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The K/BxN mouse model of rheumatoid arthritis (RA) closely resembles the human
disease. In this model, arthritis results from activation of autoreactive KRN T cells
recognizing the glycolytic enzyme glucose-6-phosphate isomerase (GPI) autoantigen,
which provides help to GPI-specific B cells, resulting in the production of pathogenic anti-
GPI antibodies that ultimately leads to arthritis symptoms from 4 weeks of age. Vasoactive
intestinal peptide (VIP) is a neuropeptide broadly distributed in the central and peripheral
nervous system that is also expressed in lymphocytes and other immune cell types. VIP is
a modulator of innate and adaptive immunity, showing anti-inflammatory and
immunoregulatory properties. Basically, this neuropeptide promotes a shift in the Th1/
Th2 balance and enhances dedifferentiation of T regulatory cells (Treg). It has
demonstrated its therapeutic effects on the collagen-induced arthritis (CIA) mouse
model of RA. In the present hypothesis and theory article, we propose that the
immunoregulatory properties of VIP may be due likely to the inhibition of T cell plasticity
toward non-classic Th1 cells and an enhanced follicular regulatory T cells (Tfr) activity. The
consequences of these regulatory properties are the reduction of systemic pathogenic
antibody titers.
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INTRODUCTION

The lymphoid tissue associated with the intestine constitutes the largest accumulation of cells of
both the innate immune system and the adaptive immune system of the body. Local cytokine
production forms an environment that influences the differentiation of distinct T cell subsets,
conditioning local and systemic immune responses. Notably, the development of T cell subsets,
especially Th17 and Treg cells, is broadly influenced by commensal bacterial species (1–3). Innate
immune cells in these locations sense environmental cues, produce cytokines, and interact with
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T cells, directing the differentiation of the various T cell subsets
(4, 5). The migration of these latter cells determines the type of
immune response both locally and systemically.

The gastrointestinal tract is highly innervated by the
parasympathetic and sympathetic systems (6). Also, the
autonomous enteric nervous system constitutes an extensive
neuronal network (7). All these nerve terminals are in
proximity with the lymphoid tissue at this location. Immune
cells express receptors for nervous mediators, indicating an
integrated neuro-immune communication of particular
significance in the intestine. Neurotransmitters, such as
norepinephrine or serotonin, and neuropeptides, such as SP,
VIP, CGRP, or neuromedin, are found in the nervous system
associated to the intestine (8). It has been shown that these inputs
balances type 1, type2, and type 3 immune responses, regulating
multi-organ homeostasis (9).

The aim of this hypothesis and theory article is to settle the
effect of VIP in the humoral immune response and the Th17 to
Th1 plasticity. Also, we propose its role in the enhancement of
Tfr cell activity.
THE K/BXN MICE MODEL OF
RHEUMATOID ARTHRITIS

RA is an autoimmune inflammatory disease that results in
chronic inflammation and tissue damage in the joints. Its
dependence on T cells has been demonstrated in several
animal models, and Th1, as well as Th17 cells, has been
implicated in the etiology of the disease. The role of humoral
immunity in the pathogenesis of arthritis has also been
underlined; the generation of autoantibodies against
citrullinated proteins (ACPA) is a landmark of RA (10). In
animal models, autoantibodies are efficient by themselves to
induce the disease. Autoantibodies transferred can induce RA,
suggesting that T or B lymphocyte responses are required for the
induction of RA. In this way, an induction phase, dependent on
adaptive immunity, and an effector phase, mediated by
antibodies and innate immunity, can be delineated. An
imbalance between different Th subsets has been implicated,
triggering the pathology.

