with the brunet
algorithm and 50 nruns in this analysis (38). And we performed
another NMF clustering according to the expression of overlapping
differentially expressed genes (DEGs) with the lee method. The m°A
related gene clusters (m®A cluster-R) were determined. According to
the results of the NMF clustering (cophenetic, residuals, dispersion
and rss coefficients), we chose the best number of clusters.

GSVA, GSEA and GO/KEGG

Enrichment Analysis

We used the “GSVA” R package (version 1.38.2) to perform Gene
set variation analysis (GSVA), aiming to analyze different
biological processes among all mPA related clusters (39). The
Hallmarker gene set was used as the biological signatures and was
obtained via the MSigDB database v7.2 (40). Gene Set Enrichment
Analysis (GSEA) was applied via the “clusterProfiler” R package
(version 3.18.1) and P.adjust < 0.05 was considered statistically
significant (41). Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis were also performed via the
“clusterProfiler” R package (version 3.18.1). And the threshold of
the GO analysis was P.adjust < 0.05 and the threshold of the
KEGG analysis was P < 0.05 and P.adjust < 0.2.

Estimation of Inmune Cell Infiltration:
ssGSEA, CIBERSORT and MCPcounter

We utilized different algorithms to evaluate the fraction of immune
infiltrating cells, including single sample gene set enrichment
analysis (ssGSEA), CIBERSORT and MCPcounter. The “GSVA”
R package (version 1.38.2) was used to perform ssGSEA, which
could calculate the fraction of twenty-eight immune cells of the
TME. The estimated proportion of these immune infiltrating cells
was characterized by a normalized score and shown in the
heatmap. The CIBERSORT algorithm (http://cibersort.stanford.
edu/) was designed to estimate the relative fraction of twenty-two
immune cells (42). And we utilized the “MCPcounter” R package
(version 1.2.0) to evaluate the abundances of two stromal cells and
eight immune cells (43).

Prediction of Immune Response:
Immunophenoscore (IPS) and ESTIMATE
Immunophenoscore (IPS) serves as an essential factor in predicting
response to anti-PD-1 and anti-CTLA-4 therapies. We calculated

the IPS to investigate determinants of tumor immunogenicity,
which also revealed cancer antigenomes and intratumoral immune
features (44). ESTIMATE algorithm is generally utilized to infer the
immune score and the stromal score, which is also useful to
indicate the levels of immune infiltration (45). Based on the
transcriptional profiles, we calculated the ESTIMATEScore,
ImmuneScore and StromalScore to reveal different immune
infiltrating levels of each cluster.

DEGs Among Different m®A Clusters

Based on the results of the NMF clustering, three distinct m°A
clusters were identified in the meta-GEO cohort. We then
identified the DEGs between every two m°A clusters using the
“limma” R package (version 3.46.0) (46). We calculated the
differential expressed statistics via the ImFit and eBayes
functions. We set |fold change| > 1 and P.adjust < 0.01 as the
statistically significant threshold to identify DEGs. And we
intersected three groups of DEGs to determine the overlapping
DEGs among three different m6A clusters.

Construction and Validation of the
m°A-Predictive Score

Although the distinct m°A clusters were associated with prognosis
and TME of patients with early-stage LUAD, it was not
convenient to perform the NMF clustering in each independent
cohort. Therefore, a more useful and reliable scoring system was
required to analyze the prognosis and immune features of patients
with early-stage LUAD. To begin with, we performed univariate
Cox regression analysis using the “survival” R package (version:
3.2-10) to screen for the overlapping DEGs with prognostic value
(overall survival) in the meta-GEO cohort. We defined P < 0.05 as
the statistically significant threshold. The genes with an important
prognostic impact were then analyzed with random forest (RF)
algorithms using the “randomForestSRC” R package (version
2.10.1) and some genes were selected. Finally, we conducted the
multivariate Cox regression analysis of these selected genes to
screen for final genes and established the m®A-predictive score.
The coefficients of the final genes were extracted from the
multivariate Cox regression results. We used the following
formula as the m®A-predictive score: score = ¥(Coefi * Expri),
where n refers to the number of the key genes, Coef; refers to the
coefficient of gene; and Expr; refers to the expression level of gene;.
We then calculated the m°A-predictive score of all samples and
stratified patients into high- and low-score subgroups according to
the median value of the m°A-predictive score. We also validated
the efficacy of the m°A-predictive score in the TCGA and
GSE72094 cohorts, respectively. We used the “survminer” R
package (version 0.4.9) to get the Kaplan-Meier curves in these
cohorts. And we evaluated the performance of this scoring system
via the time-dependent receiver operating characteristic (ROC)
curves using the “survivalROC” R package (version: 1.0.3).

Establishment of the Nomogram

Using univariate and multivariate Cox regression analysis, we
investigated whether our scoring system was an independent
parameter among other clinical parameters, and the co-variates
were composed of age and pathological stage. Then we utilized
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“rms” R package (version 6.1-1) to build a nomogram, which can
predict the prognosis of patients with early-stage LUAD. Next,
we used Calibration curves and the time-dependent ROC curves
to evaluate this nomogram’ predictive accuracy. Also, we
compared the concordance index among all the clinical
parameters to analyze the discrimination of our nomogram.

