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Neutrophils, which are the most abundant circulating leukocytes in humans, are the first
line of defense against bacterial and fungal infections. Recent studies have reported the
role and importance of neutrophils in cancers. Glioma and brain metastases are the most
common malignant tumors of the brain. The tumor microenvironment (TME) in the brain is
complex and unique owing to the brain-blood barrier or brain-tumor barrier, which may
prevent drug penetration and decrease the efficacy of immunotherapy. However, there
are limited studies on the correlation between brain cancer and neutrophils. This review
discusses the origin and functions of neutrophils. Additionally, the current knowledge on
the correlation between neutrophil-to-lymphocyte ratio and prognosis of glioma and brain
metastases has been summarized. Furthermore, the implications of tumor-associated
neutrophil (TAN) phenotypes and the functions of TANs have been discussed. Finally, the
potential effects of various treatments on TANs and the ability of neutrophils to function as
a nanocarrier of drugs to the brain TME have been summarized. However, further studies
are needed to elucidate the complex interactions between neutrophils, other immune
cells, and brain tumor cells.
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INTRODUCTION

Paul Ehrlich coined the term neutrophils, which are also known as polymorphonuclear cells, in the
late nineteenth century due to their preferential uptake of neutral pH dye and their inability to retain
acidic or basic dyes (1, 2). Neutrophils, which are the most abundant circulating leukocytes in
mammals, have a short life span and the neutrophil population is constantly replenished from the
bone marrow (3). The first line of defense against bacterial and fungal infections is neutrophils.
Additionally, neutrophils can modulate the adaptive immune response at the inflammation site
through interaction with antigen-presenting cells and lymphocytes (4–6). Since the nineteenth
century, inflammation has been correlated with the pathogenesis of cancer (7). Cancer-related
inflammation, a hallmark of tumor biology, involves both stromal and inflammatory cells in the
org August 2021 | Volume 12 | Article 7013831
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tumor microenvironment (TME) (8, 9). The immune privilege of
the central nervous system (CNS) can be attributed to the lack of
dedicated lymphatic channels in the past (10). In 2015, a novel
route of lymphatic channels from the brain that runs parallel to
the dural venous sinuses and travel to the deep cervical lymph
nodes was identified (11).

In the 1890s, William Coley first conceived the concept of
cancer immunotherapy. Ehrlich and Thomas and Burnet further
developed this concept in the 1950s and 1960s, respectively (12–15).
Cancer immune surveillance involves the detection and
elimination of the tumor cells by the immune system (12, 15).
Thus, cancer immunotherapies, especially immune checkpoint
inhibitors (ICIs), are an emerging therapeutic modality and have
revolutionized cancer management (16, 17). In contrast to other
immune cells, such as macrophages, neutrophils were not
considered to be major players in the TME. However, recent
developments in genetic tools have revealed the importance of
neutrophils in the TME, especially in tumor progression and
tumor resistance (2, 18). The presence and phenotype of
neutrophils in the TME determine the efficacy of both
traditional and novel cancer therapies (3, 19).

As neutrophils play an important role in the TME, they are
potential targets to enhance the efficacy of immunotherapy.
However, the role of neutrophils in brain cancer biology
remains unclear. In this review, we focus on the role of
neutrophils in glioma and brain metastases (BMs), which are
the most common malignant brain tumors. This review proposes
Frontiers in Immunology | www.frontiersin.org 2
the neutrophil-to-lymphocyte ratio (NLR) as a biomarker for
brain cancer. Additionally, this review discusses the
heterogeneity of tumor-associated neutrophils (TANs).
Furthermore, the current therapeutic modalities using
neutrophils as targets or carriers to treat glioma and BM have
been summarized.
ORIGIN, LIFE CYCLE, AND BIOLOGICAL
FUNCTIONS OF NEUTROPHILS

More than 1011 neutrophils are produced every day under
steady-state conditions (20, 21). Emergency granulopoiesis is a
process in which the formation of neutrophils rapidly increases
in response to infection or cancer (22).

Granulopoiesis
Neutrophils are generated from lymphoid-primed multipotent
progenitors (LMPPs) (23), which are derived from
hematopoietic stem cells. LMPPs further differentiate into
granulocyte-monocyte myeloid progenitors (24, 25).
Neutrophils undergo maturation in the following steps: the
formation of myeloblasts, followed by the formation of
promyelocytes, myelocytes, metamyelocytes, band neutrophils,
and segmented neutrophils (Figure 1) (22, 26, 27).
The transitions from myeloblasts to promyelocytes, and from
myelocytes to metamyelocytes are characterized by the
FIGURE 1 | Overview of neutrophil development and biological function. The production and maturation of neutrophils develop in bone marrow. After stress or
inflammatory stimulation, neutrophils undergo a special recruitment cascade and eventually migrate into inflammatory tissues. Respiratory burst, degranulation, and
NETs formation are the main mechanisms responsible for inflammation, leading to the elimination of the invading microorganisms or promoting the inflammatory
response; CXCR, CXC-chemokine receptor; GMP, granulo-monocytic progenitor; NETs, neutrophil extracellular traps.
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appearance of primary granules and secondary granules
respectively. Meanwhile, the transition from the band
neutrophils to the segmented neutrophils is characterized by
the formation of tertiary granules (21, 28). These granules
comprise various defensive factors and enzymes, such as
myeloperoxidase (MPO), elastase, defensins, cathelicidins, and
matrix metalloproteinases (MMPs), which protect against
opportunistic infections and mediate the alleviation of
inflammation (28, 29).