The K/BxN mouse model of spontaneous arthritis shares
immunological abnormalities with human RA. K/BxN mice
proceed from a TCR transgenic mouse (KRN-C57BL/6)
crossed with NOD mice. The KRN TCR in the NOD-derived
Ag7 MHC class II molecules recognizes the ubiquitously
expressed protein glucose-phosphate isomerase (GPI) (10–13).
K/BxN mice develop severe arthritis with a rapid onset at 4 to 5
weeks. B cell function is also crucial in this animal model because
autoantibodies against GPI present in the serum, mainly of the
IgG1 isotype, transfer the disease (14, 15). The contribution of T-
cell subsets to this pathology has been extensively studied.
Although RA was originally attributed to increased Th1 cells, it
was shown that Th2 cells and their IL-4 production were
necessary to develop arthritis in this model (16). With the
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discovery of Th17 cells, this cell type has been shown to
participate in the pathogenesis of RA. In the K/BxN model,
Th17 cell development has been shown to be dependent on gut
microbiota, and it is necessary to elicit high anti-GPI antibody
titers (17, 18). In germ-free condition, K/BxN mice have
decreased Th1 and Th17 subpopulations. Other authors,
however, diminish the participation of Th17 cells in the
pathology and describe Tfh cell differentiation, mediating
autoantibody production and arthritis development. Tfh cells
are also regulated by microbiota, and using this animal model
shows that Peyer’s patches Tfh cells were essential to induce
systemic anti-GPI antibody titers of the IgG1 isotype in response
to commensal segmented filamentous bacteria (19, 20).

In any case, the K/BxN mice is the ideal model to study the
interplay between the immune system and their different cell
population and gut microbiota, as well as other local
immunoregulatory system, such as the nervous system, which
are closely tied at these locations. The balance among all these
factors has been proposed to determine the etiology of different
inflammatory and autoimmune diseases.
IMMUNOREGULATORY PROPERTIES
OF VIP

Vasoactive intestinal peptide is a 28-amino acid neuropeptide
initially isolated from the intestine, which has vasodilator
properties (21). It is widely distributed in neurons of the
central and peripheral nervous systems, especially in the
gastrointestinal tract (22). It belongs to the secretin/glucagon
family and binds with high affinity to two receptors, VIPR1 and
VIPR2 (23). While most cells of the immune system express
VIPR1 receptors constitutively, VIPR2 is induced upon
activation (24). The immunoregulatory properties of VIP have
been investigated for more than 20 years. It has been determined
that VIP inhibits the production of the inflammatory cytokines
TNFa, IL-6, IL-12, or chemokines produced by immune cells.
Other cytokines, such as IL-10, TGFb, or IL-1Ra, are induced in
the presence of VIP (25). It also modifies the polarity of Th
responses, favoring Th2 and inhibiting Th1, as evidenced by the
levels of IL-4 and IFNg produced during the immune response
(26, 27). Its efficacy in the treatment of several models of
inflammatory and autoimmune responses, such as rheumatoid
arthritis, multiple sclerosis, inflammatory bowel disease, and type
1 diabetes, has been widely demonstrated (28–32).

In this sense, the therapeutic benefit of this neuropeptide was
attributed to a shift in the Th1/Th2 balance and the
enhancement of differentiation of T regulatory cells (Treg) (25,
32). With the discovery of the implication of Th17 cells in these
pathologies, the re-evaluation of these aspects indicated that VIP
reduces the pathogenic profile of the Th17 cells, decreasing their
Th1 potential, an effect accompanied by an increase in the Treg/
Th17 balance in human lymphocytes obtained from early
arthritis patients (33–35). The recent finding of the plasticity
among different T cell types previously identified begs the
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re-evaluation of the different cell types implicated in these
pathologies and their clinical implications. Especially relevant
is the plasticity of Th17 cell that may shift to a Th1-like or a Treg
phenotype. Also, the stable suppressor phenotype of Treg cells is
conditioned by cytokines in the tissue microenvironments (36,
37). On the other hand, the effect of VIP on the humoral immune
response and the B cells compartment has been scarcely studied,
and this deficiency must be corrected.
HIPOTHESIS: VIP INHIBITS THE
PLASTICITY OF TH17 CELL TOWARD
THE NON-CLASSIC TH1 CELLS AND
POTENTIATES T FOLLICULAR
REGULATORY CELLS

