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The essential amino acid tryptophan (TRP) is the initiating metabolite of the kynurenine
pathway (KP), which can be upregulated by inflammatory conditions in cells.
Neuroinflammation-triggered activation of the KP and excessive production of the KP
metabolite quinolinic acid are common features of multiple neurodegenerative diseases,
including amyotrophic lateral sclerosis (ALS). In addition to its role in the KP, genes
involved in TRP metabolism, including its incorporation into proteins, and synthesis of the
neurotransmitter serotonin, have also been genetically and functionally linked to these
diseases. ALS is a late onset neurodegenerative disease that is classified as familial or
sporadic, depending on the presence or absence of a family history of the disease.
Heritability estimates support a genetic basis for all ALS, including the sporadic form of the
disease. However, the genetic basis of sporadic ALS (SALS) is complex, with the
presence of multiple gene variants acting to increase disease susceptibility and is
further complicated by interaction with potential environmental factors. We aimed to
determine the genetic contribution of 18 genes involved in TRP metabolism, including
protein synthesis, serotonin synthesis and the KP, by interrogating whole-genome
sequencing data from 614 Australian sporadic ALS cases. Five genes in the KP
(AFMID, CCBL1, GOT2, KYNU, HAAO) were found to have either novel protein-altering
variants, and/or a burden of rare protein-altering variants in SALS cases compared to
controls. Four genes involved in TRP metabolism for protein synthesis (WARS) and
serotonin synthesis (TPH1, TPH2, MAOA) were also found to carry novel variants and/or
gene burden. These variants may represent ALS risk factors that act to alter the KP and
org June 2021 | Volume 12 | Article 7015501
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lead to neuroinflammation. These findings provide further evidence for the role of TRP
metabolism, the KP and neuroinflammation in ALS disease pathobiology.
Keywords: sporadic amyotrophic lateral sclerosis (SALS), whole-genome sequence (WGS), tryptophan, kynurenine
pathway (KP), serotonin
INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative
disease caused by the loss of upper and lower motor neurons resulting
in progressive muscle weakness, wasting, spasticity and eventual
paralysis (1). Disease generally occurs between 50 and 60 years of
age, and death usually occurs within three to five years from symptom
onset, though survival can vary greatly (2). Ten percent of ALS cases are
classified as familial, where there is clear evidence of a family history of
disease, while the remaining 90% are considered sporadic (SALS),
seemingly occurring at random in the population (3).

The genetics of ALS is heterogenous, with over 40 genes and
850 variants now implicated as causal or associated with the
disease (3, 4). In European populations, approximately 60% of
familial and 10% of SALS cases are attributed to a known causal
mutation in these genes (4–6). Additionally, there is strong
evidence of a complex genetic contribution to SALS. Studies on
the heritability of the disease suggest that 40-60% of SALS risk
may be attributed to genetic factors (7–9). A multi-step
hypothesis has been described to explain the late onset and
sporadic nature of ALS, whereby six ‘steps’ are required for
disease onset to occur (10, 11). These steps may include
mutations, genetic risk factors, environmental exposures, or
other unknown events. Recent genetic analysis identified genes
with an increased load, or burden, of rare protein-altering
variants in ALS cases. These included TBK1 and NEK1, as well
as known ALS genes, SOD1, TARDBP and OPTN (12). Gene
burden complements the multi-step hypothesis for the late onset
of ALS, where the presence of genetic alterations may contribute
to presentation of disease (10, 11).

Tryptophan (TRP) is an essential amino acid that is either used for
the synthesis of proteins, catabolised for the biosynthesis of serotonin
and melatonin, or shuttled through the kynurenine pathway (KP)
metabolites to produce nicotinamide adenine dinucleotide (NAD+).
A single enzyme, tryptophanyl-tRNA synthetase, encoded by WARS
(cytoplasmic) and WARS2 (mitochondrial), acts in the
aminoacylation of TRP to its tRNA for protein synthesis, four
enzymes are involved in serotonin synthesis, and 13 enzymes are
involved in the KP (Figure 1). The KP enzymes act to generate
several bioactive intermediates including kynurenine (KYN),
kynurenic acid (KYNA), picolinic acid (PIC), quinolinic acid
(QUIN) as well as NAD+ (13). In physiological conditions, QUIN
is usually in low abundance and rapidly transaminated into nicotinic
acid, and ultimately NAD+. Under neuroinflammatory conditions,
QUIN is an excitotoxin that is excessively produced by activated
microglia in the brain (14), while KYNA and PIC, produced by
astrocytes and neurons respectively, partly prevent QUIN toxicity (14,
15). Increased QUIN levels can amplify neuroinflammation by acting
to stimulate neuronal release and inhibit astroglial uptake of
glutamate leading to high extracellular glutamate and excitotoxicity,
org 2
subsequent mitochondrial dysfunction, and activation of
proteases (16).