Granulocyte colony-stimulating factor (G-CSF), which is the
master regulator of neutrophil generation and differentiation
(30–32), can induce the proliferation and differentiation of
myeloid progenitors. The expression of G-CSF receptor
(G-CSFR) is detected in the myeloid lineage from the early
stem and progenitor cells to fully differentiated neutrophils
(33, 34). G−CSFR-signal transducer and activator of
transcription 3 (STAT3) signaling regulates neutrophil
formation (35). Other molecules, such as granulocyte-
macrophage colony-stimulating factor (GM-CSF), interleukin 6
(IL−6), and KIT ligand (also known as KITLG) are reported to be
involved in granulopoiesis (36–38). For example, these cytokines
are upregulated in several animal models of cancer, which results
in enhanced granulopoiesis and neutrophilia (39–45).
Neutrophil Retention and Release
From the Bone Marrow
In contrast to other immune cells, neutrophils are released from
the bone marrow as terminally differentiated mature cells. Under
homeostatic conditions, approximately 1%–2% of all neutrophils
are mature neutrophils that circulate throughout the body (46).
The immature cells are retained in the bone marrow due to the
interaction between C−X−C chemokine receptor 4 (CXCR4) and
CXCR2 (Figure 1). Osteoblasts and other bone marrow stromal
cells constitutively express CXCL12 and tether CXCR4+
neutrophils (immature) in the bone marrow. Meanwhile,
mature neutrophils exhibiting CXCR2 expression are released
into the circulation through the interaction with CXCL1 and
CXCL2 secreted by the endothelial cells and megakaryocytes
(47–52). Several adhesion molecules, such as integrin subunit a4
(ITGa4), vascular cell adhesion molecule 1 (VCAM1), and some
proteases also play a critical role in neutrophil retention (52–55).
G−CSF is reported to be a disruptor of neutrophil retention (56).

The molecules that regulate neutrophil release into the
circulation are upregulated in tumors. These molecules override
the neutrophil retention signals in the bone marrow to facilitate
neutrophil egress andconsequently increaseneutrophil counts (39–
42, 57). In addition to cytokines derived from tumor cells (41, 42,
57), stromal and immune cells can upregulate the expression of
thesemolecules in tumor-bearingmice. The aberrant production of
cytokines by the tumors or stromal cells can cause an imbalance in
neutrophil retention and release from the bone marrow.
Biological Functions
Neutrophils regulate immunity and inflammation by recognizing
and responding to microbial and inflammatory stimuli (58, 59).
Frontiers in Immunology | www.frontiersin.org 3
Phagocytosis and enzymatic processes (Figure 1), including the
generation of reactive oxygen species (ROS) through the
NADPH oxidase 2 (NOX2) and the release of granule-derived
MPO, hydrolytic enzymes (such as elastase, lysozyme, and
MMPs), and other antimicrobial proteins/peptides (such as
lactoferrin and defensins) can eliminate the invading
microorganisms after pathogen recognition (60, 61).
Neutrophil granule-derived molecules can directly kill
microorganisms, mediate positive feedback loops in
neutrophils, or attract and activate monocytes (62, 63).
Classical effector responses interact with each other at several
levels, including the primary release of granules into the
phagosome, processing of NOX2-derived superoxide and H2O2

by granule-derived MPO, or NOX2-mediated activation of
granule proteins (60–62, 64). Neutrophils also release their
DNA into the extracellular space to form neutrophil
extracellular traps (NETs), a complex of DNA and neutrophil-
derived antimicrobial molecules (Figure 1) (65). In addition to
trapping and killing bacteria (65), NETs are involved in various
inflammatory diseases (66). NET formation (also called
‘NETosis’) is dependent on MPO, neutrophil elastase,
peptidylarginine deiminase 4 (PAD4), and gasdermin D, which
are potential therapeutic targets for NET-mediated pathologies
(67–69). The genetic deficiency of NET-degrading DNases
results in the development of NET-mediated vascular
occlusion (70). However, previous studies have reported
controversial findings on NETs generation and function.

Neutrophils can release various chemokines, cytokines, and
lipid mediators through modulation of gene expression although
they exhibit limited transcriptional activity (71–73). Therefore,
neutrophils are involved in regulating the immune response and
the interaction of various immune and non-immune cells (74–76).
However, the functional relevance of these neutrophil-derived
mediators is not completely understood. Neutrophils also release
extracellular vesicles that exhibit antimicrobial functions (77),
mediate the effects of neutrophil-derived LTB4, and contribute
to the pathogenesis of inflammation and cancer (78–80).
CURRENT THERAPEUTIC STRATEGIES
FOR GLIOMA AND BMs

Brain tumors are a mixed group of primary and metastatic
neoplasms that exhibit varying degrees of malignancy.
Although malignant lesions are uncommon, their incidence
has increased rapidly in highly developed and industrialized
countries (81). Malignant brain tumors directly affect
neurological function, psychological health, and quality of life
(82). In the last few decades, advances in diagnostic methods,
including the development of computed tomography in the mid-
1970s and magnetic resonance imaging (MRI) in the mid-1980s,
have revealed an increased incidence of brain tumors (83, 84).

Glioma is the most prevalent type of primary malignant brain
tumor. Glioblastoma (GBM) is the worst grade of glioma with a
median overall survival of 14 to 17 months and a five-year
August 2021 | Volume 12 | Article 701383
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survival rate of only 5.6% despite of the traditional triad of
surgical excision, radiotherapy, and chemotherapy (85–88).
Recently, tumor-treating fields, which involve the use of low-
intensity alternating electric fields to interfere with cell division
and organelle assembly, have been demonstrated to extend the
OS of patients with glioma to 20.9 months (89). Besides, several
studies have focused on immunotherapy as an effective treatment
paradigm (90, 91). The results of phase I and II clinical trials on
cancer vaccines were encouraging. The synergistic effects of anti-
tumor vaccines and standard therapy have been previously
demonstrated (92–96). Immunotherapy is believed to be a
promising approach for enhancing the efficacy of the current
chemoradiation regimen. However, phase III clinical studies
have revealed the poor efficacy of ICIs and vaccine therapy for
GBM. Nivolumab (monoclonal antibody to PD-1) of checkMate
143 (NCT02017717) (97) and Rindopepimut (EGFRvIII specific
peptide and KLH conjugate) of ACT IV (NCT01480479) (98)
both terminated early because no significant survival benefit.
There are several obstacles to the success of GBM immunotherapy,
such as the heterogeneity and low mutation burden of the tumors
and local/systemic immunosuppression induced by GBM
(99–103).