The Performance of m°A-Predictive Score
in Immunotherapeutic Cohort

We further integrated two independent immunotherapy cohorts
with genomic and clinical data to validate whether patients
stratified by high and low m®A-predictive scores had significantly
different clinical outcomes (overall survival). The X-tile software
(version: 3.6.1) was utilized to identify the optimal cutoff value (47).
A two-sided P value was used in the analysis. The data were
downloaded from the TIDE database (http://tide.dfci.harvard.edu/)
(48). The gene expression data were already normalized via
the TIDE database. These cohorts mainly focused on the
immunotherapy of patients with melanoma, which included anti-
PD-1 antibody intervention in the study of Gide et al. (49) and the
utilization of adoptive T cell therapy in the study of Lauss et al. (50).

The Single-Cell Analysis for T Cells

We analyzed the T cells’ single-cell RNA-seq data of LUAD
patients via http://lung.cancer-pku.cn/index.php, which contained
12 346 T cells from 14 treatment-naive NSCLC patients (51). The
expression levels of selected m°A genes were normalized and
sixteen clusters were identified, including two for regulatory T
cells, seven for conventional CD4" T cells and seven for CD8" T
cells. We used the boxplot and t-SNE plot to evaluate the
associations between selected m®A genes and T cells populations.

Statistical Analysis

We used R software (version 4.0.4) to conduct all of the statistical
analyses. The analysis of the correlation was conducted via
Spearman’s correlation method. We performed the Wilcoxon
rank sum test (Mann-Whitney U-test) to compare the difference
between the two groups. As for the difference among more than
two groups, we used the Kruskal-Wallis H-test to evaluate the
variance. Schoenfeld residuals was used to confirm the assumptions
of the Cox proportional hazard models. P < 0.05 was considered as
the statistically significant threshold. The tests used in each part of
study were also presented in the figure.

RESULTS

The Genetic Landscape of m°A Regulators
in Early-Stage LUAD

The flowchart of our study is presented in Figure S1. The somatic
mutations of 23 m°A regulators were infrequent in early-stage
LUAD. 92 of the 355 (25.9%) samples had the somatic mutations of
mCA regulators, which primarily included missense mutations and
nonsense mutations. The results revealed that the top three genes
with the highest mutation were ZC3H13 (5%), IGF2BP1 (3%) and
LRPPRC (3%) (Figure 1A). Then, we explored the relationship

between m°®A regulators’ expression and DNA methylation (Table
83). All of the significant correlations between m°A regulators’
expression and DNA methylation were negative. IGF2BP1,
IGF2BP2, and IGF2BP3 were the top three genes whose
expression was closely related to the DNA methylation level
(Figure 1B). The copy number alterations of the m°A regulators
were prevalent, which included copy number gains and losses.
VIRMA, IGF2BP3, YTHDFI displayed prevalent copy number
gains, while ZC3H13, ELAVL] and WTAP showed widespread
copy number losses (Figure 1C). Compared with normal samples,
we found that VIRMA, METTL3, RBM15, ELAVL1, HNRNPC,
HNRNPA2B1, IGF2BP1, IGF2BP3, YTHDF1, YTHDEF2, LRPPRC
were highly expressed in tumors, while METTL14, ZC3H13 and
FTO were mainly downregulated (Figure 1E). We then evaluated
the correlation of the expression levels among the m°A regulators.
According to the Spearman correlation analysis, we found that
most of m°A regulators revealed a significant inverse correlation
with the other, such as HNRNPA2B1, YTHDF1 and HNRNPC
(Figure 1D and Table S4). Additionally, we utilized univariate and
multivariate Cox regression to evaluate m°A regulators’ prognostic
value (overall survival). The forest plot suggested that RBM15 was
highly associated with patients’ overall survival and could be
recognized as a protective factor, while ALKBH5 was negatively
correlated with the patient’s prognosis (Figures S2A, B).

Identification of Specific Phenotypes
Based on m®A Regulators

To stratify patients into different m®A phenotypes, we performed
the NMF algorithm according to 23 m°®A regulators’ expression
levels (Figure S3A, B). Three m°A phenotypes were identified in
the meta-GEO cohort, including 120 patients in m®A-Cl, 230
patients in m®A-C2 and 195 patients in m®A-C3. Then, we
conducted a log-rank test and the Kaplan-Meier curves of the
meta-GEO cohort revealed that m®A-C2 had the best prognosis,
whereas m6A-C1 was related to unfavorable prognosis (Figure
$4C). And similar results were shown in the Kaplan-Meier curves
of the TCGA cohort (Figure S4D). The expression patterns of
these three clusters were aberrantly different. The expression level
of YTHDF3 was increased in patients of m°A-C3; The expression
levels of IGF2BP1, IGF2BP3 were predominantly elevated in
patients of m®A-C1; The expression level of IGF2BP2, LRPPRC,
WATP, YTHDE3 were relatively increased in patients of m°A-C2
(Figures S3C, D and Table S6). We further conducted
multivariate Cox regression analysis to determine the correlation
of the m°A clusters and patients’ clinical outcomes. The results
indicated that m®A clusters were correlated with patients’ OS
especially in the TCGA cohort (m®A-C2 vs. m°A-C1, HR = 0.529
[95%CI = 0.308 - 0.908], P = 0.0209; Figure S4).

