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We modified a Sabin Oral Poliovirus Vaccine (OPV) vector to permit secretion of the
antigens of interest with the goal of improving anti-HIV Env humoral responses in a SHIV
mucosal immunization composed of DNA and recombinant OPVs. We evaluated
stimulation of systemic and mucosal cell-mediated and humoral immunity in Rhesus
macaques by two regimens, both involving a prime with a SHIVBG505 DNA construct
producing non-infectious particles formulated in lipid nanoparticles, administered in the
oral cavity, and two different viral vector boostings, administered in the oral cavity and
intestinally. Group 1 was boosted with rMVA-SHIVBG505, expressing SIV Gag/Pol and
HIVBG505 Env. Group 2 was boosted with a SHIVBG505-OPV vaccine including a non-
secreting SIVmac239CA-p6-OPV, expressing Gag CA, NC and p6 proteins, and
a HIVBG505C1-V2-OPV, secreting the C1-V2 fragment of HIV EnvBG505, recognized by
the broadly neutralizing antibody PG16. A time course analysis of anti-SHIV Gag and Env
CD4+ and CD8+ T-cell responses in PBMC and in lymph node, rectal, and vaginal MNC
was carried out. Both regimens stimulated significant cell-mediated responses in all
compartments, with SHIVBG505-OPV immunization stimulating more significant levels of
responses than rMVA- SHIVBG505. Boolean analysis of these responses revealed
predominantly monofunctional responses with multifunctional responses also present in
all tissues. Stimulation of antibody responses was disappointing in both groups with
negative anti-SHIV IgG in plasma, and IgA in salivary, rectal and vaginal secretions being
restricted to a few animals. After repeated rectal challenge with SHIVBG505, two Group 1
animals remained uninfected at challenge termination. No significant differences were
observed in post-infection viral loads between groups. After the acute phase decline, CD4+
T cell percentages returned to normal levels in vaccinated as well as control animals.
However, when compared to controls, vaccinate groups had more significant preservation
of PBMC and rectal MNC Th17/Treg ratios, considered the strongest surrogate marker of
progression to AIDS. We conclude that the vaccine platforms used in this study are
insufficient to stimulate significant humoral immunity at the tested doses and schedule but
sufficient to stimulate significant mucosal and systemic cell-mediated immunity, impacting
the preservation of key Th17 CD4+ T cells in blood and rectal mucosa.
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INTRODUCTION

Vaccine development for prevention of AIDS has been attempted
since the discovery of HIV-1, exploring numerous available
platforms, yet clinical trials carried out so far have been
disappointing. The RV144 trial, evaluating the efficacy of four
doses of inactivated HIV-recombinant ALVAC pox virus plus two
of recombinant monomeric HIV gp120, showed that the vaccine
had 30% efficacy in preventing infection, with protection being
linked to antibodies against the V1V2 region of gp120 (1–4).
Protection was limited and declined over time, due to the declining
antibody (Ab) response (5). This vaccine had low levels of T-cell
immunogenicity and vaccination did not control viremia or loss of
CD4+ T cells in the vaccinees that contracted HIV (2, 6–8).
However, polyfunctional CD4+ and CD8+ T-cell responses
correlated with decreased HIV risk and, at the same time, a
sieve effect on transmitted viruses induced by the cellular
responses was noted (5, 9, 10). Recently results from additional
boosting of participants in the RV144 trial have become available.
Boosting increased the antibody responses and affinity maturation
to levels higher than those in the original trial but these responses
were not long-lasting and did not further increase with subsequent
boosts (11–14). Mucosal IgG levels against different Env
immunogens correlated with the plasma IgG levels (11). In the
trial RV305, the vaccine boost expanded anti-HIV env CD4
binding site antibodies capable of neutralizing tier 2 primary
isolates (15). A caveat in the interpretation of the protection
data was also raised and highlighted the role of trial participants
engaged in low- vs. high-risk behavior in affecting the outcome of
vaccine efficacy (16). Importantly, the ALVAC–gp120 regimen
was very recently shown not to prevent HIV-1 infection in
vaccinated individuals hat were part of a trial in South Africa,
although in this trail the adjuvant used in conjunction with gp120
was different than that used in RV144 (17).