BMs, which occur in 10%–40% of patients with cancer, are
the most common malignant brain tumors in adults (104, 105).
The increased surveillance and improved control of primary
cancer resulting in prolonged survival have increased the
incidence of BMs (106). The most common primary sites of
BMs are lung and breast carcinomas and melanoma (107). The
management of BMs has been revolutionized by improved brain
imaging and management of systemic diseases, distribution of
stereotactic irradiation, and the development of less invasive
surgical techniques that enable the removal of BMs even from
eloquent brain areas with minimal morbidity (108). Although
whole-brain radiation therapy (WBRT), stereotactic
radiosurgery (SRS), and systemic therapies have improved the
treatment outcomes, surgical resection is the major therapeutic
strategy for large BMs. The indications for resection include a
symptomatic mass, a mass with edema requiring high-dose
steroids, a mass with a size more than 3 cm, and a mass with
an unknown primary cancer (108). In addition, recent advances
in immunotherapy have increased the therapeutic options for
patients with metastatic melanoma. Ipilimumab (monoclonal
antibody to CTLA-4) and nivolumab can stimulate T cell-
mediated anti-tumor immune response. Previous studies have
reported that ipilimumab treatment achieves CNS disease
control in 24% of patients with melanoma exhibiting
asymptomatic BM and 10% of patients with the symptomatic
disease (109). Additionally, dual immune checkpoint blockade of
ipilimumab and niolumab has achieved higher intracranial
responses (110). However, the efficacy of other ICIs for BMs
has not been examined.

The understanding of the interaction of immune cells in the
brain TME can aid in the development of effective immunotherapy
strategies. Neutrophils, which are abundant in the circulation, are a
potential therapeutic target for BMs as they have critical roles in
immunity and inflammation. Therefore, many recent researches
Frontiers in Immunology | www.frontiersin.org 4
focused on the analyses of brain immune TME landscape via flow
cytometry, RNA sequencing, protein arrays, culture arrays, and
spatial tissue characteristics in glioma and BMs (111, 112).
Disease-specific immune cells enriched with pronounced
differences in tissue-resident microglia, infiltrating monocyte-
derived macrophages, neutrophils, and T cells between gliomas
and BMs. Abundance of TAMs infiltrated in gliomas, whereas
T cells were much fewer. However, lymphocytes and neutrophils
accumulated obviously in BMs. This implies that tumors indeed
shape their TME while growing within the brain. It is different
from cancers that metastasize from extracranial sites. In addition,
there were additional differences for BMs originated from distinct
primary tumors. For example, abundance of CD4+ and CD8+
T cells represented the major immune compartment in melanoma
BMs, whereas it showed the highest neutrophil infiltration in
breast BMs. Therefore, defining the specific immunological
signature of brain tumors can facilitate the rational design of
targeted immunotherapy strategies.
NLR AS A BIOMARKER

The local inflammatory process in the TME and systemic
inflammation play important roles in cancer development and
progression (113–115). The hallmarks of cancer-related
inflammation include the presence of inflammatory cells and
inflammatory mediators (for example, chemokines, cytokines
and prostaglandins) in tumor tissues similar to that seen in
chronic inflammatory responses (8). The upregulated levels of C-
reactive protein, hypoalbuminemia, some cytokines, and
leukocytes and their subtypes in the blood can be quantified to
determine systemic inflammation (116, 117).

Inflammatory cytokines and chemokines, which can be
produced by both tumor and stromal cells, contribute to the
progression of malignancy (7). The increased NLR has
been associated with increased peritumoral infiltration of
macrophages and upregulation of several cytokines, such as
IL-6, IL-7, IL-8, IL-9, IL-12, IL-17, and interferon-g (IFNg)
(118, 119). Neutrophils and macrophages are reported to secrete
tumor growth-promoting factors, including vascular endothelial
growth factor (120, 121), hepatocyte growth factor (122), IL-6
(123), IL-8 (124), MMPs (125), and elastases (126), which
promote the development of pro-tumor TME. Nevertheless,
IL-12 and IFNg are reported to enhance antitumor effect. IL-12
can be used as combinatorial immunotherapy and effective in
preclinical glioblastoma model (127). On the other hand,
cancer-related inflammation, like smouldering inflammation, in
the TME has many pro-tumor effects. It exacerbates progression
of malignant cells, promotes angiogenesis and metastasis,
suppresses adaptive immune responses, and alters responses to
hormones and chemotherapeutic agents (8). Therefore, the cons
and pros of inflammation in cancer are still needed to be
elucidated in the future.

Thus, biochemical markers of inflammation in patients with
various cancers have been incorporated into prognostic scores
(128). Neutrophilia, an inflammatory response, inhibits the
August 2021 | Volume 12 | Article 701383
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immune system by suppressing the cytolytic activity of immune
cells, such as cytotoxic T cells and natural killer (NK) cells (129,
130). Several studies have reported the critical roles of tumor-
infiltrating lymphocytes (TILs) in cancer. The upregulation of
TILs has been associated with improved treatment response and
prognosis (131–133). Therefore, an elevated NLR in peripheral
blood was recognized as a poor prognostic indicator recently
(134). The mechanisms underlying the correlation between high
NLR and poor prognosis in patients with cancer have not
been elucidated.

Recent studies have developed sensitive and accurate
biomarkers for cancer. The changes in the blood NLR can be
used to determine the optimal therapy for patients with
advanced-stage cancer (135, 136). The prognostic value of NLR
in early-stage cancer is lower than that in patients with
advanced-stage cancer. However, NLR can aid in the
evaluation of the early effects of systemic therapy (137–140).
Some small-scale studies have reported that chemotherapy
improved the clinical outcomes of patients with cancer
through the alleviation of dysregulated NLR (135, 136).