Altered TRP levels and KP dysfunction have been linked to
neurodegenerative diseases both genetically and functionally.
Multiple mutations in WARS have been found to cause distal
hereditary motor neuropathy, a form of motor neuron disease
characterised by slowly progressive muscle weakness and
atrophy (17, 18). Protein-altering missense, nonsense and
splicing variants present in KP genes have also been identified
as associated with diseases such as multiple sclerosis, Parkinson’s
disease, schizophrenia, autism and others (19).

Neuroinflammation and the KP have been functionally
implicated in neurodegenerative diseases including ALS (14),
multiple sclerosis (20), Parkinson’s (21), Alzheimer’s (22), and
Huntington’s Diseases (16). Altered levels of KP metabolites
present in cerebrospinal fluid (CSF), serum and spinal cord
tissues of ALS patients have been significantly associated with
disease. CSF and serum levels of TRP, KYN and QUIN were found
to be significantly increased, and serum PIC levels were
significantly decreased in ALS patients compared to controls
(14). Similarly, KYNA levels in serum was found to be decreased
in ALS patients with severe clinical status, as compared to controls.
Conversely, in CSF, KYNA levels were lower in controls, indicating
a difference in KYNA production between the CNS and blood, as
well as the presence of immune activation (23). Additionally,
increased levels of IDO1 (the first and rate-limiting enzyme of
the KP) and QUIN were identified in the motor cortex and spinal
cord of patients (14). KP metabolites (KPMs) also represent
promising biomarkers for ALS progression [reviewed in (24)].

Although altered TRP metabolism, serotonin synthesis, the
KP and neuroinflammation have all been functionally implicated
in ALS, the contribution of variation in key genes from these
pathways has not been reported. We aimed to determine the
contribution of sequence variants in these genes to ALS through
the identification of novel and rare protein-altering variants, and
by preforming gene burden analysis in a large cohort of
Australian sporadic ALS cases.
MATERIALS AND METHODS

Subjects
Six-hundred and fourteen sporadic ALS cases were recruited
through the Macquarie University Neurodegenerative Disease
Biobank, Australian MND DNA bank (Royal Prince Alfred
Hospital) and the Brain and Mind Centre (University of
Sydney). All individuals provided informed consent for
research participation as approved by the human research
ethics committees of Macquarie University (5201600387),
Sydney South West Area Health District and The University of
June 2021 | Volume 12 | Article 701550
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Sydney. All sporadic ALS cases were of predominately European
descent, and were diagnosed with probable or definite
ALS according to El Escorial criteria (25). Demographic
characteristics of the cohort, such as sex, age of onset, and
mutation status were consistent with that of other European
datasets, where a subset of patients carried mutations in known
ALS genes including C9orf72, SOD1 and TARDBP or disease
associated variation in other ALS genes, as previously reported in
McCann et al. (4).

Control genotype data was ascertained from the non-
neurological subset of non-Finnish Europeans (nNFE,
n=51,592) from the Genome Aggregation Database (gnomAD)
(26). Population-specific Australian control genotype data were
ascertained through the Diamantina control dataset (AOGC,
n=967) and the Medical Genetics Reference Bank (MGRB, n=
1,144) (27). The AOGC dataset comprises of whole-exome
sequencing data from neurologically healthy Australians of
Frontiers in Immunology | www.frontiersin.org 3
predominately Western European descent. The MGRB dataset
comprises of PCR-amplified whole-genome sequencing data
from healthy Australians of >70 years of age and no history
of dementia.

