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Immune checkpoint inhibitors (ICIs) have become a promising immunotherapy for
cancers. Human leukocyte antigen-G (HLA-G), a neoantigen, its biological functions
and clinical relevance have been extensively investigated in malignancies, and early clinical
trials with “anti-HLA-G strategy” are being launched for advance solid cancer
immunotherapy. The mechanism of HLA-G as a new ICI is that HLA-G can bind
immune cell bearing inhibitory receptors, the immunoglobulin-like transcript (ILT)-2 and
ILT-4. HLA-G/ILT-2/-4 (HLA-G/ILTs) signaling can drive comprehensive immune
suppression, promote tumor growth and disease progression. Though clinical benefits
could be expected with application of HLA-G antibodies to blockade the HLA-G/ILTs
signaling in solid cancer immunotherapy, major challenges with the diversity of HLA-G
isoforms, HLA-G/ILTs binding specificity, intra- and inter-tumor heterogeneity of HLA-G,
lack of isoform-specific antibodies and validated assay protocols, which could
dramatically affect the clinical efficacy. Clinical benefits of HLA-G-targeted solid cancer
immunotherapy may be fluctuated or even premature unless major challenges
are addressed.

Keywords: HLA-G, immune checkpoint, immune checkpoint inhibitor, immunoglobulin-like transcript,
cancer immunotherapy
INTRODUCTION

Immune checkpoint inhibitors have become a promising immunotherapy for cancers, but durable
clinical benefits are limited for existing agents (1). It’s an exciting news released in Cancer Discovery
“Gilead Buys into Tizona’s Anti-HLA-G Strategy” that an early clinical trial with human leukocyte
antigen-G (HLA-G) inhibitor TTX-080 is being launched for advance solid cancer patients
(NCT04485013) (2).

HLA-G, firstly observed on extravillous cytotrophoblast, has been considered to play critical
roles in maintaining maternal immune tolerance for the semi-allograft fetus during pregnancy (3,
4). In the context of malignancies, aberrant HLA-G expression in melanoma lesions but not
adjacent normal tissues was reported by Paul and co-workers in 1998 for the first time (5). This
pioneering investigation has been testified with thousands of samples in more than 30 types of
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cancers. Ever increasing studies on HLA-G expression by solid
tumor lesions have revealed that high levels of HLA-G
expression was associated with advanced disease stage, tumor
metastasis, poor prognosis, or shorter disease-free survival.
However, either among patients with different types of cancers,
or among patients with the same type of cancer, intertumor and
intratumor heterogeneity of HLA-G expression is evident, such
as among patients with breast cancer (6–15), colorectal cancer
(16–24), cervical cancer (25–27), endometrial cancer (28–31),
esophageal squamous cell carcinoma (32–34), Ewing sarcoma
(35), gastric cancer (36–38), glioblastoma (39), hepatocellular
carcinoma (40–42), lung cancer (43–45), classical Hodgkin
lymphoma (46, 47), diffuse large B-cell lymphoma (48),
cutaneous T- and B-cell lymphoma (49), nasopharyngeal
carcinoma (50), oral squamous cell carcinoma (51), ovarian
cancer (52–55), pancreatic adenocarcinoma (56–59), and
thyroid cancer (60, 61) (Table 1). HLA-G expression in solid
cancers is now well acknowledged in promoting cancer cell
immune escaping and tumor development, and associated with
disease progression and poor survival either among cancer
patients or pre-clinical murine models (62).

Engagement of HLA-G/ILTs can induce either unresponsive
or tolerogenic state of a wide range of immune effector cells. The
underlying mechanisms for HLA-G as an immune checkpoint is
that HLA-G can either directly bind tyrosine-based inhibitory
motifs (ITIMs) containing immune inhibitory receptors, the
immunoglobulin-like transcript (ILT)-2/CD85j/LILRB1 and
ILT-4/CD85d/LILRB2, which is expressed on various immune
competent cells such as T lymphocytes, natural killer cells (NK),
dendritic cells (DC) (62), or indirectly by intercellular transfer
by the process of trogocytosis and exosomes to drive a
comprehensive immune suppression (63) . Immune
suppression induced by the HLA-G/ILTs signaling pathway
includes inhibition of cytotoxicity (64), inflammatory cytokine
production (65), chemotaxis and proliferation of T cells and NK
cells (66, 67), inhibition antibody production of B cells and
maturation of antigen presenting cells (68, 69), and dampen the
anti-tumor functions of invariant natural killer T (iNKT) cells
and tumor-infiltrating CD8+PD-1−ILT-2+ T cells (70, 71). Also,
HLA-G/ILTs engagement can also induce expansion of myeloid
derived suppressive cells (MDSCs) and generation of regulatory
T cells (72, 73). In addition to immune suppressive functions,
HLA-G/ILTs can promote intratumor vascular remodeling
by enhancing vascular endothelial growth factor-C (VEGF-C)
expression, and increase tumor metastasis by inducing cancer
promoting factor matrix metalloproteinases (MMPs) expression
(74, 75) (Figure 1). Consequently, both innate and adaptive
antitumor immune responses are impaired, thus favoring tumor
cell immune evasion and disease progression. In this scenario,
restoring antitumor functions of ILT-bearing immune cells with
HLA-G inhibitors such as TTX-080 sounds reasonable.