Most patients with glioma exhibit neutrophilia (141) due to
the increased production of G-CSF by tumor cells to promote
growth (142, 143). G-CSF shifts bone marrow hematopoiesis
toward the myeloid lineage and away from the lymphocyte
lineage. This leads to a high NLR in patients with glioma.
Several studies have demonstrated that the NLR of more than
4 is associated with poor prognosis when examined before
treatment (144, 145), after the second surgery (146), and after
TMZ and RT therapies (147). NLR of less than 4 is associated
with improved prognosis in GBM with wild-type IDH1 (148).
The baseline neutrophil count in the blood can also predict
bevacizumab efficacy in patients with GBM (149). The
upregulated surface expression of CD11b, a marker of
neutrophil activation, can be used as an early predictor of
tumor progression in patients with GBM (150). Arginase I
produced by circulating neutrophils promotes tumor growth
and induces immunosuppression (151).

The OS of patients with BMs is poor (152). Therefore, there is a
need to develop multidisciplinary and individualized treatment
approaches for BMs. Prognostic models with recursive partitioning
analysis and graded prognostic assessment that incorporate
multiple patient factors have been established to predict the
treatment outcomes (153, 154). Although patients exhibit
prolonged survival and undergo novel therapies, including
targeted and immune therapy with SRS, novel factors must be
incorporated into the predictive system to examine the survival
benefits of novel therapies. Recently, NLR has been identified as
one of the markers for predicting the outcomes of novel therapies
(9, 155). The inflammatory cells are reported to cross into the brain
(11). Hence, the association between NLR and OS in patients with
BM was investigated. Several studies have investigated the optimal
dichotomous cutoff values of NLR in various BMs. NLR values of
more than 5, 3.3, and 6 are correlated with poor outcomes of post-
resection, pre-SRS, post-SRS, respectively (156–158). There were
no common optimal dichotomous cutoff values for NLR in all
studies. The optimal NLR to predict OS in various malignancies
Frontiers in Immunology | www.frontiersin.org 5
ranged from 2.18 to 7.5 (144, 147, 159–161). The increased NLR
value is reported to be correlated with a high risk of local
recurrence. Patients with elevated NLR are likely to exhibit
neuronal death (157). Prospective validation must be performed
to validate the simple and systemic marker NLR for determining if
aggressive treatment is needed following initial treatment. Further
studies are needed to examine the interaction between BMs and
immunological environments.

Thus, NLR has been proposed as a surrogate marker for the
prognosis of various cancers as lymphocyte and neutrophil counts
can be easily determined based on the complete blood count.
However, acute conditions, such as bacterial or viral infections or
drug treatments may overlap chronic ongoing inflammation and
affect the neutrophil and lymphocyte counts. Hypertension,
diabetes mellitus, metabolic syndrome, left ventricular
dysfunction and hypertrophy, acute coronary syndromes,
cardiovascular diseases (162, 163), abnormal thyroid function
tests, renal or hepatic dysfunction, previous history of infection
(<3 months), inflammatory diseases (164), and some medications
(e.g. steroids) can potentially affect the measurement of NLR.
Therefore, NLR must be carefully validated.
TAN HETEROGENEITY AND NETs

The complex roles of neutrophils in both tumor growth and
metastasis have been reported. The role of neutrophils in cancer is
dependent on various factors and may result in a pro-tumoral or
an antitumoral effect (2). TANs in the TME and the functions of
neutrophils, including circulating and bone marrow neutrophils
and neutrophil lineage cells, determine their role in cancer. TANs
are polarized to anti-tumor (N1) or pro-tumor (N2) phenotypes
(Figure 2) (165). Since 2015, the functional plasticity of TANs
and their ability to undergo alternative activation upon exposure
to various cues in the TME have been demonstrated (166, 167).
For example, the presence of transforming growth factor-b
(TGFb) promotes a pro-tumor phenotype (N2 TANs), whereas
the presence of IFNb or the inhibition of TGFb signaling
promotes the anti-tumor phenotype of TANs (N1 TANs) (165,
168). The binary N1/N2 phenotypes maybe an oversimple
classification system to describe neutrophil polarization, as well
as the M1/M2 phenotypes for TAMs (169–171). Neutrophil
polarization may involve a spectrum of activation states.
Multiple heterogeneous neutrophil subsets have been observed
in the circulation of both tumor-bearing mouse models and
patients with cancer. The following three distinct neutrophil
populations have been identified in the circulation of both
patients with cancer and mouse models: mature high-density
neutrophils (HDNs), mature low-density neutrophils (LDNs),
and immature LDNs (172–175). Mature HDNs exhibit an anti-
tumor N1-like phenotype. However, mature LDNs, which are not
cytotoxic, exhibited impaired functions and immunosuppressive
properties (172–174).

The dual and opposite functions of neutrophils in tumor
immunity may vary during the progression of cancer (173).
Neutrophils can influence tumor development by modulating
August 2021 | Volume 12 | Article 701383
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the recruitment, profile and phenotype of other immune cells,
especially TAMs and tumor-infiltrating lymphocytes (TIL)
which are major components of the immune TME.
Neutrophils are reported to exhibit growth-inhibitory activity
Frontiers in Immunology | www.frontiersin.org 6
against early-stage cancers (176–178). Neutrophils are involved
in networks of T cell-dependent antitumor immunity. In TME,
with the contribution of IFNg and GM-CSF, immature
neutrophils become mature and have the function of antigen-
A