Data Processing
All sporadic ALS samples underwent whole-genome sequencing
(WGS, Illumina 150bp PCR-free library, X-Ten sequencer) at
The Kinghorn Cancer Centre (Sydney, Australia), as detailed by
McCann et al. (4). Data was annotated to hg19 using
ANNOVAR and included in silico protein prediction tools
from the database for non-synonymous SNP’s functional
predictions v4.1a (dbNSFP) (4, 28–30). Custom UNIX scripts
were used to parse variant call format files for all variants in the
target genes. RStudio v3.6.3 (31) was used for all subsequent
analyses. Novel variants were considered accurate with base
coverage equal or greater than 25X, reference/alternate read
FIGURE 1 | Eighteen genes are involved in tryptophan metabolism and the kynurenine pathway. The gene WARS (cytoplasmic tryptophanyl-tRNA synthetase) is
responsible for TRP incorporation into proteins, while TPH1, TPH2 (Tryptophan Hydroxylases 1,2), MAOA (monoamine oxidase A), and DDC (Aromatic L-amino acid
decarboxylase/dopa decarboxylase) are involved in serotonin synthesis. IDO1, IDO2 (Indoleamine 2,3-Dioxygenase 1,2) and TDO2 (Tryptophan 2,3-Dioxygenase) are
responsible for the initial and rate limiting step of the KP. This is followed by a molecular cascade to produce active metabolites and ultimately NAD, carried out by
AFMID (Arylformamidase), CCBL1,CCBL2 (Kynurenine aminotransferase 1,2), AADAT (Aminoadipate Aminotransferase), GOT2 (Glutamic-Oxaloacetic Transaminase
4), KMO (Kynurenine 3-Monooxygenase), KYNU (Kynureninase), HAAO (3-hydroxyanthranilate 3,4-dioxygenase), ACMSD (2-amino-3-carboxymuconate-
semialdehyde decarboxylase), and QPRT (Quinolinate Phosphoribosyltransferase).
June 2021 | Volume 12 | Article 701550
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depth ratios of 50:50 (+/-15%), variant GQ score of 99, and
manual IGV visualisation (32).

Assessment of Genetic Variation
Single nucleotide genetic variation was assessed in the cytoplasmic
tryptophanyl-tRNA synthetase gene WARS (NM_004184), four
genes involved in serotonin metabolism: DDC; aromatic L-amino
acid decarboxylase/dopa decarboxylase (NM_001082971), MAOA;
monoamine oxidase A (NM_001270458), TPH1 and TPH2;
tryptophan hydroxylases 1,2 (NM_004179 and NM_173353
respectively), and 13 genes involved in the kynurenine pathway:
AADAT; aminoadipate aminotransferase (NM_016228), ACMSD; 2-
amino-3-carboxymuconate-semialdehyde decarboxylase
(NM_138326), AFMID; arylformamidase (NM_001010982), GOT2;
glutamic-oxaloacetic transaminase 4 (NM_002080), HAAO; 3-
hydroxyanthranilate 3,4-dioxygenase (NM_012205), IDO1 and,
IDO2; indoleamine 2,3-dioxygenase 1,2 (NM_002164 and
NM_194294 respectively), KMO; kynurenine 3-monooxygenase
(NM_003679), KYAT1/CCBL1 and KYAT3/CCBL2; kynurenine
aminotransferase 1,2 (NM_001122671 and NM_001008662
respectively), KYNU; kynureninase (NM_003937), QPRT;
quinolinate phosphoribosyltransferase (NM_014298), and TDO2;
tryptophan 2,3-dioxygenase (NM_005651).

Variant Filtering and Pathogenicity Scoring
Filtering criteria were applied to identify qualifying variants
present in WGS data for burden analysis (both heterozygous
and homozygous variants were included). Qualifying variants
were defined as those which alter the protein sequence including
missense, insertions or deletions, splicing and stop gain or loss
variants, and were considered as rare in the population. Rare
variants were defined as present at a minor allele frequency
(MAF) equal to or less than 0.005, with the exception of the
gnomAD nNFE controls, where a MAF equal to or less than
0.0001 was used due the large sample size. Novel genetic variants
were defined as those present in SALS, and absent, or only
present in a single individual, from all control datasets including
the National Centre for Biotechnology Information (NCBI)
dbSNP153 database (https://www.ncbi.nlm.nih.gov/snp/).