The Expression Levels of m®A Genes in
Exhausted T Cells in LUAD

We have analyzed the expression levels of 23 m°A genes in
different T cells of LUAD via a single-cell database. The results
indicated that CBLL1 and WTAP served as two significant
factors in T cells infiltration. The expression levels of WTAP
were relatively higher in CD4-C2-ANXA1, CD4-C7-CXCL13,
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FIGURE 1 | The genetic features of 23 meA regulators in early-stage lung adenocarcinoma of the TCGA cohort. (A) The genetic mutations of 23 m°A regulators in
92 patients. (B) The correlation analysis between DNA methylation and 23 m°®A regulators’ expression (*P < 0.05; **P < 0.01; **P < 0.001). (C) The CNA landscape
of 23 m®A regulators. Gain represents gain and high level amplification, loss represents homozygous deletion and hemizygous deletion. (D) The correlation analysis
between the 23 m°A regulators via the Spearman correlation method. (E) The meA regulators expression between normal and tumor groups (*P < 0.05; **P < 0.01;

CD4-C9-CTLA4 and CD8-C6-LAYN populations than others,
indicating CD8" T cells and conventional CD4" T cells (Figure
S9A). The expression levels of CBLL1 were relatively higher in
CD4-C2-ANXA1 and CD4-C8-FOXP3 populations than others,
indicating conventional CD4" T cells and regulatory T cells
(Figure S9C). According to the t-SNE plot, the T cells
enrichment regions with high CBLL1 and WTAP expression

were also highly overlapped with the above clusters (Figures
S9B, D, E).

The Correlation of m®A Phenotypes With
Immune Infiltration

We utilized the Hallmarker gene set to perform the GSVA
enrichment analysis, which revealed different biological
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processes. Some tumor-related targets (MYC, E2F and G2M)
and tumor-related biological processes (angiogenesis, epithelial-
mesenchymal transition (EMT) and hypoxia) were enriched in
m°A-Cl1. On the contrary, m®A-C2 were relatively enriched
pathways of cancer development and progression, including
Wnt-B-catenin, Notch and TGF-P signaling pathways. And
m°A-C3 exhibited the GSVA scores between m°A-Cl and
mP®A-C2 in the above gene sets (Figure 2D). To determine the
relationship between different m°A phenotypes and immune
infiltrating cells, we conducted the CIBERSORT algorithm
among three m®A clusters. The fraction of immune infiltrating
cells was presented in Figure 2A. We also compared the fraction
of immune cells among these three m°A clusters. The results
indicated that the proportion of macrophages M0, macrophages
M1, plasma cells and activated memory CD4 T cells were the
highest in m°A-C1, the proportion of dendritic cells resting,
eosinophils, monocytes, mast cells resting, T cells CD4 memory
resting, T cells follicular helper and NK cells activated were the
highest in m°A-C2 and the proportion of mast cells activated
were the highest in m®A-C3 (Figure 2B). To further evaluate the
clinical significance of these three m°A phenotypes, we also
analyzed the expression of different biomarkers (PD-1, PD-L1
and CTLA-4) in the immunotherapy (52, 53). The results
revealed that PD-L1 and CTLA-4 expression were markedly
elevated in m°A-Cl1, while PD-1 expression was relatively
increased in m®A-C2 (Figure 2C).

We then utilized Spearman’s correlation analyses to investigate
the relationship between different immune infiltrating cells and
m°A regulators. Our results revealed that the expression of
LRPPRC, VIRMA, YTHDF2, YTHDC1, HNRNPC, METTL14
and METTL3 were negatively correlated with immune
infiltration, whereas WTAP expression was positively related to
immune infiltration (Figure S5A). LRPPRC was negatively
correlated with infiltrating levels of immune cells, including type
1 T helper cell, T follicular helper cell, macrophage, effector
memory CD8 T cell and activated dendritic cell. Thus, we
divided the patients into two subgroups according to the high-
and low-expression level of LRPPRC to analyze its role in early-
stage LUAD. We used the CIBERSORT algorithm to explore the
difference of immune infiltration between low- and high-LRPPRC.
Our results implied that infiltrating levels of mast cells resting,
dendritic cells activated, T cells follicular helper and T cells CD4
memory activated were relatively elevated in the high-LRPPRC
group, whereas T cells CD8, mast cells activated, and plasma cells
were the opposite (Figure S5B). Furthermore, we analyzed the
immune-related scores between the two groups, which indicated
that ImmuneScore, ESTIMATEScore and StromalScore were
higher in the high-LRPPRC group (Figure S5C). And we
evaluated biomarkers” expression in immunotherapy. We found
LRPPRC expression was negatively associated with the expression
of PD-1, PD-L1 and CTLA-4 (Figure S5D). Besides, we performed
the GSEA analysis to evaluate related gene sets of the low- and
high-LRPPRC subgroups. Our results implied that patients in the
low-LRPPRC enriched genes of mRNA processing, RNA splicing
and mRNA processing, and patients in the high-LRPPRC enriched
genes of Staphylococcus aureus infection, hematopoietic cell lineage

and complement and coagulation cascades (Figure S5E). In a
word, we hypothesized that LRPPRC could impede the activation
of immune cells (like CD8 T cells) or mRNA processing to regulate
cancer development and progression.