B

FIGURE 2 | Neutrophils in tumor microenvironment. TANs participate in different stages of tumorigenesis, and are polarized into N2 (pro-tumor) in the presence of TGF-b, and
polarized into N1 (antitumor) in the presence of IFN-b in the TME. (A) APC-like neutrophils from immature neutrophils with presence of GM-CSF and IFNg express MHC I/II and the
co-stimulatory molecules CD86, 4-1BB ligand (4-1BBL) and OX40 ligand (OX40L), which enhance T cell immunity. UTCab, essential for effective antitumor immunity, can be
polarized to a type 1 immune response and IFNg production through IL-12 production frommacrophage which was amplified by neutrophils. Different stimuli (G-CSF) and
chemokines of CXCL5/8, and CCL2, LPS, and IFNb promote an oxidative burst and the production of hydrogen peroxide (H2O2), as well as blocking TGFb pathway. Collectively,
H2O2 triggers the activation and opening of TRPM2, and further leads to a lethal influx of calcium (Ca2+) into tumor cells. (B) N2 phenotype promoted the tumor growth,
angiogenesis, and immunosuppression. Neutrophils express immune check point receptor of PDL1 and VISTA. They also have been shown expression of ARG1, ROS, and NO
in the presence of G-CSF and TGFb in TME, which inactivate T cells. HMGB1 from the release of NETs can activate TLR9-depedent pathway which sustain tumor cells
proliferation. NE and MMP9 cleave laminin-111, and then cleaved laminin-111 triggers the proliferation of tumor cells through activation of integrin signaling. Neutrophils promote
angiogenesis through the release of the pro-angiogenic factors BV8, S100A8/9, and MMP9 that activate VEGFA. TANs, tumor-associated neutrophils; IFN-b, Interferon-b; TGF-b,
transforming growth factor-b; TME, tumor microenvironment; GM-CSF, granulocyte–macrophage colony- stimulating factor; IFNg, Interferon- g; CXCL5/8, CXC-chemokine ligand
5/8; CCL2, CC-chemokine ligand 2; LPS, lipopolysaccharide; TRPM2, transient receptor potential cation channel, subfamily M, member 2; UTCab, CD4

–CD8–TCRab+ double-
negative unconventional T cells; PDL1, programmed cell death 1 ligand 1;VISTA, and V-domain immunoglobulin suppressor of T cell activation; Arg-1, arginase 1; ROS, reactive
oxygen species; NO, nitric oxide; G-CSF, granulocyte colony-stimulating factor; HMGB1, high mobility group protein 1; NETs, Neutrophil extracellular traps; TLR9, Toll-like
receptor 9; NE, neutrophil elastase; MMP9matrix metalloproteinase 9; VEGFA, vascular endothelial growth factor A.
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presenting cells (APCs). Then, these APC-like neutrophils
stimulate the proliferation of both CD4+ and CD8+ T cells
through the major histocompatibility complex (MHC) class I
and class II molecules and the co-stimulatory molecules CD86,
4-1BB ligand (4-1BBL) and OX40 ligand (OX40L) expression
(177, 178). Furthermore, chemokine including CXCL10, CCL2,
CCL3, CXCL1 and CXCL2 produced by TANs could recruit T
cells as well as other leukocytes (74, 179, 180). Neutrophils are
also able to kill tumor cells through direct contact and via ROS
generation (165, 176, 181). The transient receptor potential
cation channel, subfamily M, member 2 (TRPM2), a H2O2-
dependent channel, can induce influx of calcium into tumor cells
and further lead to cell death. In addition, TNF-related apoptosis
inducing ligand (TRAIL) and TNF can induce the expression of
the hepatocyte growth factor receptor (HGFR; also known as
MET) on neutrophils (182). HGF present in the TME induce
neutrophil recruitment and production of nitric oxide (NO),
which results in killing of tumor cells (182). Neutrophils also
engage in an interaction between macrophages and a subset of
unconventional T cells (UTCs), known as CD4–CD8–TCRab+
double-negative UTCs (UTCab). The UTCs were essential for
effective antitumor immunity (179). Neutrophils are able to
enhance the production of IL-12 by macrophages, and then
promote UTCab polarize towards a type 1 immune response and
IFNg production (179). However, the roles, mechanisms,
significance of UTCab in human tumors still need to
be elucidated.

In contrast, the strong immunosuppressive activity of
neutrophils is associated with polymorphonuclear myeloid-
derived suppressor cells (MDSCs) in advanced-stage cancer.
Polymorphonuclear MDSCs also share features with immature
neutrophils. Recently, early neutrophil progenitor was reported
to exhibit pro-tumor activity (173, 177, 183). The disease stage,
the tumor type, and tissue context are all key determinants of
neutrophils in promoting or restraining cancer. Neutrophils with
intrinsic anti-tumor activity are recruited to the tumor, where
they are reprogrammed to an immunosuppressive pro-tumor
phenotype (from N1 to N2) (165, 173).

The ability of cancer-related neutrophils to release NETs has
piqued the interest of the scientific community. NETs, which are
released from neutrophils in response to extracellular pathogens,
typically comprise fibrous decondensed chromatin with
associated histones, MPO, and various cytoplasmic proteins,
such as neutrophil elastase, cathepsin G, and lactoferrin.
Although NETs are reported to be released in response to
cancer cells, their role in cancer is not clear.

NETs, the release of ROS, and the trapping of cancer cells
could theoretically promote a cytotoxic effect and inhibit the
dissemination of cancer cells (184, 185). However, most studies
have only described this phenomenon in circulating neutrophils
(186–188). Some studies have also reported that NETs are
spontaneously produced in samples from patients with cancer
and that NETs promote metastatic dissemination after surgical
stress (187). In mouse models, sustained lung inflammation
caused by tobacco smoke exposure or nasal instillation of
lipopolysaccharide leads to NETs formation (189). Neutrophil
Frontiers in Immunology | www.frontiersin.org 7
elastase and matrix metalloproteinase 9 (NET-associated
proteases) cleave the extracellular matrix protein laminin. The
proteolytically remodeled laminin induced proliferation of
dormant cancer cells by activating integrin a3b1 signaling.
Then, the dormant cancer cells are awakening to aggressively
growing metastases. Therefore, NETs are hypothesized to act
within the primary tumor to promote disease progression and
dissemination. The enhanced release of NETs by the neutrophils
has been suggested to promote tumor progression and metastatic
dissemination. Thus, further studies are needed to clarify the
pro-tumor and anti-tumor functions of NETs in glioma
and BMs.