As HLA-G expression is specifically induced in most types of
solid cancer cells, clinical benefits of HLA-G inhibitors could be
expected for cancer immunotherapy. However, challenges such
as multiple HLA-G isoforms with distinct extracellular domains,
different binding sites between HLA-G and ILT-2/ILT-4
Frontiers in Immunology | www.frontiersin.org 2
interaction, intratumor or intertumor heterogeneity of HLA-G
expression, and isoform-specific antibody and validated assay
protocol lacking, remain tremendous hurdle in terms of HLA-G/
ILTs antibody-based solid cancer immunotherapy.
HLA-G ISOFORMS MOLECULAR
STRUCTURE

The HLA-G gene contains eight exons and seven introns.
However, most full-length transcripts carry only seven exons
because exon seven is usually spliced out. Due to a premature
stop codon in E6, the HLA-G full-length protein has 338-amino
acids, which is relatively shorter compared with classical HLA
class I molecules. Among these exons, E1 generates the signal
peptide, E2-E4 generate extracellular a1, a2, and a3 domains,
respectively. E5 generates the transmembrane domain, and E6
generates the intracellular cytoplasmic tail of HLA-G (76).

Due to its primary transcript alternative splicing, diverse
molecular structures of HLA-G have been observed. Seven
HLA-G isoforms including four membrane-bound (HLA-G1–
HLA-G4) and three soluble (HLA-G5–HLA-G7) monomers
have been identified. With a premature stop codon in E6,
membrane-bound (HLA-G1–HLA-G4) isoforms have a
unique truncated cytoplasmic tail comparing to other classic
HLA class I molecules. Soluble HLA-G5 and HLA-G6 isoforms
are resulted from a stop codon in intron 4, and HLA-G7 are
generated from a stop codon in intron 2, which prevents the
translation of their transmembrane domain (77, 78) (Figure 2).

Each HLA-G isoform has its unique extracellular structure.
HLA-G1 is the only full-length isoform with extracellular a1, a2,
and a3 domains; HLA-G2 has a1 and a3 domains; HLA-G3 has
the only a1 domains; HLA-G4 has a1 and a2 domains.
Similarly, HLA-G5 has the extracellular a1, a2, and a3
domains; HLA-G6 has a1 and a3 domains, and HLA-G7 has
the only a1 domains. a1 and a2 domains form the peptide
binding cleft, and a3 domain non-covalently bind to the light
chain b2-microglobulin (b2m). Novel HLA-G isoforms such as
lacking a transmembrane region and a1 domain have been
predicted with RNAseq technology (79) (Figure 3). Moreover,
higher molecular weight of HLA-G has been associated with
post-translational modifications. Homo- and hetero-HLA-G
dimers can be formed through intermolecular disulfide bonds
with Cys42 or Cys147 in the extracellular a1 or a2 domain; others
such as glycosylated, nitrated, and ubiquitinated HLA-G
molecules have also been confirmed (80–83).
HLA-G/ILTs BINDING

ILT-2 and ILT-4 belong to the type I transmembrane
glycoproteins, which have four extracellular immunoglobulin-
like domains (D1-D4), a transmembrane region, and an
intracellular tail with four or three immunoreceptor tyrosine-
based inhibitory motifs (ITIMs). ILT-2 can be found on a variety
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TABLE 1 | HLA-G expression in solid cancers.

Cancers Lesions Method
(Ab)

HLA-G
(%)

Immuno-staining evaluation Main findings Ref.

Breast cancer 39 IHC
(4H84)

41% 0, negative; 1–5% (1); 6–25% (2); 26–75% (3); 76–100% (4). Associated with shorter disease-
free survival.

(6)

58 IHC
(4H84)

70.7% Negative (0); 1–25% (1); 26–50% (2); 51–75% (3); >75% (4). Associated with advanced disease
stage.

(7)

235 IHC (HGY) 66% Negative (−); <25% (+) and/or weakly; 25–50% and/or moderately
(++); >50% and/or strongly stained (+++).

An independent prognosis factor. (8)

501 IHC
(4H84)

60% Positive, any staining of tumor cells; Negative, no staining. A prognostic factor among
classical HLA class I negative
patients.

(9)

52 IHC
(5A6G7)

59.6% Negative, <25% positivity; positive (>25% positivity. Associated with aggressiveness. (10)

45 IHC(MEM-
G/2)

62.2% Positive, >15% of staining. Associated with shorter survival. (11)

102 IHC
(4H84)

94.1% Negative (−); weak staining (+); moderate staining (++) and strong
staining (+++).

HLA-Glow is associated with higher
overall and relapse-free survival
rates.

(12)

73 HC
(MEM-G/

1)

43.8% Positive, >25% of staining, irrespective of staining intensity. Not associated with clinical
parameters.

(13)

2,042 IHC
(4H84)

24% Positive, any staining of tumor cells; Negative, no staining. Not associated with clinical
outcome.

(14)

HER2+
(n = 28)

WB
(4H84)
(5A6G7)

HLA-G/
GAPDH
ratio

High and low levels of protein expression were determined by median. Among HER2+ tumors, patients
with HLA-G6 low had a higher
pathological complete response.

(15)

Colorectal
cancer

81 IHC Based on presence or absence of positive stained cells. HLA-G expressed in majority
primary tumors but not in
associated liver metastasis.

(16)
(4H84) 29%

(MEMG/1) 35%
(MEM-G/

2)
19%

201 IHC (HGY) 64.6% Without staining (−); < 25% and/or weakly (+); 25–50% and/or
moderately (++); > 50% and/or strongly stained (+++).