The DEGs Among Three m°A Phenotypes
To determine the extensive role of these three m°A clusters
stratified by 23 m°A regulators’ expression, we further analyzed
the DEGs across m°A-C1, m°A-C2 and m°A-C3 in the meta-GEO
cohort. 306 DEGs were regarded as m°A-correlated signatures and
utilized for later analysis. The Venn diagram was used to reveal the
overlapping DEGs among the three m®A clusters (Figure 3A).
Next, we carried out the GO and KEGG enrichment analysis of
these overlapping DEGs to evaluate relevant biological processes
and pathways. The results indicated that this m°A-correlated
signature was closely related to some biological processes,
including chromosome segregation, nuclear division and
regulation of cell cycle phase transition (Figure 3B). And m°A-
correlated signature was closely related to the pathways, including
p53 signaling, oocyte meiosis and cell cycle pathway (Figure 3C).
According to the overlapping DEGs, we utilized the NMF
clustering analysis and stratified patients in the meta-GEO
cohort into three distinct clusters (Figures S6A, B). These three
clusters were defined as m°®A-R-C1, m°A-R-C2 and m°A-R-C3,
which showed different clinical parameters. The heatmap revealed
that patients with pathological stage IA were mainly classified by
m®A-R-C2, whereas patients with pathological stage II were
mostly represented by m°A-R-C3 (Figure S6C and Table S5).
We then evaluated the overall survival of patients in the three cluster-
Rs via multivariate Cox regression analysis and the log-rank test.
Kaplan-Meier curves showed that patients in m®A-R-C2 had the best
prognosis, whereas patients in m°A-R-C3 had the worst prognosis
(Figure 3D). The results revealed that age, pathological stage and
cluster-R were associated with patients’ OS (m°A-R-C2 vs. m°A-R-
C3, HR = 0.444 [95%CI = 0.295 - 0.666], P < 0.001; m°A-R-C1 vs.
mPA-R-C3, HR = 0476 [95%CI = 0.343 - 0.661], P < 0.001,
Figure 3E). We further evaluated m®A regulators’ expression
among three cluster-Rs and determined that most of the m°A
regulators’ expression varied in different cluster-Rs (Figure 3F).
Moreover, we analyzed the immune landscape of the three cluster-
Rs. We performed the ssGSEA analysis to evaluate the proportion of
twenty-eight immune cells in these three m°A gene-related
phenotypes. We found that activated CD4 T cells, memory B cells
were relatively enriched in mP®A-R-C3 (Figure S4E). We then utilized
the ESTIMATE algorithm to figure out the differences among the
three cluster-Rs. The results indicated that m°A-R-C2 exhibited the
lowest ImmuneScore, ESTIMATEScore and StromalScore,
suggesting that m®A-R-C2 was rarely related to immunity (Figure
S6D). Also, we found that CTLA-4 and PD-L1 expression were
lowest in m®A-R-C2 and highest in m°A-R-C3, which also suggested
different immune features across three cluster-Rs (Figure 3G).

Establishment of the m®A-Predictive Score
and Nomogram

Although m°®A-related clusters and cluster-Rs can stratify early-
stage LUAD patients into distinct groups correlated with different
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prognoses, this predictive method was not efficient to predict
patients in the individual cohort. Thus, a more accurate and
consistent predictive model based on m°A-related clusters and
cluster-Rs was needed. And we established the m°®A-predictive
score to classify early-stage LUAD patients, which was of great
importance. The m®A-predictive score was established based on five
key genes selected via univariate Cox regression analysis (Table S7),

random forest analysis and multivariate Cox regression analysis
(Table S8) (m°A-predictive score = -3.2370611 * Expripc; +
03936202 * Exprersy + 0.5548459 * Expriraon + 0.7905488 *
Exprarpizas - 04148747 * Exprryprssz)- We used the alluvial
diagram to illustrate the connection among GSE groups, m°®A-
related clusters, m°A-related cluster-Rs and m°A-predictive score
(Figure 4A). We identified patients in m°A-C1 were more likely to
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have a higher m®A-predictive score, while patients in m°A-C2 were
more likely to have a lower m°A-predictive score. The above
findings were also illustrated by a violin diagram (Figure 4E).
Also, we found that patients in the m®A-R-C3 had the highest m®A-
predictive score among these three cluster-Rs (Figure 4B). We then
divided the patients into low- and high-score subgroups and
determined the efficacy of the m®A-predictive score (Figure S7B).