The potential pathogenicity of novel gene variants was assessed
using 12 functional prediction tools from dbNSFP, including SIFT,
PolyPhen2-HDIV, PolyPhen2-HVAR, LRT, MutationTaster,
MutationAssessor, FATHMM, PROVEAN, MetaSVM, MetaLR,
M-CAP and CADD (29). The percentage of deleterious
predictions was used to calculate a pathogenicity score, whereby a
score of 1 indicates that 100% of tools predicted a deleterious effect.
Meta-analysis prediction tools REVEL (nonsynonymous variants
only) and BayesDel (nonsynonymous and splicing variants) were
also noted from dbNSFP annotation, as these tools were recently
found to outperform other in silico prediction tools (33–35).
Pathogenic cut-off scores were 0.5 for REVEL and -0.057 for
BayesDel. The splicing variants were analysed for functional
affects using Human Splicing Finder v3.1 (36), NNSplice as part
of the MutationTaster tool, CADD and BayesDel. Additional ALS
datasets including the ALS Data Browser (ALSdb, New York City,
New York (URL: http://alsdb.org) [June 2020]), ALS Variant Server
(AVS, Worcester, MA (URL: http://als.umassmed.edu/) [June
Frontiers in Immunology | www.frontiersin.org 4
2020]), Project MinE (37) [June 2020] and dbGaP (https://www.
ncbi.nlm.nih.gov/gap/; Study Accession: phs000101.v5.p1) were also
screened for the presence of the novel gene variants identified in
Australian SALS cases.

Gene Burden
Burden analysis was performed on qualifying variants only, as
defined above. For burden testing, the total number of qualifying
variants per gene in sporadic ALS cases was compared to that of
multiple control datasets separately. The Fisher’s exact test (from
the R package exact 2x2) was used for analysis. As 18 genes were
analysed in this project, a Bonferroni correction of the p-value
was applied (n=18, p=0.00278).
RESULTS

Eighteen genes involved in TRP metabolism and the KP
(Figure 1) were screened for genetic variants in whole-genome
sequencing data from 614 Australian sporadic ALS patients.
Three-hundred and eleven single nucleotide non-intergenic
variants were identified including 50 synonymous, 76
nonsynonymous, one stop gain, one frameshift, four splicing,
128 3’UTR, and 51 5’UTR variants. Of these, 84 rare protein-
altering variants that qualified for burden analysis were identified,
and all genes had a least one such variant. Five genes (AFMID,
HAAO, KYAT1/CCBL1, TPH1 and WARS) showed a burden of
qualifying variants in SALS cases compared to the gnomAD nNFE
dataset, however, this was not replicated when compared to the
Australian control cohorts (Table 1). Nine novel variants in six
genes were identified, each in a single individual (Table 2). In silico
assessment of novel missense variants indicated that three variants
present in GOT2 (1), KYNU (1) andMAOA (1) were predicted to
be pathogenic by more than 80% of the total protein prediction
tools that provided prediction results (Table 2). Meta-analysis
prediction scores from REVEL and BayeDel also correlated with
these predictions (Table 2). The MAOA (X chromosome) variant
was present in the heterozygous state in one female. None of these
variants were present in additional ALS cohorts (MAOA data not
present in Project MinE), nor were they previously implicated in
other diseases (NCBI ClinVar database, https://www.ncbi.nlm.nih.
gov/clinvar/). The novel HAAO intronic splicing variants were
also predicted to affect splicing by altering intronic acceptor sites
using Human Splicing Finder (36), and to be deleterious by
MutationTaster, CADD and BayesDel.
DISCUSSION

We sought to determine the prevalence of novel genetic variants
or burden of rare protein-altering variants in genes that play a
key role in TRP metabolism or the KP in Australian sporadic
ALS. Nine novel genetic variants (absent from public control
databases, including population-specific controls) were identified
in WARS (protein synthesis), TPH2 and MAOA (serotonin
June 2021 | Volume 12 | Article 701550
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synthesis), and GOT2, KYNU and HAAO (KP) (Table 2). The
genes WARS and TPH1, and KP genes AFMID, HAAO, and
KYAT1/CCBL1 were shown to have a significant burden of
qualifying rare protein-altering variants in sporadic ALS
compared to the non-neuronal Non-Finnish European subset
of the gnomAD dataset (Table 1), although this was not
replicated when compared to Australian controls. This may be
due to technical differences in data generation (whole-exome,
PCR-amplified or PCR-free whole-genome sequencing), sample
size or unidentified differences in population structure due to the
highly multicultural and diverse Australian population. The
increased burden of rare protein-altering variants, including
the presence of novel variants, provides support for the role of
TRP metabolism and the KP in ALS, and suggests these variants
may act to increase risk of developing disease.