An independent prognosis factor. (17)

102 IHC
(MEM-G/

2)

70.6% Based on presence or absence of positive stained cells. Associated with worse survival. (18)

457 IHC
(4H84)

70.7% HLA-G positive when >5%, irrespective of staining intensity. HLA-G expression >55%
associated with worse prognosis.

(19)

285 IHC
(4H84)

22.1% Intensity of staining (absent, weak, moderate, or strong). Associated with worse survival and
disease-free survival.

(20)

484 IHC
(4H84)

27.7% Intensity of staining (absent or faint in <20%), weak (faint to weak in
>20% but ≤70%), moderate (weak to moderate in >70%), or strong
(intense in 20~70%).

Associated with presence of the
Foxp3+ cells.

(21)

88 IHC
(4H84)

59.1% Total score of the proportion and intensity scores for negative and
positive tumor cell (ranges = 0–9). Cut point scores for positive and
negative tumor cells are ≥4.

Increased expression of HLA-G
correlated with tumor node
metastasis staging.

(22)

379 IHC The percentage of HLA-G positive tumor cells based on presence of
HLA-G staining while irrespective the staining intensity. HLA-G >5% in
a section was considered as positive. Difference of the percentage of
HLA-G positive tumor cells (DHLA-G) in the case-matched CRC
samples was calculated by the percentage of HLA-G detected with
mAb 4H84 subtracted that with mAb 5A6G7. According to value
of DHLA-G, three groups were obtained: DHLA-Gneg (DHLA-G>
−5.0%), DHLA-Gcom (−5.0%≤DHLA-G ≤ 5.0%), and DHLA-
Gpos (DHLA-G>5.0%).

HLA-Gneg in 64(16.9%), DHLA-
Gcom in 159 (42.0%), and DHLA-
Gpos in 156 (41.2%), mAbs
4H84neg5A6G7pos in 44 (11.6)
CRC cases was observed.
Both DHLA-G and its subgroups
mAbs 4H84neg5A6G7pos and
4H84 pos5A6G7 neg status were
significantly related to survival.

(23)
(4H84) 70.7%
(5A6G7) 60.4%

157 Flow
cytometry
(MEM-G/

09)

Median of
HLA-
G:14.9%
(range:
1.8–
80.0%)

Among EpCMA+ colorectal tumor cells. Higher HLA-G percentage
associated with patient poor
survival.

(24)

(Continued)
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TABLE 1 | Continued

Cancers Lesions Method
(Ab)

HLA-G
(%)

Immuno-staining evaluation Main findings Ref.

Cervical cancer 58 IHC
(5A6G7)

75.86% No expression (0); 1–30% (1); 31–70% (2); 71–100% positive cells (3). An early marker for progression. (25)

143 IHC
(4H84)

60% Membrane or combined membrane and cytoplasmic expression of
HLA-G were interpreted as positive.

Associated with disease
progression.

(26)

79 IHC
(5A6G7)

31.6% Low expression when no signal or discrete staining; high expression
when moderate or intense staining.

HLA-G detected in 17 (32.7%)
without and 8 (29.6%) with
metastasis.

(27)

Endometrial
carcinoma

44 IHC(4H84) 55% Negative (0); 1–5% (1); 6–10% (2); 11–25% (3); 26–50% (4); >50%
(5).

Associated with disease stage. (28)

525 IHC
(4H84)

39.8% Negative (0); 1–5% (1); 5–25% (2); 25–50% (3); 50–75% (4), and
>75% (5). The intensity scored 0: absent, 1: weak, 2: moderate, 3:
strong. The sum of both scores. A score of ≥2.5 considered as up-
regulation of HLA-G.

Not associated with survival. (29)

40 IHC
(4H84)

40% Both membrane-bound and cytoplasmic HLA-G expression were
considered as positive.

Not associated with survival. (30)

113 WB
(MEMG/1)

HLA-G/
GAPDH
ratio

High and low levels of protein expression were determined by median. Higher levels of HLA-G 56 kDa
isoforms were observed in patients
with metastases to lymph nodes

(31)

Esophageal
cancer

121 IHC (HGY) 90.9% Without staining(−); <25% and weakly (+); 25~50% and moderately
(++); >50% and strongly stained (+++).

An independent prognosis factor. (32)

79 IHC
(4H84)

65.8% HLA-G expression was graded as: negative, 1~25% (1+), 26~50%
(2+), 51~75% (3+), and >75% (4+), irrespective of staining intensity.

HLA-G is an independent
prognosis factor.

(33)

60 IHC
(MEM-G/

1)

70% Without staining (0); <25% (1+); 25~50% (2+); and >50% (3+).
Negative and 1+ as HLA-G negative, 2+ and 3+ as HLA-G positive.

Associated with cancer cell
differentiation, lymph node
metastasis.

(34)

Ewing sarcomas 47
(primary)

IHC
(4H84)

30% Graded by low, intermediate or strong densities. Associated with tumor infiltrating
T cells.

(35)

12
(relapse)

33%

Gastric cancer 160 IHC (HGY) 71% Without staining (−); <25% and/or weakly (+); with 25~50% and/or
moderately (++); >50% of the cancer tissues and/or strongly stained
(+++).

An independent prognosis factor. (36)

52 IHC
(5A6G7)

31.% HLA-G positivity when >10%. An independent prognosis factor. (37)

179 IHC
(4H84)

49.7% Negative; 1~25% (+); 25~50% (++); >50% (+++). An independent prognosis factor. (38)

Glioblastoma 108 IHC
(MEM-G/

2)

60.2% No details described. HLA-G-negative patients were alive
longer than HLA-G positive
patients.