Macrophages are the major infiltrating immune cells (up to
30% tumor mass) in the brain TME (190). Thus, there was
increased focus on macrophages in the brain TME in the past few
years. However, one study reported that neutrophils infiltrate the
human glioma and the degree of infiltration was markedly
correlated with tumor grade (191). However, the mechanism of
neutrophil recruitment and the role of neutrophils in tumor
growth have not been elucidated. Most studies on neutrophils
and brain tumors have focused on the impact of these cells on the
response to anti-angiogenic therapy and vascularization (a
hallmark of high-grade glioma). Enhanced neutrophil
infiltration into tumor tissue is associated with acquired
resistance to the vascular endothelial growth factor antibody
(bevacizumab) and high glioma grade at advanced stages (191,
192). Preclinical studies have demonstrated that neutrophils
contribute to glioblastoma progression by supporting the
expansion of the glioma stem cell pool through S100 protein-
dependent mechanism (192). S100 proteins are associated with
secondary dissemination, especially the dissemination of breast
cancer (193). S100A8 and S100A9, which are upregulated in the
pre-metastatic brain, promote the recruitment of neutrophils
and subsequently promote metastatic seeding (194). The brain
may be aberrantly exposed to pathological inflammation
associated with the tumor that influences disease progression.
Therefore, future studies must focus on the mechanisms of
neutrophil infiltration in the brain TME.
NEUTROPHIL AS A THERAPEUTIC
TARGET AND POTENTIAL COMBINATION
OF NEUTROPHIL-TARGETING WITH
OTHER CANCER THERAPIES

Traditionally, neutrophils were not considered to have a critical
role in the TME. However, recent studies have demonstrated that
(195–197) neutrophils play a major role in the pathogenesis of
cancer, including tumor initiation, development, and
progression. Furthermore, several studies have suggested that
the presence and phenotype of neutrophils in the TME
determine the outcomes of traditional and novel therapies,
such as ICIs (198, 199). Most studies indicate that neutrophils
promote tumorigenesis (167, 200). Therefore, neutrophils can be
directly targeted to inhibit their recruitment, activation, or
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phenotype reprograming. Recently, the concept of targeting TANs
has been proposed by several studies. The polarization of neutrophils
(pro-tumor or anti-tumor) in cancers must be characterized to
improve the efficacy of therapeutic modalities. Therefore, the
development of next-generation immunotherapies is an important
topic of research (201). Various approaches have been developed to
therapeutically target neutrophils, including strategies to enhance,
inhibit, or reprogram the neutrophil phenotype. Clinical trials on
TGFb pathway inhibitors and PDE5 inhibitors for glioma and BMs
are ongoing. However, there are several challenges and controversies
for using these strategies. For example, Galunisertib, a novel TGFb
receptor 1 kinase inhibitor, is currently undergoing clinical trials as a
monotherapy or in combination with lomustine chemotherapy in
two clinical trials involving patients with recurrent glioblastoma
(NCT01582269 and NCT01682187) and those undergoing
temozolomide-based chemoradiotherapy (NCT01220271). Here,
we have listed some therapeutic mechanisms that potentially
recruit, activate, inhibit, or modulate the phenotypes of neutrophils
in the TME, which are currently being investigated in cancers of
humans or animals (Figure 3A, Table 1).
Combining Neutrophil-Targeting Therapy
With Other Anticancer Therapies
Several chemotherapies are reported to cause neutropenia and
consequently eliminate neutrophils from the TME. However, the
effect of these chemotherapies on the neutrophil phenotype
modulation and the subsequent implications in treatment
efficacy are largely unknown. These patients are at an increased
risk of opportunistic infections (211, 212). Furthermore,
neutrophils are a key mediator of the efficacy, clinical value,
and toxicity of these therapies in patients receiving ICIs (213).
Frontiers in Immunology | www.frontiersin.org 8
However, limited studies have focused on the effects of drugs on
cancer-related neutrophil phenotypes. A critical assessment of
the most optimal combination therapy strategies is key for the
successful clinical implementation of neutrophil-targeting
approaches. Various mechanistic studies performed in
clinically relevant mouse tumor models have addressed the
impact of neutrophils on the efficacy of anticancer therapies.

Chemotherapy
Neutropenia is a common “adverse effect” of chemotherapy
(214). In the clinics, recombinant G-CSF and GM-CSF are
commonly prescribed to increase neutrophil counts and reduce
the risk of infection as they promote the release of neutrophils
from the bone marrow (22, 215). However, the effects of G-CSF
or GM-CSF on human neutrophil phenotypes are unclear.
Contradictory findings have been reported for the pro-tumor
and anti-tumor activities of the recruited neutrophils.

In vitro studies on neutrophils isolated from the peripheral
blood of patients who received G-CSF have revealed
contradictory findings on neutrophil function, including
phagocytosis, oxidative burst, bacterial killing, and chemotaxis
(216). Filgrastim (non-glycosylated G-CSF) and lenograstim
(glycosylated G-CSF) exhibited differential effects on the
chemotaxis and morphology of circulating neutrophils isolated
from patients with non-Hodgkin lymphoma (217). Neutrophils
from patients who received lenograstim exhibited impaired
chemotaxis. In contrast, neutrophils isolated from patients who
received filgrastim had a morphology that suggested enhanced
activation and upregulated expression of integrin b2. G-CSF and
GM-CSF, which are reported to exert pro-tumor and anti-tumor
effects, can affect both tumor and immune cells (218–222).
Previous studies have reported that G-CSF induces the
A B

FIGURE 3 | Possible treatment targeting neutrophils in brain tumors. (A) Several aspects of neutrophil biological function may be therapeutically targeted from the
maturation process to effector functions. The targeting aims are to enhance or inhibit neutrophil function, or to restore normal neutrophil function. Enhancement can
be achieved by inhibiting signal-regulatory protein a (SIRPa). Inhibitors of CXCR1, CXCR2 can be used to block neutrophil activation and migration. NE, MPO, and
PAD4 inhibitors can be used inhibit NETosis. (B) Neutrophils can be nanocarrier to mediate anticancer nanoparticle drug delivery. After surgical resection of brain
tumors, inflammatory signals were amplified at post-resection sites, which attracted neutrophils with nanoparticles to migrate into infiltrating brain tumors along the
chemotactic gradient, and results in disruption of the neutrophils and release of NETs. That renders a concomitant release drug into tumor microenvironment and
produce antitumor effect. NETs were also released on excessive activation by inflammatory cytokines. G-CSFR, G-CSF receptor; MPO, myeloperoxidase; NE,
neutrophil elastase; NET, neutrophil extracellular trap; PAD4, peptidylarginine deiminase 4; TAN, tumor-associated neutrophil.
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phagocytic and antibacterial activities of neutrophils (223) and
promotes ROS production upon stimulation (224). However, the
phenotypic modulation of TANs after treatment with G-CSF and
GM-CSF is currently under investigation.