Aminoacyl-tRNA synthetases (ARSs) such as WARS are
responsible for the first step of translation and protein synthesis.
Mutations in the tryptophan ARS gene,WARS, have been found to
cause the neurodegenerative disease, distal hereditary motor
neuropathy (17, 18). WARS mutations were found to negatively
affect protein synthesis and cell viability and cause neurite
degeneration in neuronal cell lines and rat motor neurons (17,
18). We identified three additional novelWARS variants in sporadic
Frontiers in Immunology | www.frontiersin.org 5
ALS cases. Two variants (c.G91A, p.A31T and c.T107C, p.I36T)
were located in close proximity within the N-terminal helix-turn-
helix (WHEP) domain, responsible for protein-protein interactions
(17). Interestingly, deletion of the WHEP domain of a
Caenorhabditis elegans glycyl-tRNA synthetase was found to affect
protein structure and reduce enzyme function (38). However, these
WARSWHEP domain variants were predicted to benign by protein
prediction software tools, and therefore, further analysis is required
to establish their potential pathogenicity.

The neurotransmitter serotonin acts as a critical mood regulator,
with its depletion highly associated with depression. This depletion
may be a result of decreased availability of TRP due to activation of
IDO1 and the KP, which is associated with neuroinflammation and
psychological or physiological (illness) stress (39, 40). Four enzymes
are involved in serotonin synthesis from TRP, with TPH1/TPH2
converting TRP to serotonin precursor 5-hydroxytrypophan (5-
HTP), andMAOA converting 5-HTP to 5-hydroxyindoleacetic acid
(5-HIAA, Figure 1). Serotonin depletion has also been associated
with neurodegenerative diseases including Alzheimer’s disease and
frontotemporal dementia. Decreased levels of serotonin and 5-
HIAA have also been found in the spinal cord of ALS patients
(41, 42), as well as in ALS patient platelets, with serotonin levels
positively correlating with improved survival (41). Interestingly,
TABLE 1 | Burden of qualifying variants in sporadic ALS compared to controls.

Gene SALS variants (%) nNFE variants (%) nNFE p-value AOGC variants (%) AOGC p-value MGRB variants (%) MGRB p-value

AFMID 8 (1.30) 155 (0.30) 0.0023 9 (0.93) 0.6181 11 (0.96) 0.6294
HAAO 7 (1.14) 97 (0.19) 0.0012 3 (0.31) 0.0546 18 (1.57) 0.5328
KYAT1/CCBL1 11 (1.79) 173 (0.34) 0.0001 8 (0.83) 0.1010 15 (1.31) 0.4166
TPH1 8 (1.30) 121 (0.23) 0.0005 8 (0.83) 0.4414 12 (1.05) 0.6425
WARS 8 (1.30) 146 (0.28) 0.0022 6 (0.62) 0.1773 19 (1.66) 0.6858
AADAT 1 (0.16) 80 (0.16) 1 2 (0.21) 1 3 (0.26) 1
ACMSD 2 (0.33) 110 (0.21) 0.6744 1 (0.10) 0.5639 4 (0.35) 1
DDC 4 (0.65) 171 (0.33) 0.3192 5 (0.52) 0.7425 6 (0.52) 0.7469
GOT2 1 (0.16) 111 (0.22) 1 4 (0.41) 0.6544 4 (0.35) 0.6635
IDO1/INDO 6 (0.98) 152 (0.29) 0.0338 4 (0.41) 0.2012 4 (0.35) 0.1083
IDO2/INDOL1 3 (0.49) 129 (0.25) 0.4422 7 (0.72) 0.7492 8 (0.70) 0.7567
KMO 7 (1.14) 126 (0.24) 0.0030 6 (0.62) 0.2708 10 (0.87) 0.6141
KYAT3/CCBL2 5 (0.81) 129 (0.25) 0.0457 2 (0.21) 0.1176 11 (0.96) 1
KYNU 2 (0.33) 170 (0.33) 1.0000 7 (0.72) 0.4958 7 (0.61) 0.5088
MAOA 3 (0.49) 60 (0.12) 0.1143 3 (0.31) 0.6830 1 (0.09) 0.1264
QPRT 2 (0.33) 90 (0.17) 0.3725 n/a* n/a 17 (1.49) 0.0279
TDO2 4 (0.65) 138 (0.27) 0.1471 4 (0.41) 0.7186 12 (1.05) 0.5991
TPH2 2 (0.33) 134 (0.26) 0.7143 6 (0.62) 0.4958 1 (0.09) 0.2814
June 2021 | Volume 12
*Insufficient data available to calculate gene burden.
TABLE 2 | Novel protein-altering variants in sporadic ALS cases.