In the meta-GEO cohort, Kaplan-Meier curves implied that a
higher m®A-predictive score was related to a worse prognosis of
early-stage LUAD patients (Figure 4D, left panel). And we utilized
the time-dependent ROC curves to evaluate the predictive efficacy
of the m®A-predictive score in the meta-GEO cohort, which
revealed that the 1-, 3- and 5-year AUCs were 0.67, 0.71 and 0.75
(Figure S7A). Besides, we also analyzed the relationship between

Frontiers in Immunology | www.frontiersin.org

September 2021 | Volume 12 | Article 698236


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Zhou and Gao

mPA in Early-Stage LUAD

GSE group Cluster Cluster_R
riskgroup E83 high E53 low
(o] D meta-GEO cohort
1.00{ 4,
2
2o; 2
: i
So: 2
T 2
g £ <
E @ 0: @
&
)
o 000
3 2000 600 00
Time(Days)
Number at risk
igh sk 272 74 13 2
petear ] 105 g o
] 2000 000 00
Time(Days)
E F meta-GEO cohort
riskgroup F&3 high low
10
75 Wilcoxon, p = 3.9e~12
o o
o
2
3%°
I 3 g
3 ol i
€ 36 by
25 I g
4
mBA_C1  m6AC2  m6A_C3
high low
G High m6A-risk score (174 (96.7%) of 180 samples)
™
[ I T LT T I TR
1IN 1T o % 1w
——
—_—
D3 ——
16 1
e 2 ———
L X4 e
y 1 :Illlllu I||=I| i g;g?« ﬁmm"un‘ :‘ge
— Nonsense_Mutation )
IO v — M Missense_Mutation [ Il
30% I T WML T E 0L ot S — =§p"°e’§:fm Del  Nstage
A rame_Shift_Del
% Ll ! II i IIIIIII I“IllI H“I A };Esﬁﬁ = B Frame_Shift_Ins M No
e IIIIIII 1 i RY§3T512= W Multi_Hit N1
T e —] M In_Frame_Del
Ll mernm 1 GOL11AT Tstage
FIHE om0 GSMDT St 1Tt
25% I o 1 o 1 MUG17 ——
25% || L m 1 111 NAV3 — |43
5% nm LU 1w 1 ANK2 — | 58]
4% 1 1 e 1 1 ZNF536 —
4% 1 anm LML U TNR —
4% o ) 1 I ey i RP1L1 —
2% [ U T Loy o 1 DNAH9 —
1% 00O O APQB —
1% n (g 1 mroar 1 ADGRG4 ~ wem
7% 1 LRI Ll 1 KEAPT -
the diagram, including stage, Tstage and Nstage.

——
Kruskal-Wallis, p < 2.2e-16 .

—

B
75
]
50
kK]
<
g
€
25
m6A group kY
10| 4« TCGA cohort
& —+ highiisk
+ sk

075
z
¥
8

050 - H

g
g
g

025 s

a3
0.00

8000

)

00 4000
Time(Days)
Number at risk

high risk{187 12 1 1 [
low risk {187 18 5 2 9
0

4000 6000

m6A_R_C1 mBA_R_C2 m6A_R_C3
GSE72094 cohort
100

= highiisk
- lowrisk

2000

1500

3 S0 1000
Time(Days)
Number at risk
high risk {155 122 39 5 o
low risk {156 139 53 17 1

3 S0 100 1500 2000
Time(Days)

Time(Days)
riskgroup £53 high (1 ow GSE72094 cohort
TCGA cohort riskgroup £63 high <1 low
9 .
o
Wilcoxon, p = 2.9e-08
6 8
<
2
27
<4
3
4 [}
:I 6
a
o
5
2
4
high low high low
High m6A-risk score (161(89.4%) of 180 samples)
L W il I
NN 1A ] 100 0 I o
Ttage 0 20 40 60
40% I TN —
39% NI Ly MUCts
359 I m it iy P53 —
359 MWW O 00 nm RYR: —
3% I 010 00 KRA —
222 it it B Sl UHR ——
R T L g
Nonsense_Mutation |
[T v < e
gﬁgﬁmmn A I o K — M Missense_Mutation [ II
g i .— =§p"w'§:\em Del  Nstage
% LI 1 i L 1 — e il od
1389/2 RV 0 R AR I i éﬁkﬁ%' — M Frame_Shift_ns [
e O N
1698 IR i T T KEARY W in_Frame_Del
155% LI 00 T FAT3 — Tstage
159 LI 1 T 1 COL1AT ln
155 I L wit 1 | S, —
159 TN W R 1011 DNAH9  mmm T2
B M O 1 i PCDHi5  mmm T3
145 WLV 0 i MUCI7.
1456 W 1 T Il ADAMTS 12 mmmn
145 WO i 1 I ADGRGA  mmm
129 W (T i il PCLO =
12% LT T T i R =
0% L 1 ! IPAPPAZ i
9% W i VI RPILT

FIGURE 4 | Establishment of m®A-predictive score and evaluation its correlated clinical landscapes. (A) Sankey diagram of different GSE groups with various m°A
clusters, mPA cluster-Rs and m®A-predictive score. (B) Comparison of m°A-predictive score among three clusters in the meta-GEO cohort (*P < 0.05; **P < 0.01;
**P < 0.001). (C) Comparison of tumor mutation burden (TMB) between low and high m®A-score groups in TCGA cohort. (D) Kaplan-Meier curves of low and high
mCA-score groups in meta-GEO, TCGA and GSE72094 cohorts via Log-rank test. (E) Comparison of mPA-predictive score among three clusters in the meta-GEO
cohort (*P < 0.05; ** P< 0.01; **P < 0.001). (F) Distribution of PD-L1 expression levels in different m®A-score groups of meta-GEO, TCGA and GSE72094 cohorts.
(G) Mutational features of the top mutated genes in low and high mA-score groups in the TCGA cohort. The sample annotations were shown in the upper part of