Our knowledge about the modulation of the different T cell
subsets by VIP paralleled the discovery and knowledge of the
different lymphoid cell subpopulations. In the era of the Th1/Th2
paradigm, the first studies on the immunoregulatory role of VIP,
dated in 2001, was attributed to its effect on the balance between
these two populations in different animal models, increasing the
magnitude of Th2 responses and decreasing the magnitude of
Th1 responses (29). In 2005, Th17 cells were reported as a novel
Th cell playing an important role in the pathogenesis of
autoimmune diseases, including RA. The effect of VIP on Th17
cells has been controversial. In the CIA model VIP
downregulated Th17 responses (38, 39). In addition to these
observations, other studies indicated that this neuropeptide
induced Th17 differentiation (40). Afterward, Th17 cells were
shown to pose a high degree of phenotypical and functional
plasticity, depending on the cytokine microenvironment. Under
inflammatory conditions, the Th17 profile is unstable and can
shift to Th17/Th1 or Th1 phenotype in human arthritis. Later,
Th17/Th1 cells were shown to have a pathogenic role (41, 42).
More recent studies have indicated that VIP maintained the non-
pathogenic profile of human Th17 polarized cells, decreasing
their Th1 potential (34, 35). Th17 cells may lose their markers
becoming phenotypical Th1-like cells. These ex-Th17 cells are
now named as non-classical Th1 cells.

Another aspect of the Th17 plasticity is the transdifferentiation
between this cell subset and Treg cells. TGFb is required for their
differentiation, and their master transcription factors are
transiently co-expressed early during their differentiation. Treg
cells can be broadly classified into two groups (43): natural Treg
cells (nTreg) generated in the thymus that show T cell receptors
with high affinity for self-antigens, and peripherally induced Treg
cells (iTreg) developed from conventional naïve CD4+ T cells in
the periphery after antigen encounter in the presence of specific
factors (44). Multiple studies have shown that VIP can induce the
generation of Treg cells. In this sense, some authors have
demonstrated the expansion of nTreg by VIP, whereas other
studies have suggested that VIP is implicated in the generation of
iTreg cells (45–48).
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Considering previous data and new experimental evidence,
the effect of VIP on the different T cell population must be re-
evaluated including the abovementioned proposed hypothesis.
To find support for the abovementioned hypothesis, we took
advantage of a running experiment on the effect of VIP in the
humoral immune response in the K/BxN model.
EXPERIMENTAL EVIDENCE

Autoantibodies are the hallmark of RA, and ACPA antibodies
are highly specific in humans during the progression of the
disease. The development of arthritis in the K/BxN mouse model
is dependent on antibodies directed against the ubiquitously
expressed protein GPI (49). Arthritis in K/BxN mice is
dependent on both, innate and adaptive immunities. It can be
divided in two phases: inductive and effector phases. In the
inductive phase, autoreactive T and B cells are activated,
resulting in the production of autoantibodies in the effector
phase. Transfer of serum from arthritic K/BxN mice can
induce the development of arthritis in any mouse strains.
Immune complexes trigger complement activation and the
recruitment of innate cells to the joint (12, 13). Shortly after
weaning, arthritogenic T cells appear in the spleen between 3 and
4 weeks of age and arthritis onset can appear by 4 weeks of age.
The effector phase, on the other hand, depends on autoantibody
titers against GPI. Because VIP has been shown to be effective in
preventing arthritis in the CIA (29), we wanted to know if VIP
also has a beneficial effect on antibody titers against the
autoantigen GPI. So, we treated K/BxN mice 5 days a week for
2 weeks i. p. with 2 nM of VIP from 21 days of age, an age at
which anti-GPI antibodies have began to appear (15). A similar
VIP dose can delay insulitis and prevent development of diabetes
in NOD mice administered after weening (32). Our results
indicate that VIP-treated K/BxN mice showed a milder
arthritis, with significantly lower clinical score than the
untreated mice (Figure 1).

Therefore, we looked for total anti-GPI by ELISA. The
humoral immune response is dominated by IgG antibody
FIGURE 1 | Time course of clinical score values (mean ± SEM) in untreated
and VIP treated K/BxN mice. X axis represents days of treatment (beginning
on day 21 of age). *p < 0.05.
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titers, as previously reported, with very low titers of IgM
antibodies. IgE or IgA antibodies were undetectable. Serum
anti-GPI IgG antibody titer in VIP-treated K/BxN mice
decreased by one order of magnitude compared with untreated
K/BxN mice. Of the different anti-GPI Ig isotypes, only IgG has
been associated with the arthritogenic pathology, and different
isotypes of IgG participate differently on it, with IgG1 being
arthritogenic. To determine the influence of VIP, we examined
serum anti-GPI IgG levels of the different isotypes (Figure 2).
The dominant IgG isotypes were IgG1 and IgG2a, with lower
levels of IgG2b, and very low levels of IgG3 in untreated mice, as
previously stated. VIP decreases significantly the IgG1 anti-GPI
antibody titers and also that of IgG2a, which is close to reaching
statistical significance. IgG2b and IgG2c were not affected
by VIP.