(39)

Hepatocellular
carcinoma

173 IHC
(MEM-G/

1)

low (43%) The density of HLA-G staining evaluated with computerized image
system.

Associated with poor survival and
increased recurrence;

(40)
high
(57%)

36 WB
(MEM-G/

1)

66.7% No details described. An independent prognosis factor. (41)

219 IHC
(4H84)

50.2% Negative, and positive grouped as 1~25%, 26~50%, 51~75%, and
>75%.

Associated with advanced disease
stage.

(42)

Lung cancer 106 IHC (HGY) 75% Without staining (−); <25% and weakly (+); 25~50% and moderately
(++); >50% and strongly stained (+++).

An independent prognosis factor. (43)

101 IHC
(4H84)

41.6% Negative (0), 1~25% (1), 26~50% (2), and >50% (3), irrespective of
staining intensity.

Associated with advanced disease
stage.

(44)

131 IHC
(5A6G7)

34% Negative ≤ 5% and positive >5%. Predominately expressed in
adenocarcinoma.

(45)

Lymphoma
(classical
Hodgkin)

175 IHC
(MEM-G/

1)

54% Positive when >50% of neoplastic cells showed stronger staining. Associated with absence of MHC
class I expression on HRS cells
and EBV negative status.

(46)

20 IHC
(4H84)

55% Negative staining (0), <25% (1), 26~50% (2), 51~75% (3), 76~100%
(4).

Different patterns of HLA-G
expression associated with different
outcomes.

(47)

Lymphomas
(Diffuse Large B-
Cell)

148 IHC
(4H84)

24% Positive when >25% of lymphoma cells expressed intermediate/
strong staining.

Negative HLA-G expression
associated with worse survival.

(48)

(Continued)
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of immune cells, such as subpopulations of T cells, B cells,
natural killer (NK) cells, myeloid-derived suppressive cells
(MDSCs), dendritic cells (DCs), and monocytes/macrophages.
ILT-4 is not expressed on lymphocytes, but on monocytes/
macrophages, neutrophils, basophils, DCs, and MDSCs (84, 85).

A recent study revealed that ILT-2/-4 extracellular D1D2 are
responsible for the interaction with HLA-G binding, while D3D4
act as a scaffold (86). Also, ILT-2/-4 are more accessible to the
HLA-G dimer binding than that of HLA-G monomer, leading to
much stronger inhibitory signals. ILT-2 and ILT-4 extracellular
D1D2 binds to the extracellular a3 domain of HLA-G, but
structurally dependents. ILT-2 only binds to the HLA-G heavy
chain associated with b2m, while ILT-4 can bind to both b2m free
HLA-G heavy chain and HLA-G heavy chain with b2m.
Moreover, residues Tyr38 and Tyr76 in ILT-2 are responsible
Frontiers in Immunology | www.frontiersin.org 5
for binding to HLA-G Phe195 in the a3 domain, whereas residues
Tyr36 and Arg38 in ILT-4 interact with the Phe195–Tyr197 loop in
the HLA-G a3 domain (87). The different binding sites between
ILT-2/-4 and HLA-G could be an explanation for the higher
affinity of ILT-4 than the affinity of ILT-2 when they interact
with HLA-G (88). Based on the different extracellular structure
of HLA-G isoforms and ILT binding characteristics, ILT2 can
bind to the b2m associated HLA-G1 and HLA-G5 isoforms.
However, ILT-4 can bind to both b2m associated or b2m free
HLA-G isoforms, which include HLA-G1, -G2, -G4, -G5 and
HLA-G6 isoforms (Figure 4).

Taking advantage of the early studies on fetal-maternal
immune tolerance, HLA-G-mediated immune inhibition has
been well-acknowledged in the broader spectrum of health and
disease situations. HLA-G expression favors the acceptance of
TABLE 1 | Continued

Cancers Lesions Method
(Ab)

HLA-G
(%)

Immuno-staining evaluation Main findings Ref.

Lymphomas
(cutaneous T-
and B-cell)

45 IHC
(4H84)

51% HLA-G positivity as a strong (numerous cells) or as a single-cell
positivity (scant, scattered cells throughout the infiltrate).

Associated with high-grade
histology and advanced stage in
CTCL.

(49)

Nasopharyngeal
carcinoma

552 IHC
(4H84)

79.2% Intensity as (neg); weak (1); moderate (2); strong (3). Percentage <5%
(0); 5–25% (1); 26–50% (2); 51–75% (3); 76–100% (4). A score by
adding intensity and positive cells.

Associated with poor prognosis,
disease recurrence or metastasis.

(50)

Oral squamous
cell carcinoma

60 IHC
(MEM-G/

2)

50% An immunoreactive score (IRS) calculated by multiplying the
percentage and staining intensity. IRS = 0 (negative); <2 (low); >2
(high).

Lower HLA-G expression
associated with longer survival.

(51)

Ovarian cancer 40 IHC
(4H84)

Low
(55%)

0–25% stained tumors and mild staining (1+); 25–50% and
moderately staining (2+); >50% and strongly staining (3+).

HLA-G expression >17%
associated with poor survival.

(52)

moderate
(20%)
strong
(25%)

34 IHC
(MEM-G/

2)

35% No details described. Associated with high-grade
histology.

(53)

118 IHC
(5A6G7)

79.7% Percentage of stained cells >5% (+); <5% (−). Not associated with clinical
parameters.