PD-L1 expression and m®A-predictive score in the meta-GEO
cohort. We observed that PD-L1 expression was remarkedly
elevated in the high m®A-score group (Figure 4F, left panel).
Next, we validated the m°®A-predictive score with two
independent cohorts, the TCGA cohort and the GSE72094
cohort. We first calculated the m°®A-predictive score and
divided each cohort into low- and high-score subgroups in
TCGA (Figure S7D) and GSE72094 cohorts (Figure S7F).
Log-rank test was then utilized to determine the correlation of

m®A-predictive score and the clinical outcomes in both cohorts.

We found that in the TCG
of predictive score was
(Figure 4D, middle and

A and GSE72094 cohorts, the increase
related to poor clinical outcomes

right panel). Also, we evaluated the

efficacy of the m®A-predictive score and the results revealed that
1-, 3- and 5-year AUCs were 0.6, 0.61 and 0.63 in the TCGA

cohort (Figure §7C), 0.69,

0.63 and 0.84 in the GSE72094 cohort,

indicating this scoring system’s 5-year predictive efficacy was the

highest (Figure S7E). We

also found that PD-L1 expression was
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mainly increased in the high-score group (Figure 4F, middle and
right panel). Recent studies have found that TMB can play an
essential role in predicting the response of immunotherapy (54).
Thus, we further explored the correlation of m°A-predictive score
and TMB in the TCGA cohort. Our results revealed that patients
of the high-score group had higher TMB (Figure 4C). Besides, we
analyzed the top mutational genes in these two subgroups
respectively. The mutational feature indicated that genes in the
high-score group had higher mutational rates than the other
(Figure 4G). The top three genes in the high-score group were
TP53 (67%), TTN (59%) and CSMD3 (56%), while those in the
other group were TTN (40%), MUC16 (39%) and TP53 (35%). In
a word, we comprehensively evaluated the interaction between
m®A-predictive score and somatic mutations.

We then integrated clinical parameters and m®A-predictive score
to build a nomogram, which aimed to elevate the accuracy and
reliability of the predictive model in early-stage LUAD. Univariate
and multivariate Cox regression models were utilized in the meta-
GEO cohort, and the results revealed that age, stage and m°A-
predictive score were remarkedly related to patients’ OS (Figure
S8A). Then we built the nomogram according to the above three
clinical characteristics (Figure S8C). And we compared the C-index
among all of the selected clinical parameters, which indicated that the
nomogram had the highest C-index (Figure S8B). Additionally,
the calibration plots revealed the great concordance between the
prognosis and our nomogram, indicating our nomogram served as
an essential factor to predict clinical outcomes of early-stage LUAD
patients (Figure S8E). Furthermore, the time-dependent ROC
curves were utilized to evaluate the accuracy of our nomogram,
which showed that 1-, 3- and 5-year AUCs were 0.68, 0.74 and 0.75,
respectively (Figure S8D).

Application of m®A-Predictive Score in
Predicting the Immunotherapeutic Effect
To explore the detailed relationship between m°A-predictive
score and tumor immunity, we compared the immune scores
between low- and high-score subgroups in the meta-GEO
cohort. The results indicated that ESTIMATEScore and
ImmuneScore of the high-score group were predominantly
higher, while there was no difference of StromalScore between
the two groups (Figure 5A). We then calculated the fraction of
immune infiltrating cells between these two subgroups in the meta-
GEO cohort via the different algorithms. Using the CIBERSORT
algorithms, the results implied that the fraction of macrophages
MO, macrophages M1, mast cells activated, neutrophils, plasma
cells, T cells CD8 and T cells CD4 memory activated were relatively
higher in the high-score group, whereas dendritic cells resting,
eosinophils, monocytes, mast cells resting, T cells gamma delta, T
cells follicular helper, T cells CD4 memory resting, NK cells resting,
and NK cells activated were lower (Figure 5E). And the results of
the MCPcounter algorithms implied that the fraction of B lineage,
CD8 T cells, cytotoxic lymphocytes, fibroblasts, monocytic lineage
and NK cells were higher in the high-score group, whereas the
fraction of endothelial cells, neutrophils, myeloid dendritic cells
were lower (Figure 5G). Besides, we performed the GSEA
enrichment analysis of the high-score subgroup, which revealed

that mitotic cell cycle, regulation of cell cycle and cell cycle process
were the top three biological processes enriched (Figure 5F).