Although the effector phase of arthritis is triggered by
pathogenic autoantibodies, the induction phase is mediated by
different subsets of Th cells that provide help for the different Ig
isotypes. Th2-Tfh cells are implicated in the production of IgG1,
whereas IgG2a and IgG2b secretion is mediated by Th1 and
Th17 cells, respectively (47, 48). In K/BxN mice, autoreactive
KRN T cells escape negative selection in the thymus and are
activated in the periphery by GPI where they provide help to
GPI-reactive B cells (14, 50). So, T cells are required for arthritis
development, especially at the inductive phase. B cells produce
arthritogenic autoantibodies that are necessary and sufficient for
arthritis development during the effector phase. We surveyed
how VIP treatment affected T and B cell populations, analyzing
both cell subpopulations in the spleen because GPI antibody-
secreting cells reside mostly in this organ (17). Flow cytometry
analysis demonstrated that the frequency of B cells were similar
in VIP-treated and untreated K/BxN mice. However, the
percentages of T CD4+ cells were higher in VIP-treated K/BxN
mice than in the non-treated K/BxN mice (Figure 3).

These data suggest that VIP targets adaptive T responses
during the induction phase of the disease. For antibody response,
different Th cell subsets influence the isotype of the antibody
response mounted by B cells. Thus, as Th2-Tfh cells are
implicated in the production of IgG1, and Th1 and Th17
Frontiers in Immunology | www.frontiersin.org 4
mediate the production of IgG2a and IgG2b, we have studied
the gene expression of the master transcription factors and
cytokine signature of the Th types by RT-PCR in the spleen to
assess the participation of the different Th subpopulations in the
immune response of K/BxN mice and the effect of VIP. Figure 4
shows that the immune response in untreated K/BxN mice were
dominated by the Th2 cell subset, according to the gene
expression of GATA3, but Th1 and Tfh responses are also
highly expressed, that is in accordance with high anti-GPI
IgG1 and IgG2a serum levels. However, the Th17 master
transcription factor Rorgt is expressed at a much lower levels,
in parallel to the lower anti-GPI IgG2b and IgG2c serum levels.
Treatment of K/BxN mice with 2 nM of VIP 5 days a week for 2
weeks from the very early phase of arthritis development has no
effect on splenic Tfh marker Bcl6 but significantly reduced the
expression of the Th1 master transcription factor Tbet,
FIGURE 2 | Anti-GPI titers of different isotypes in K/BxN mice treated with
PBS or VIP for 15 days. Mean is shown as the horizontal line within each
group; each symbol represents an individual mouse. *p < 0.05; *0.05 < p <
0.1; ns, not significant.
FIGURE 3 | Flow cytometry analysis of spleen lymphoid cells of K/BxN mice
treated with PBS or VIP. Mean is shown as the horizontal line within each
group; each symbol represents an individual mouse. *p < 0.05.
FIGURE 4 | mRNA expression of master transcription factors of different Th
cell subsets of PBS or VIP treated K/BxN mice. The expression was
determined by quantitative real-time PCR as indicated (supplemental
materials). Mean is shown as the horizontal line within each group; each
symbol represents an individual mouse. *p < 0.05; ns, not significant.
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(Figure 4). The Th2 master transcription factor GATA3,
however, is significantly increased. Also, the Th17 master
transcription factor Rorgt was significantly increased, resulting
in a Th17/Th1 balance more skewed toward Th17 function.

Two types of Th1 cells have been described: bona fide Th1
cells and non-classic Th1 (ex-Th17) cells, the latter derived from
Th17 cells (51). The pathogenic activity of Th17 cells has been
shown to be mediated by their conversion in vivo into Th1 cells
in animal models of autoimmunity (12, 36). It has been also
reported that Th17 cells shift to a Th1 phenotype under
inflammatory environments in rheumatoid arthritis (42). Non-
classical Th1 cells are not constrained by Treg cells (49). We
hypothesize that the effect of VIP on Th1 cells reported in
this study may be mediated by the inhibition of the
transdiferentiation of Th17 cells into Th1 cells, resulting in the
reported increase of Th17 cells as indicated by the rise in
the expression of Rorgt and a decrease in the expression of the
Th1 master transcription factor Tbet, as well as lower levels of
IgG2a antibodies. The higher accumulation of Th17 cells and a
decrease in Th1 cells in VIP treated mice may indicate the
decreased plasticity between both cell subsets. Our hypothesis
is supported by the reported effect of VIP inducing the
differentiation of Th17 cells (40). We have also shown
previously that VIP increases the differentiation human Th17
cells and inhibit their bias toward Th1-like cells (38).