Radiotherapy
Radiotherapy is one of themost important treatmentmodalities for
cancer. Several studies on animal models have demonstrated that
radiotherapy activates both the adaptive and innate immune
responses through the release of antigens, Toll-like receptor
ligands, and pro-inflammatory cytokines from tumor cells. This
promotes the recruitment of myeloid cells, such as macrophages,
dendritic cells, and neutrophils, and induces T cell-mediated
immunogenic cell death (225–227). In preclinical models,
radiotherapy induces sterile inflammation with rapid and
transient infiltration of neutrophils into the tumors (228). These
newly recruitedneutrophils produce increasedamountsofROSand
induce apoptosis in the tumor cells. Recent studies have suggested
that the baseline blood neutrophil count is correlated with the
survival of patients with different cancers after radiotherapy (229–
232). However, limited studies have examined the effects of
radiation on neutrophil phenotypes in patients with cancer.
Clinical studies have demonstrated that radiotherapy can initiate
a response outside the local radiation field (which is known as the
“abscopal effect”) and this is correlated with enhanced recruitment
of immune cells (233–236). Based on these observations, the
combination of radiotherapy and immunotherapy or GM-CSF
may improve the clinical outcomes of patients with cancer (237–
239). The effects of radiotherapy on human neutrophils are
unknown (229).

ICIs
ICIs, such as anti-CTLA-4 and anti-PD-1 antibodies, exhibited
satisfactory therapeutic efficacy in several patients with
Frontiers in Immunology | www.frontiersin.org 9
advanced-stage cancers, especially in patients with melanoma.
Although not all patients benefit from these agents, ICIs are
frequently used as first-line therapies in patients with other
cancers (240, 241) exhibiting upregulated expression of PD-1,
PD-L1, and/or CTLA-4. Several studies have reported the effects
of ICIs on the TME in mouse models (242) and patients with
cancer (243–245). However, the effects of ICIs on intratumoral
neutrophils remain unclear.

In a study published in 2017, changes in intratumoral
immune cell subpopulations were investigated in patients with
melanoma after treatment with the anti-PD-1 antibody
nivolumab (243). The number of intratumoral neutrophils
was not markedly different between patients who benefited
from nivolumab and those who did not benefit from
nivolumab although the intratumoral neutrophil counts varied
between the two groups. Several studies have suggested
a correlation between PD-L1 expression on neutrophils and
an immunosuppressive phenotype. For example, PD-L1+
neutrophils are reported to suppress T cell function and
promote disease progression in patients with gastric cancer
(199). This suppressive effect may be reversed upon inhibition
of PD-L1. The expression levels of PD-L1 in the intratumoral
and peritumoral neutrophils were upregulated when compared
with those in circulating neutrophils in patients with
hepatocellular carcinoma (198). This suggested that TANs
exert strong immunosuppressive effects in these patients and
that PD-L1+ neutrophils are potential targets of anti-PD-1 and/
or anti-PD-L1 antibodies.

Targeting NETs
NETs, which are involved in antimicrobial immunity,
autoimmune conditions, cardiovascular diseases, and tumor
progression (66, 198, 246), are a potential therapeutic target for
cancer. In several cases, NET formation is dependent on the
TABLE 1 | Agents with putative effects on neutrophils in patients with cancer.

Target Effects on neutrophils Agent Study object

TGFb
pathway
inhibitor

Promote the development of neutrophils with an antitumor phenotype (165) Galunisertib (a TGFbR1 kinase
inhibitor)

Humans (NCT02734160,
NCT01582269,
NCT01682187,
NCT02452008)

Fresolimumab (an anti- TGFb
monoclonal antibody)

Humans (NCT02581787)

CD47-
SIRPa
inhibitor

Delay the transmigration of neutrophils to tumor tissues, thus inducing macrophage-
mediated phagocytosis of tumor cells (202, 203)

Hu5F9-G4 Humans (NCT02216409)
IBI188 Humans (NCT03717103)
CC-90002 Humans (NCT02367196)

TRAIL-R
agonist

Triggers neutrophil apoptosis and clearance from tissues by targeting TRAIL-Rs
expressed on neutrophils (204, 205)

Mapatumumab Humans (NCT01088347)
AMG 951 Humans (NCT00508625)
TRM-1 Humans (NCT00092924)

ACKR2 a novel immune checkpoint that regulates neutrophil differentiation, mobilization to
tumor tissues and anti- metastatic activity in animal study (206)

– –

Chemokine
signaling
CXCR1/
CXCR2

Inhibit neutrophil recruitment to the tumor; attenuate granulocytosis, neutrophil
recruitment and vascular permeability by inhibiting the CXCR2 chemotactic axis
(207, 208)

SX-682 Humans (NCT03161431)
Raparixin Humans (NCT02370238,

NCT02001974)
CCR5 Inhibit both the release of immature neutrophils from bone marrow and their

recruitment to the tumor (209, 210)
Maraviroc Humans (NCT03274804,

NCT01736813)
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activity of NADPH oxidase. Thus, the inhibition of NADPH
oxidase can alter NETosis (175). Superoxide can be transformed
into hydrogen peroxide, which can activate azurophilic
(primary) granule proteins, such as neutrophil elastase or
MPO (175) and consequently promote the nuclear
translocation of some molecules. In the nucleus, neutrophil
elastase promotes nuclear decondensation. MPO upregulates
the activity of neutrophil elastase. Hence, neutrophil elastase
and MPO can serve as therapeutic targets for NET-associated
disorders (247, 248). Neutrophil elastase inhibitors are effective
in patients with bronchiectasis. Currently, studies on the
therapeutic potential of neutrophil elastase inhibitors for
bronchiolitis obliterans are ongoing (249). As PAD4 is critical
for NET formation, it is a potential therapeutic target for NET-
mediated diseases (250–252). The effect of PAD inhibitors on
human patients has not been examined. Previous studies have
targeted DNase I to alleviate NET-mediated pathology (253–
256). Therefore, DNase I-mediated degradation of NETs can be a
potential therapeutic strategy for cancers with NET involvement.
NEUTROPHIL AS A NANOCARRIER