(54)

62 IHC
(4H84)

72.4% The scores correspond to the percentage of positive tumor cells of
<1% (score 0); 1–5% (score 1), 6–25% (score 2), 26–50% (score 3),
and >50% (score 4). Score 1 and score 2 were considered as “low
positive percentage cells” scores. Whereas, score 3 and score 4 were
considered as “high positive percentage cells” scores.

Positive HLA-G expression was
highly represented in patients with
ovarian carcinoma recurrence.

(55)

Pancreatic
adenocarcinoma

122 IHC
(Rabbit

polyclonal)

low
(36.1%)

0, none; 1, ≤25%; 2, 26~50%; 3, >50%). Intensity (0, none; 1, weak;
2, moderate; 3, strong).

An independent prognosis factor. (56)

high
(63.9%)

42 IHC
(4H84)

66% 1–25% (negative), 26–50%, 51~75%, and >75%, irrespective of
staining intensity.

Associated with advanced stages (57)

158 IHC (not
described)

39.2% Negative: <5%; local: 5–75%; diffuse: >75%, irrespective of staining
intensity.

Associated with worse survival. (58)

243 IHC
(4H84)

36.7% Strongly (+++), with almost all cancer cells (≥90%) staining strongly;
moderately (++), with <90 and ≥50% of cancer cells staining strongly;
weakly positive (+), with <50 and >10% of cancer cells staining
strongly or >5% of cancer cells staining weakly; negative (−), with
≤5% of cancer cells staining.

High HLA-G associated with both
shorter overall survival and disease-
free survival.

(59)

Thyroid
carcinoma

138 IHC
(5A6G7)

90.6% Without staining (–); <25% (+); 25~50% (++); >50% of cell staining
(+++).

Associated with poor prognosis (60)

70 IHC
(MEM-G/

2)

44.3% No details described. Associated with lymph node
metastasis.

(61)
June 2021 | Volume 12 | Article 69
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allograft organ transplantation, whereas it provides an additional
strategy for cancer cells to escape from immune surveillance and
clearance (89, 90). HLA-G/ILTs engagement activates the
phosphorylation of the ITIMs contained in the tyrosine
residues, which present docking sites for Src homology 2
(SH2) protein tyrosine phosphates SHP-1 and SHP-2, thus
initiating an inhibitory signaling cascade. Meanwhile, ITIM-
dependent recruitment of SHP1/SHP2 can markedly suppress
the ITAM activated Syk/Src signal cascades in immune cell
activation (91).
CHALLENGES IN HLA-G/ILTs TARGETED
SOLID CANCER IMMUNOTHERAPY

One strategy successfully deployed by cancer cells for immune
evasion is the impairment of the classical HLA class I and II
antigens to hide infected cells from T cell recognition, while
aberrant induction of HLA-G expression by cancer cells makes
host anti-tumor immune system rather vulnerable (92). Though
development of HLA-G/ILTs interaction targeted ICIs is
Frontiers in Immunology | www.frontiersin.org 6
promising for cancer immunotherapy, much real-world
information on HLA-G/ILTs status is extremely necessary for
both future basic and clinical investigations.

Lack of HLA-G Isoform-Specific
Monoclonal Antibodies
Themost fundamental task is to developHLA-Gmolecule universal
or distinct HLA-G isoform-specific mAbs. As high as 80% amino
acid sequence identity sharing in the extracellular domain of all
HLA class I antigens, only distinct feature of HLA-G is its molecular
weight of 39 kDa (HLA-G1 isoform) which is less than 45 kDa of
the other classical HLA class I antigens (93), and this is rather
similar to other non-classical HLA class I antigens including HLA-E
and HLA-F (https://www.uniprot.org/uniprot/P17693; https://
www.uniprot.org/uniprot/P13747; https://www.uniprot.org/
uniprot/P30511). CLUSTALO sequence alignment results showed
that, among HLA-G, HLA-F, and HLA-E molecules, the full-length
amino acid sequence are identity round 62%, 75.9% between HLA-
G and HLA-F, 71.2% between HLA-G and HLA-E, and 40.1%
between HLA-E and HLA-F (Supplementary Figure 1). Thus, the
cross-reactivity of anti-HLA-G mAbs to other classical and non-
classical HLA class I antigens remains a huge task to be improved
FIGURE 1 | A comprehensive immune suppression mediated by HLA-G/ILTs engagement in cancer development. (A) Distinct profiles of HLA-G isoform expression
in an individual cancer patient. The heterogeneous landscape of HLA-G isoform differential expression among cancer patients can be temporal and spatial
dependent. (B) Immune inhibitory receptors ILT-2 and ILT-4 are expressed on different immune cell. ILT-2 recognizes HLA-G1 and HLA-G5 while ILT-4 recognizes
HLA-G1, -G2, -G5, and HLA-G6 isoforms. HLA-G isoform-dependent ILT-2 and ILT-4 engagement induces a wide spectrum of immune suppression which benefits
cancer cell escaping from host immune surveillance and anti-tumor immunity. (C) HLA-G expression up-regulates intratumor ILTs and MMPs expression. (D) ILTs
induce VEGF-C expression and enhance cancer cell proliferation, migration and invasion through AKT/ERK signaling, which favors cancer cell angiogenesis and
metastasis. (E) In addition to direct binding between HLA-G and ILTs, immune cells acquire HLA-G from neighboring HLA-G+ cancer cells through contact-
dependent trogocytosis and from cancer cell derived HLA-G-bearing exosomes in a long-distance. HLA-G acquired immune cells became tolerogenic phenotype
and immune functions are impaired.
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(94). Indeed, cross-reactivity of the most widely used such as mAb
4H84 for denatured HLA-G form has been observed to react with
other HLA class I antigens (95, 96). Moreover, due to HLA-G
primary transcript alternative splicing, in addition to seven ever-
identified HLA-G isoforms and more novel isoforms can be
Frontiers in Immunology | www.frontiersin.org 7
expected, lack of HLA-G isoform-specific mAb prevents advances
in characterizing their biological functions and clinical significance
(97). To be noted, a panel of novel HLA-G isoforms predicted by
deep transcriptome analysis have been reported. Among these
isoforms, HLA-G1L have extra five amino acids (NKTPR) ahead
A