Comparing the expression of T cell subpopulation markers
with the antibody titers of the different isotypes, we may
conclude that lower antibody titers of IgG2a isotype may be
explained by the reduction of the Th1 marker Tbet. However, the
great reduction of the IgG1 isotype does not match the increased
expression of the Th2 marker GATA3. So, we considered the
possibility of alterations in the population of Bcl6 Th cells. The
Bcl6 transcription factor is expressed by both Tfh and Tfr cells.
Tfh cells are characterized by the expression of the master
transcription factor Bcl6 and provide germinal center B cells
with signals that culminate in class switch recombination and
differentiation of plasma cells that produce large quantities of
isotype class switch of high affinity IgG1 antibodies. Tfr cells
regulate the GC reactivity (52) and suppress the effects of Tfh
cells on antibody response, without affecting the expression of
the master transcription factor Bcl6 in a contact-dependent
manner (53).

Treg cells can be broadly classified into two groups. Natural
Treg cells (nTreg) are generated in the thymus and show T-cell
receptors with high affinity for self-antigens. Peripherally
induced Treg cells (iTreg) developed from naïve CD4+ T cells
in the periphery after antigen encounter in the presence of
specific factors (43, 51). All Treg cells express the master
transcription factor FoxP3, and iTreg cells differentiate in the
periphery from Foxp3 negative T cells (54). The expression of the
transcription factor Helios was once thought to discriminate
natural from peripherally induced Treg cells (55). In any case,
Helios regulates Treg functional stability, and targeted mutation
of the Ikaros transcription factor family shows T-cell
hyperproliferation, autoantibodies, and elevated IgG serum
levels (56). Multiple studies have shown that VIP induce the
Frontiers in Immunology | www.frontiersin.org 5
generation of Treg cells, and both nTreg and iTreg cells have
been implicated in different experimental models, as well as in
human pathologies (45–48). It is likely that Tfr is implicated in
the beneficial effects of VIP reported here in the K/BxN arthritis
model. Tfr cells are derived from thymic nTreg cells and express
both Foxp3 and Helios (57). This cell type suppresses the effects
of Tfh cells on antibody response without affecting the
expression of the master transcription factor Bcl6 in a contact-
dependent manner (58). In this regard, we have studied the
expression of the abovementioned transcription factors. We have
found that the transcription factors FoxP3 and Helios are fairly
expressed in arthritic K/BxN mice. VIP treatment results in a
significative increase of the Treg master transcription factors
Foxp3 and Helios (Figure 5). There is higher expression of the
Treg master transcription factors Foxp3 and Helios, no changes
in the Tfh master transcription factor Bcl6 and an important
decrease in the antibody titers of the IgG1 isotype points to an
enhanced Tfr cell activity by VIP treatment.
CONCLUSION

IgG1 has been characterized as the antibodies mediating the
effector phase of RA in K/BxN mice. Here, we report a drastic
reduction of the titers of this isotype, as well as IgG2a antibody
titers, after VIP treatment. We hypothesize that this effect is
mediated by a decreased plasticity of Th17 cells to non-classical
Th1 cells and together with an enhanced Tfr cell response. This is
compatible with the decreased Th17 cell population and
increased Tfh cell population seen in the K/BxN model
occurring during ageing, which also depends on the gut
microbiota. Very recently, gut microbiota has been shown to
influence systemic Tfr cells, impacting systemic autoimmunity in
the present animal model of autoimmune arthritis (59). This
means the implication of the local microbiota and nervous
circuits in the regulation of autoimmune diseases.
FIGURE 5 | Effect of VIP on mRNA expression of master transcription
factors of Treg cells. The expression was determined by quantitative real-
time PCR as indicated (supplemental materials). Mean is shown as the
horizontal line within each group; each symbol represents an individual
mouse. *p < 0.05.
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