Gene hg19 physical
position

Type Accession
number

cDNA change protein
change

Score (# tools
with results)

REVEL
prediction

BayesDel
prediction

GOT2 chr16:58756092 exonic NM_002080 c.G337A p.A113T 0.92 (12) Pathogenic Damaging
HAAO chr2:43010561 splicing NM_012205 c.244-1G>C . 1 (4) n/a Damaging
HAAO chr2:43011008 splicing NM_012205 c.160-1G>C . 1 (4) n/a Damaging
KYNU chr2:143799665 exonic NM_003937 c.A1322G p.Y441C 0.83 (12) Pathogenic Damaging
MAOA chrX:43571952 exonic NM_000240 c.A412T p.I138F 0.83 (12) Pathogenic Damaging
TPH2 chr12:72332852 exonic NM_173353 c.A86G p.Q29R 0.58 (12) Benign Tolerated
WARS chr14:100835432 exonic NM_004184 c.G91A p.A31T 0.5 (12) Benign Tolerated
WARS chr14:100828251 exonic NM_004184 c.T107C p.I36T 0.33 (12) Benign Tolerated
WARS chr14:100801280 exonic NM_004184 c.A1348C p.K450Q 0.25 (12) Benign Tolerated
| Art
n/a, not available
icle 701550
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administration of 5-HTP in an ALS SOD1 mouse model
significantly improved phenotype, which also corresponded with
increased platelet serotonin levels in the animals (43). In an alternate
ALS SOD1 mouse model, degeneration of serotonergic neurons in
the brainstem was found to lead to spasticity, a common clinical
feature of ALS. Expression of mutant SOD1 caused a loss of
serotonergic neurons in the brainstem, a phenotype that was
rescued with SOD1 deletion. This, in turn, abolished spasticity in
the mouse (44). We found a burden of qualifying variants in TPH1,
and novel variants in TPH2 and MAOA in sporadic ALS cases
compared to controls. These genes encode tryptophan hydroxylases
(TPHs) involved in 5-HTP synthesis and 5-HIAA synthesis
respectively. Additionally, the MAOA variant, p.I138F was
predicted to have a pathogenic effect by eight prediction
tools (Table 2).

In the central nervous system, neuroinflammatory conditions
result in increased numbers of M1 neurotoxic microglia, which
produce excessive levels of QUIN (45). QUIN acts to agonise the
N-methyl-D-aspartate (NMDA) receptor, resulting in an
excitotoxic cascade that ultimately results in neuronal death
(45). Mechanisms of QUIN neurotoxicity include protein
dysfunction, oxidative stress, glutamate excitotoxicity,
mitochondrial dysfunction, neuroinflammation, autophagy and
apoptosis (46, 47). In ALS, several studies have found increased
levels of QUIN in the CSF of patients as well as in spinal cord
neuronal and microglial cells (46). Additionally, increased levels
of QUIN by intracerebral injection into rat striatum resulted in
increased astrocyte expression of the major ALS protein, SOD1.
As a free superoxide radical scavenger, the increased SOD1 levels
were thought to be a neuroprotective response to limit QUIN
oxidative toxicity, a function that may be inhibited by ALS-
causing mutant SOD1 protein forms (46, 48). QUIN
excitotoxicity can partly be mediated by KYNA, which is
produced by astrocytes (49). Interestingly, KYNA levels were
also found to be higher in ALS patient CSF compared to controls,
which may reflect an astroglial attempt to produce the
neuroprotective metabolite (13). In serum, however, KYNA
levels were conversely found to be significantly lower in ALS
patients with severe clinical status compared to both patients
with mild clinical status and controls (23). In a separate study, we
have found similarly decreased levels of KYNA in the serum of
patients with ALS as compared to controls (n= 238, p <0.001,
Student’s T-test; data not shown). Of the five KP genes found to
carry novel variants and/or a significant burden of qualifying
variants in this study, four were directly involved in KYNA
(KYAT1/CCBL1 and GOT2) and QUIN (KYNU and HAAO)
synthesis from 3-hydroxykynurenine (Figure 1).

The role of TRP and the KP in neuroinflammation, and its link
to several major neurodegenerative diseases including ALS has been
widely studied. We have shown for the first time that genetic
variation in these genes may be associated with sporadic ALS and
may confer risk to developing disease, however replication in
additional cohorts is required to confirm this relationship. The
protein-altering variants in the genes involved in these pathways
may trigger functional effects that influence disease risk and when
combined with other pathogenic ‘steps’ may progressively lead to
Frontiers in Immunology | www.frontiersin.org 6
ALS onset. Further studies can now commence to determine the
specific pathogenic role of the novel variants and genes that carry a
burden of variants in sporadic ALS.
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