Immune checkpoint inhibitors (ICIs) treatment was one of the
emerging immunotherapies, which was widely used in clinical
practice (55). Some prevalent ICIs have been already utilized to
treat cancer patients, including PD-1/L1 and CTLA-4 (21, 56). In
addition, some recent studies have indicated that IPS could be
regarded as a novel predictor to predict immunotherapeutic
responses. Thus, we first performed the correlation analysis to
evaluate the correlation of m°A-predictive score and PD-L1
expression. Our study found that PD-L1 expression was
strongly related to m®A-predictive score in meta-GEO cohort
(Figure 5B, R = 0.38, P = 4.52¢-20), TCGA cohort (Figure 5C, R =
0.20, P =1.22e-04) and GSE72094 cohort (Figure 5D, R=0.41, P =
6.99¢e-14). Also, we analyzed the correlation of other two ICIs
(PD-1 and CTLA-4) and the m6A-predictive score. Our results
implied that CTLA-4 expression was increased in the high-score
group of the meta-GEO cohort and PD-1 expression was relatively
higher in the GSE72094 cohort (Figure 6B). And m°®A-predictive
score was correlated with CTLA-4 (R = 0.32, P = 1.24e-14) and
PD-1 expression (R = 0.16, P = 0.005) in meta-GEO and
GSE72094 respectively (Figure 6C). We then evaluated the
distribution of the IPS score between these two subgroups,
which revealed that the IPS score was predominantly higher in the
low-score group in the meta-GEO and TCGA cohorts (Figure 6A).
Furthermore, due to the correlation of immune response and m®A-
predictive score, we applied our m°A-predictive score to evaluate its
predictive value in an anti-PD-1 cohort (49) (study of Gide et al.) and
an adoptive T cell therapy cohort (50) (study of Lauss et al.). Based
on the log-rank test, our results revealed that patients with low
mCA-predictive scores exhibited prolonged OS and PES in the anti-
PD-1 cohort (Figure 6D). On the contrary, the prognosis of patients
with the low m°A-predictive score was poor in the adoptive T cell
therapy cohort (Figure 6E). In conclusion, the above findings
indicated that our m°A-predictive score was significantly related to
immunotherapies and could serve as a crucial factor in predicting
patients’ prognoses.

DISCUSSION

Abundant evidence revealed that m°A modification served as a
critically essential factor in tumor immunity and could regulate
malignant behaviors via the complex interaction among different
m®A regulatory proteins (57, 58). Previous publications have
investigated the role of several m®A regulators in the TME, but
no study has systematically explored the whole TME
characteristics recognized by diverse m°A regulators in early-
stage LUAD. Thus, classifying different m°A modification
clusters in the TME could expand our knowledge of the more
comprehensive association between anti-tumor immunotherapy
and m°A modification, which may promote the development of
more efficient and reliable immunotherapy strategies.

In the present study, we have identified three distinct m°A
clusters according to 23 m°A regulators’ expression levels, which
were classified by different biological processes. Our results
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implied that the m®A-C1 was classified through multiple tumor-
related biological processes (angiogenesis, EMT and hypoxia) and
biomarkers (MYC and E2F); m°A-C2 was classified through
several pathways correlated with tumorigenesis and progression,
such as Wnt, TGF-beta and Notch pathways. Emerging evidence
indicated that TME could play an essential role in the occurrence
and development of tumors, which can also affect the
immunotherapeutic responses (18, 59). Moreover, studies have
shown that patients with more abundance of dendritic cells (60), NK
cells (61) and T follicular helper cells (62) were more likely to
respond to immunotherapy with ICIs. The m®A-C2 was mostly
identified with its high infiltrating levels of the above immune cells,
suggesting its potential strengths in predicting immunotherapeutic
responses. And the m°A-C2 was also proven to have the best
prognosis among three m®A modification clusters. Previous
publications have demonstrated that the activation of some targets
(MYC and E2F) was closely related to tumorigenesis and metastasis
(63, 64). In addition, studies have revealed that EMT and hypoxia
were related to poor prognosis and may be highly correlated with
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FIGURE 5 | The relationship between m°A-predictive score and immune infiltration. (A) Distribution of different immune scores (ESTIMATEScore, ImmuneScore and
StromalScore) in low and high mPA-score groups. (B-D) The correlation analysis of PD-L1 expression levels and mGA—predictive score via Spearman correlation
method in meta-GEO cohort, TCGA cohort and GSE72094 cohort. (E) The estimated fraction of different immune infiltrating cells calculated by CIBERSORT
algorithm in different m®A-score groups (*P < 0.05; P < 0.01; **P < 0.001; ****P < 0.0001). (F) GSEA enrichment analysis (GO) of the top differentially expressed
genes in the group with a high m®A-predictive score. (G) The estimated fraction of different immune infiltrating cells calculated by MCPcounter algorithm in different
mPA-score groups. ns, not significant.

TME (65, 66). These biological processes and some specific immune
infiltrating cells were enriched in m®A-Cl, and the survival analysis
showed that patients of m°®A-Cl had unfavorable prognoses.
Integrating the biological processes and TME characteristics of
different m®A clusters, our stratification was proven to be reliable
and may foster the research of immunotherapy in early-stage LUAD.