Surgical resection is the major therapeutic strategy for brain
tumors (257). However, the infiltrating tumor cells near the
eloquent brain area should not be completely removed to
preserve neurological functions (258). Generally, adjuvant
chemotherapy is necessary after surgery. However, the efficacy
of adjuvant therapy is limited owing to poor drug penetration
caused due to various physiological barriers, especially the blood-
brain barrier (BBB) and blood-tumor barrier (BTB) (259–261),
which contribute to tumor recurrence. Therefore, nanoparticle-
based drug delivery systems (NDDSs) are used for enhanced
targeting of the tumor (262–265). NDDSs utilize active targeting
ligands or passive leakage of tumor vasculature (266–269).
However, the efficacy of these NDDSs for postoperative glioma
treatment is poor due to a low half-life of the nanoparticles in the
circulation, insufficient intratumoral drug accumulation, and
severe systemic toxicity.

Recently, cell-based drug delivery systems are considered
powerful bioinspired drug delivery platforms for glioma (269–
274). Vectorization of therapeutic agents using endogenous cells
has been proposed as a potential strategy for targeted drug delivery
to the brain (275–277). Neutrophils, which play a critical role in
immune responses, can be activated within the vasculature. The
activated neutrophils move along chemotactic gradients toward the
inflammatory sites and eliminate the pathogens by phagocytosis
(278–280). Additionally, neutrophils can cross the BBB/BTB and
infiltrate the tumor mass (191, 281–283). TANs, which are
distributed in the glioma region (284), promote the continuous
recruitment of the circulating neutrophils (201). Surgical tumor
excision leads to local brain inflammation with the release of
inflammatory factors, such as IL-8 (285, 286) and TNF-a (287,
288) that activate the migration of neutrophils to the inflamed
region of the brain (278). The amplification of inflammatory signals
supports enhanced targeting of brain tumors.
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Therefore, neutrophils could be explored as “Trojan horses”
to carry concealed drug cargoes to diseased brain areas
(Figure 3B). Zhang et al. demonstrated that the physiological
activity of neutrophils carrying PTX liposomes was not affected
and that these neutrophils migrate to the inflamed brain tumor.
These neutrophils improved the survival of postsurgical glioma-
bearing mice (289). Traditional nanoparticles passively target the
tumor site [which is known as the enhanced permeability and
retention effect (290)] or actively target the tumor site through
ligand-receptor interactions (291). In contrast, the neutrophil-
mediated drug delivery system can recognize postoperative
inflammatory signals, such as IL-8 and CXCL1/KC (74, 292)
and spontaneously deliver chemotherapeutics to infiltrating
glioma cells. The aberrant activation of neutrophils by the
upregulated inflammatory cytokines in the inflamed brain
results in the disruption of neutrophils and promotes the
release of NETs (293) with concomitant release of liposomes to
deliver PTX into the remaining infiltrating tumor cells. We
believe this strategy will offer new opportunities to explore
endogenous immunocytes as drug delivery vehicles. In the
future, neutrophils harvested from humans can be used to
deliver drugs in clinics.

Several challenges associated with nanoparticle delivery
systems must be addressed before translation into a human
clinical model. The extraction of neutrophils from patients
before intracranial implantation may pose an additional risk
and delay surgery. The bioactivity of PTXCL within neutrophils
in vivo remains unclear. The PTX resistance of glioma cells (as
evidenced by the poor efficacy of PTX-CL/NE treatment)
suggests that combination treatment must be considered to
attain optimal therapeutic efficacy. However, neutrophil-
mediated DDSs targeting the glioma-initiating stem cells in the
perivascular niche can have potent therapeutic benefits
(294, 295).
CONCLUSION AND PERSPECTIVE

The role of neutrophils in cancer biology and their potential as
therapeutic targets have been widely recognized. Recent studies
have demonstrated the important biological roles of neutrophils.
The complex roles of neutrophils in cancer include their ability
to exert pro-tumor or anti-tumor activities and to exhibit various
polarization phenotypes. The elucidation of the interaction of
neutrophils in cancer can aid in the development of novel
therapeutic interventions. For example, targeting TANs and/or
circulating neutrophils can be potential next-generation
immunotherapies. However, further studies are needed to
examine the exact roles, recruitment pathways, subpopulations,
and mechanisms of action of TANs to develop targeted
therapeutic approaches. Additionally, the role of TANs in the
brain TME is not clear although the extent of neutrophil
infiltration is correlated with glioma grades. Thus, TANs in the
brain TME are a potential therapeutic target for brain cancer.
Additionally, TANs can improve the efficacy of chemotherapy
or immunotherapy.
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There are contradictory reports on several characteristics of
neutrophils, including lifespan, transcriptional activity, roles in
cancer, and subpopulation types. Additionally, neutrophils may
escape therapeutic interventions because of their exceptional
turnover and unexpected plasticity, especially in cancer.
However, recent understanding of neutrophil biology has
revealed that precise therapeutic interventions may provide
therapeutic benefits without detrimental side effects. In
particular, NETs are a key therapeutic target (296). Future
studies must focus on small-molecule and biological
therapeutics that can regulate the neutrophil compartment to
promote the activation, inhibition, or depletion of neutrophils.
Additionally, antibody-mediated delivery of small molecules can
be a potential therapeutic strategy. Recent studies have suggested
the potential applications of neutrophils as drug-trafficking cells
(289, 297). Neutrophil-derived molecules, such as granule
proteins and peptides may also be used as therapeutic agents
under certain conditions. In summary, these findings indicate the
potential of targeting neutrophils in human diseases.
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