B

C

FIGURE 2 | Seven identified HLA-G isoforms generated from its primary transcript alternative splicing. (A) The heavy chain of membrane-bound isoforms HLA-G1,
-G2, -G3, -G4 generated by an mRNA containing a stop codon in exon 6. (B) Soluble isoforms HLA-G5 and HLA-G6 generated by an mRNA with a pre-stop codon
in intron 4, which terminates transmembrane and cytoplasmic tail transcription. (C) Soluble isoforms HLA-G7 generated by an mRNA with a pre-stop codon in intron

2, which terminates the following domain transcription. Sig.peptide, Signal peptide; TMD, transmembrane domain; , stop codon. The superscript capital letter

represents amino acid at the position.
FIGURE 3 | A schematic structure of HLA-G isoforms. (A) HLA-G1 have a1, a2, and a3 extracellular domains; (B) HLA-G2 have a1, and a3 extracellular domains;
(C) HLA-G3 have a1 extracellular domains; (D) HLA-G4 have a1, and a2 extracellular domains; (E) HLA-G5 have a1, a2, and a3 extracellular domains; (F) HLA-G6
have a1 and a3 extracellular domains; (G) HLA-G7 has a1 extracellular domain followed by two C- terminal amino-acids encoded by intron 2; (H) Novel HLA-G
isoforms such as lacking a transmembrane region and a1 domain have been predicted, but their structure remains confirmed.
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the beginning residue Methionine at the N-terminal ends, others
such as isoforms lack a1 or both a1 and a2 extracellular domains,
and novel soluble HLA-G isoforms with distinct C-terminal ends
generated by skipping exons 5 and 6.

Among anti-HLA-G antibodies, mAbs 4H84 and 5A6G7 are
with known recognizing epitope in HLA-G heavy chain. mAb
4H84 generated by amino acid residues from 61 to 83 (in a1
domain HLA-G, which probes all denatured HLA-G isoforms
(98). mAb 5A6G7 generated by a 22-mer C-terminal amino acid
sequence in HLA-G5 and HLA-G6, which probes both native
and denatured HLA-G5 and HLA-G6 isoforms (99, 100). mAbs
4H84 and 5A6G7 are the most widely used antibodies for
evaluating total HLA-G (mAbs 4H84 and MEM-G/1) or HLA-
G5/6 isoforms (mAb 5A6G7) respectively in malignant lesions
with immunohistochemistry. As a result, novel isoforms without
a1 domain can’t be detected by the mAb 4H84 (23, 79). In this
scenario, the interpretation of clinical significance of HLA-G in
cancers seems rather premature unless more reliable specific
anti-HLA-G mAbs are used (Figure 5).

Furthermore, evaluation criteria for lesion HLA-G expression
including staining protocols, cut-off levels, and cross-assay
concordance are far from standardized, which could
dramatically affect the definition of HLA-G expression and
interpretation of its clinical significance, even with a same
mAb to detect HLA-G within a certain type of cancer (62, 96).
In this context, a reference criterion should be recommended by
international community for HLA-G staining to minimize
discrepancies across studies is urgently warranted.

Also, given different binding specificity of HLA-G between
ILT-2 and ILT-4 resulted from its extracellular structure, that
ILT-2 binds HLA-G1 and HLA-G5 while ILT-4 binds HLA-G1,
-G2, -G4, -G5, and HLA-G6 isoforms, the landscape of HLA-G
Frontiers in Immunology | www.frontiersin.org 8
isoforms and their degree of expression in cancers can
tremendously affect the benefits of HLA-G/ILTs based
cancer immunotherapy.

Heterogeneity of HLA-G Expression
in Malignancies
Accumulating evidence solidify the concept that tumor
heterogeneity, including inter-patient, inter-tumor, and intra-
tumor heterogeneity, is the main cause for variable responses and
clinical outcomes to anti-cancer therapy (101). Since the first report
HLA-G expressed in tumors, the degree or proportion of HLA-G
expression in thousands of malignant lesions among over thirty
different types of cancers have been explored. Data revealed that
HLA-G expression is restricted to malignant lesions, but not in
adjacent non-tumorous tissues, and that neo-HLA-G expression is
strongly related tometastasis, advanceddisease stage, poorprognosis,
and clinical outcome (89). However, inter-patient, inter-tumor, and
intra-tumor heterogeneity of the HLA-G expression in each
histopathological type of malignancies is also evident (102, 103). In
addition to theHLA-Gheterogeneity caused by tumor cell itself, such
as clonal growth with genetic alterations, epigenetic and post-
translational modifications, explanation of HLA-G expression
could be biased due to usage of different current available anti-
HLA-Gmonoclonal antibodies, anddifferentassayprotocols (62, 96).
Very recently, using the method offlow cytometry, our data showed
that HLA-G expression in 157 epithelial cell adhesion molecule
(EpCAM) positive-gated colorectal tumor lesions is with a median
of 14.90% (range: 1.81~79.90%) (24).