Next, we analyzed the biological processes of the overlapping
DEGs among the three m°A modification clusters, and the
results revealed that RNA segregation and nuclear division
were enriched, indicating the overlapping DEGs could be
considered as an m®A-correlated signature. Three m°®A cluster-
Rs were then identified based on the overlapping DEGs, which
also exhibited a strong correlation with prognosis and TME
characteristics. The results revealed that m®A modification could
serve as a significant factor in classifying patients with different
TME features. The m®A-R-C2 was rarely related to immunity
and had the best clinical outcomes, whereas m°A-R-C3 was the
opposite. However, due to the heterogeneity of each patient,
using m°A clusters or cluster-Rs to stratify patients into
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independent groups was not convenient and effective. Therefore,
we constructed a scoring system (m°A-predictive score) to
accurately quantify m°A modified subgroups. The m°A-Cl1
with relatively low immune infiltrating levels had a higher
m®A-predictive score, while the m®A-C1 with abundant
immune infiltrating cells had a lower m°A-predictive score.
We further evaluated the exact role of the m°A-predictive
score, which showed that this score could be an effective
prognostic predictor in the training and validation cohorts of
early-stage LUAD. In addition, our results implied a strong
relationship between this score and TMB, somatic mutational
rate, immune-related score and immune response predictors
(IPS, PD-1, PD-L1 and CTLA-4). The findings suggested m°®A-
predictive score was a robust and reliable scoring system, which
can be used to define the m°A modification subgroups in
independent cohorts, and the scoring system was also
associated with specific immune features. Moreover, we used
this scoring system to evaluate its predictive efficacy in two
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FIGURE 6 | The value of m°A-predictive score to predict patients’ clinical outcomes with immunotherapy. (A) Comparison of IPS scores between low and high
mPA-score groups in meta-GEO and TCGA cohorts. (B) The distribution of CTLA-4 expression levels between low and high mPA-score groups in meta-GEO cohort.
The distribution of PD-1 expression levels between low and high m6A-score groups in GSE72094 cohort. (C) The Spearman correlation analysis of CTLA-4 and
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immunotherapy cohorts. Interestingly, our study found that
patients’ clinical outcomes with low m°A-predictive scores
were favorable in the anti-PD-1 cohort, while the prognosis
was poor in the adoptive T cell therapy cohort. The results
implied the different performance of our m°A-predictive score in
different kinds of immunotherapy cohorts, suggesting its
precision of predicting immunotherapeutic responses.

Due to LRPPRC being negatively correlated with most of the
immune infiltrating cells, we then analyzed its role in modulating
the TME. Previous publications have revealed that LRPPRC was
involved in multiple physiological and pathological processes,
such as energy metabolism (67). As one of the m®A regulatory
proteins, LRPPRC expression increased in diverse cancer tissues
but decrease in normal tissues (67). To be specific, Tian et al.
revealed that upregulation of LRPPRC was associated with
growth and invasion and was related to poor prognosis in
LUAD (68). In our study, we divided patients into two
subgroups according to LRPPRC expression and compared the
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immune landscapes between the low- and high-expression
subgroups. We found that immune-related scores and immune
checkpoints expression were relatively lower in the high-
expression group, which could offer strong evidence that
LRPPRC expression was negatively associated with immune
infiltration in the TME. Due to the lack of studies of the
relationship between LRPPRC and the TME, our work may
shed new light on the research of this LRPPRC and provide a
new understanding of m®A regulators’ role in the TME.

Somatic mutational genes play a crucial role in tumorigenesis
and progression, which are highly related to the diagnosis,
treatment and prognosis in various cancers (69, 70). Here, we
evaluated the difference of somatic mutation genes between the
low- and high-score subgroups. Our results implied that the
mutational rates of TP53, TNN and CSMD3 were the top three
in the high-score group, whereas TNN, MUC16 and TP53 were
the top three mutational genes in the low-score group. Li et al.
have reported that MUC16 mutations were strongly correlated
with immune-related pathways in gastric cancer (71).
Specifically, MUC16 mutations could increase the infiltrating
levels of cytotoxic T lymphocytes in the TME (72). And TTN was
also proven to be an essential factor in predicting responses of
immunotherapy with ICIs (73). TP53 mutations were ubiquitous
in various cancers, which could predict responses of anti-PD-1
immunotherapy in LUAD (74, 75). The above gene mutations
related to the m®A-predictive score were significantly correlated
with tumor immunity, indicating the complex relationship
between TME characteristics and m°A modification.

This research provided a novel insight into the interaction of
m°A modification and TME characteristics in the early-stage
LUAD. However, some limitations still existed in the work. First
of all, the results of our bioinformatical research needed to be
verified by using clinical trials with comprehensive clinical
information. Secondly, to maintain the efficacy and reliability of
our scoring system, newly identified m®A regulatory proteins were
supposed to be integrated into our model in the future. Moreover,
different kinds of appropriate immunotherapy cohorts of early-
stage LUAD were needed to further validate the accuracy of the
mC®A-predictive score. In addition, our study was a retrospective
study, and we need a prospective clinical trial of early-stage LUAD
with immunotherapy to further strengthen our results.

In the present study, we systematically revealed the extensive
role of 23 m°A regulators in TME by integrating 1230 early-stage
LUAD patients. We found that different phenotypes classified by
the m®A modification have distinct immune characteristics,
indicating the strong interaction between tumor immunity and
m°A modification in early-stage LUAD. Furthermore, a scoring
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