For an example, the inter-patient proportion of HLA-G
expression in cancers has been observed from 24 to 94.1% in
breast cancers (12, 14), and from 22.1 to 70.7% in colorectal
cancers (19, 20). Noteworthy, only few studies on the
FIGURE 4 | Different binding sites between HLA-G/ILT-2 and HLA-G/ILT-4. ILT-2 residues Tyr38 and Tyr76 bind Phe195 in HLA-G a3 domain, ILT-4 residues
Tyr36 and Arg38 bind Phe195–Tyr197 loop in HLA-G a3 domain. (A) ILT-2 binds HLA-G heavy chain associated with b2m (HLA-G1 and HLA-G5). (B) ILT-4 binds
both b2m-free (HLA-G2 and HLA-G6) and b2m-associated (HLA-G1 and HLA-G5) HLA-G heavy chain. (C) A panel of novel HLA-G isoforms including isoforms
without a1 domain and transmembrane region, or with an extended 5’-region generated by HLA-G mRNA alternative splicing were predicted. However, molecular

structure of these novel isoforms and remain to be identified, and interaction with ILTs is unknown yet. and represent ILT-2 and ILT-4 binding site in

HLA-G isoforms.
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intrapatient inter-tumor and intra-tumor heterogeneity of the
HLA-G expression were available. In a cohort of 136 primary
cervical cancers, inter-tumor heterogeneity of the HLA-G
expression was detected in 25% of these lesions and 11% of
case-matched lymph node (LN) metastases. Among pathological
subtypes, HLA-G was positive in 22% in squamous cell
carcinoma lesions and 20% in LN metastatic tissues, 31% in
adenocarcinoma lesions, and 28.0% in their LN metastatic
samples. In patients with invasive cervical cancer, positive
proportion of HLA-G expression was found in 31.6 and 29.6%
of the primary and LN metastatic lesions, respectively (104).
Similarly, a study by Swets et al. (16) showed that HLA-G
expression was found in 29% of the primary colorectal cancer
and 30% of the corresponding liver metastases. Finally, regarding
the intra-tumor heterogeneity of the HLA-G, Rouas-Freiss et al.
(103) reported that, among 19 clear cell renal-cell carcinoma
lesions, the proportion of HLA-G expression varies dramatically
on CA9+ clear cell renal-cell carcinoma cells in different zones in
each sample, which could be ranged from negative to almost
totally positive for HLA-G expression. Also with clear cell renal-
cell carcinoma lesions, a study by Tronik-Le Roux et al. (79)
released that HLA-G isoform expression including HLA-G1,
-G5, and HLA-G6 are extremely heterogeneous among distinct
subcellular locations and zones within a same tumor. In a serial
section study with colorectal and esophageal cancer lesions, our
recent findings further revealed that intratumor heterogeneous
expression of HLA-G is a very frequent phenomenon among
different zones within a tumor (102).

Native HLA-G Isoform Expression in
Cancer Lesions Needs Evaluated
As aforementioned, most currently available information of
HLA-G expression in cancer lesions were evaluated by
Frontiers in Immunology | www.frontiersin.org 9
immunohistochemistry with the mAbs 4H84 and/or 5A6G7,
which represents all a1 domain containing HLA-G or HLA-
G5/6 isoform expression. Whether these data are consistent with
the levels of tumor cell surface HLA-G expression remain elusive.
Previous evidence showed that no correlation has been
established between the degree of cancer lesion HLA-G5/6
expression evaluated with immunohistochemistry and
peripheral soluble HLA-G levels (42). Given the fact that HLA-
G/ILTs interaction is conformation dependent, tumor cell
surface native or conformational HLA-G expression be
evaluated with assays such as flow cytometry is necessary
(105). To address this issue, more reliable and specific anti-
native or -conformational HLA-G mAbs are yet to be explored.
OTHER HLA-G RECEPTORS

In addition to the ILT-2 and ILT4, receptors including killer
inhibitory receptor (KIR) 2DL4/CD158d, CD8, CD160 could
also bind HLA-G (106). To be noted, NKG2A/CD94 has been
recently reported which could bind to allelic specific products of
HLA-G (107).

KIR2DL4 is a member of the killer cell immunoglobulin (Ig)-
like receptor (KIR) family, but with an atypical feature owing to a
D0 and D2 hybrid extracellular domain, a positively charged
arginine residue in the transmembrane region and one ITIM
domain in its cytoplasmatic tail. The charged arginine residue
enables KIR2DL4 to associate with the Fc fragment receptor g
(FcRg), which contains two cytoplasmic immunoreceptor
tyrosine-based activation motifs (ITAMs). With this unique
structure, KIR2DL4 is of both the activation (ITAM) and
inhibitory (ITIM) signaling domains (108). The biological
function of KIR2DL4 and HLA-G binding is to work as an
FIGURE 5 | Epitopes in HLA-G recognized by mAbs 4H84 and 5A6G7. Among HLA-G antibodies, only mAbs 4H84 and 5A6G7 were generated with definite
immunogen epitopes. mAb 4H84 generated by 61st~83rd amino acids (EEETRNTKAHAQTDRMNLQTLRG) in HLA-G a1 domain which recognizes denatured heavy
chain of all seven identified HLA-G isoforms containing a1 domain. mAb 5A6G7 generated by 21-mer C-terminal amino acid (SKEGDGGIMSVRESRSLSEDL) in HLA-
G5 and -G6 isoforms, which recognizes both native and denatured heavy chain of HLA-G5 and HLA-G6 isoforms. Novel HLA-G isoforms such as isoforms without

a1 domain and transmembrane region, or with an extended 5’-region were predicted. However, no current antibody is available to detect. and

represent mAb 4H84 and 5A6G7 recognizing site in HLA-G isoforms.
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activating receptor, which induces strong pro-inflammatory
cytokine and chemokine immune responses through the
endosomal DNA-dependent protein kinase (DNA-PKcs)
signaling pathway, but not the NK cell cytotoxicity (109).
KIR2DL4 is predominately expressed in decidual NK cells and
HLA-G/KIR2DL4 interaction plays critical roles in the
regulation of maternal-fetal immune microenvironment,
spiralartery remodeling and fetal growth (4).

The heterodimer NKG2A/CD94, a member of the C-type
lectin-like receptor family, is a well-known immune inhibitory
receptor for HLA-E binding. NKG2A/CD94 is mainly expressed
on CD8+ T lymphocytes and subsets of NK cells (110).
Additionally, NKG2A/CD94 has recently been found to be an
HLA-G allelic product dependent receptor. Hò et al. (107)
revealed that a remarkably higher binding affinity was observed
for the HLA-G*01:04/NKG2A/CD94 interaction than those for
the HLA-G*01:03/NKG2A/CD94 and HLA-G*01:01/NKG2A/
CD94 interactions. Moreover, no engagement was observed
between the activating receptor NKG2C/CD94 and HLA-G.
HLA-G allelic product dependent binding of NKG2A/CD94
could result from the single amino acid residue in the HLA-
G*01:01 heavy chain differing from HLA-G*01:04 (p.110L > I)
and HLA-G*01:03 (p.31T > S), and these different residues may
affect the peptide repertoire and receptor recognition (111).
Consequently, different biological function modulation could
be expected for the different allelic HLA-G molecules on the
immune cells expressing NKG2A/CD94.

Other receptors are the glycosylphosphatidylinositol-anchored
receptor CD160, which is expressed on activated endothelial cells,
CD16+CD56dim NK cells, and CD8+ T cells (112, 113). CD160
signaling depends on adapter proteins, such as the phosphoinositide-
3 kinase, to activate endothelial cell migration and angiogenesis, and
immune cells, such as cytokine releasing and target cell lyses (112,
114). Moreover, the cytotoxic T cell surface marker CD8 is reported
to interact with the HLA-G protein, which can induce apoptosis of
the CD8+ T cells and CD56+CD8+ NKT cells through the Fas/FasL
pathway (115).
CONCLUSIONS AND PERSPECTIVES

In most scenarios, HLA-G/ILTs interaction promotes cancer
cells to escape immune surveillance and anti-tumor immunity
(97, 116). Interference or blockade of HLA-G/ILTs interaction
can restore host anti-tumor immune responses, which providing
a strong rationale and opportunities to develop HLA-G/ILTs-
targeted ICIs for solid cancer immunotherapy. Indeed, early
clinical trials based on this immune checkpoint is being
launched for different advanced solid cancer treatment2.
However, many challenges remain to be addressed.

First, multiple identified HLA-G isoforms and more can be
expected, which have distinct extracellular domain(s) for each of
them. This information indicates that biological function of different
isoforms is diverse. Being lack of isoform-specific antibodies, their
tumor tissue expression characteristics and clinical significance is
unclear. Currently available mAb 4H84, which probes all isoforms
containing a1 domain, can’t distinguish either a distinct isoform or
Frontiers in Immunology | www.frontiersin.org 10
combination of different isoforms expressed on tumor tissues. Novel
isoforms without a1 domain can’t be detected with any available
mAbs which can be ignored in tumor tissues. These findings sharply
compounded the clinical relevance of HLA-G in tumor patients
(62). Second, being lack of international validated or recommended
assay protocols, both performance and cut-off points are diverse and
unconcordance in interpretation of HLA-G expression across
studies is rather common (117). Third, being the landscape of
HLA-G isoform expression in tumor tissues can’t be specified,
application of HLA-G/ILTs-targeted ICIs for cancer treatment can
be aimless. Furthermore, HLA-G/ILTs engagement is isoform
dependent, where HLA-G1 and HLA-G5 binds ILT-2, and HLA-
G1, -G2, -G4, -G5, and HLA-G6 binds ILT-4 (118). Differential
expression of HLA-G isoforms does exist in tumor cells whereas the
underlying mechanisms are yet to be explored. In this scenario,
patient individualized landscape and degree of HLA-G isoform
expression should be defined before therapy due to which can
tremendously affect clinical benefits of HLA-G-based solid
cancer immunotherapy.

In summary, exploration of more reliable and HLA-G isoform-
specific antibodies, implementation of international community
validated HLA-G detection protocols, deeper insight of patient
individualized landscape of HLA-G expression, and development
of isoform matched both HLA-G and ILT-2/-4 blocking antibodies,
are future directions warranted for the HLA-G/ILTs-targeted solid
cancer immunotherapy. Despite these challenges, owing to HLA-G
expression is restrict to malignant tissues, and HLA-G/ILTs
signaling is involved in a broader spectrum of immune responses
than CTLA-4/B7 and PD-1/PD-L1 does, the clinical effects of the
immune checkpoint HLA-G/ILTs is optimistic.
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