Macaque immunization experiments that failed to provide
sterilizing immunity showed that some infection protection or
delayed onset of disease can be observed if anti-SIV cell-
mediated immunity is present at the time of exposure and
infection [(18–24) and references therein]. Although initial
clinical trials based on vaccines that stimulated T-cell
immunity were disappointing, the utility of the stimulation of
this arm of the immune system in conjunction with induction of
antibodies with diverse functions is being reconsidered in light
of data from elite controllers and because there are advantages
provided by cell-mediated responses to HIV, including the ability
to target broad, mutationally constrained epitopes of multiple
HIV proteins without a requirement for somatic hypermutation,
which may allow for more standard prime–boost vaccine
regimens (25). Mucosal responses may also protect against
cell-associated HIV transmission and be able to clear an
infection before reservoirs are established. If antigen-specific
immunological memory is not sufficient to prevent the
establishment of chronic HIV-1 infection, a more successful
approach could be based on vaccines that maintain high levels
of effector memory cells that mimic the response induced by
attenuated SIV viruses, while avoiding their drawback of
Frontiers in Immunology | www.frontiersin.org 2
persistent infection and disease. A recombinant CMV
approach has provided this type of immunity that resulted in
aborted infection, indicating that a persistent effector T-cell
response can prevent the establishment of reservoirs (22, 26–28).

Data from preclinical vaccine trials support the notion that
anti-Env broadly neutralizing antibodies (bNAbs) could be a
critical component in addition to anti-HIV cell-mediated
immunity to achieve large scale protection from persistent
infection, as passive administration of neutralizing antibodies
protects macaques from SHIV challenge (29). When high titer
NAbs were induced by vaccination, protection from homologous
rectal challenge was initially obtained but was lost as NAb titer
declined (30). Anti-V1V2 Abs mediating ADCC have been
identified as correlate of protection in the RV144 trial and
there is now significant focus on this HIV Env domain as a
critical vaccine component (1, 3, 6, 31–33). Cloning bNAbs from
HIV-infected individuals indicates that significant Ab affinity
maturation is necessary to move from poorly NAbs, encoded by
germ-line Ab sequences, to higher affinity antibodies, capable of
providing broad neutralization (34–37). Stimulation of bNAbs
via vaccination has been a frustrating endeavor in the HIV
vaccine field. The Env protein needs to fold into the
appropriate trimeric conformation to stimulate NAbs and the
Env gp140 SOSIP appears to induce tier 2 NAbs, capable of
neutralizing tier 2 SHIV that are more representative of
circulating HIVs (30, 38–42). Env immunogens capable
of stimulating bNAbs are therefore required to have
simultaneously ideal domains for appropriate structural
conformation and the ability to drive the affinity maturation
process towards the selection of bNAbs. Furthermore, a platform
capable of inducing long-lasting titers of humoral immunity is
also necessary. The ideal candidate antigens and vectors
necessary to simultaneously achieve all these goals have not yet
been identified and are the focus of many investigations.
Furthermore, the mechanisms of protection in the RV144 trial
are not fully understood and are possibly mediated by antibody-
dependent-cell-mediated cytotoxicity (ADCC) and other non-
NAb effector functions. The correlation with protection of these
non-NAbs raises questions whether bNAbs should be the only
relevant goal of a successful vaccine (14, 43).

It is possible that significant immunity at the site of HIV entry
might permit control of local infection before it becomes systemic
and therefore reduces the plasma Ab titer necessary for protection.
Immunization at one mucosal site can lead to an immune
response at other mucosal effector sites, as immunologically
competent cells with homing receptors specific for mucosal sites
circulate among different sites, but there are differences in the
magnitude observed at different sites with maximal responses at
the site of antigen exposure and present to a lesser degree at other
mucosal sites, supporting the notion of compartmentalization of
the mucosal immune system (44–50).

The exploration of the oral route of immunization is
important for two reasons, one practical, the second due to its
potential to provide a more tailored approach to HIV immunity
and protection. Its practicality, when compared to systemic or
other mucosal routes, resides in its simplicity of administration
June 2021 | Volume 12 | Article 702705
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and therefore in its feasibility in settings with less-than-optimal
health care resources. As for stimulation of a broad and diverse
immunity against HIV that is present also at the sites of viral
exposure, mucosal routes of immunizations are known to be
better than systemic routes to achieve both mucosal and systemic
immunity, with oral immunization being ideal for achieving
immunity in the oral cavity and in the gastrointestinal tract (51).
OPV has been the most successful and safe oral vaccine used in
the world, critical to the goal of getting close to eradicating
poliomyelitis (52). As it replicates in the intestinal tract and also
reaches the systemic compartment, it is capable of inducing
excellent responses at both sites that last at high titers for
decades, even in the absence of re-exposure and could be a
valuable vector for induction of broad humoral immunity, with
stimulation of both antigen specific IgG and IgA in the rectal
mucosa that could be significant to control HIV at the site of
entry, as passively administered anti-HIV Env IgA mAbs have
been shown to be highly effective for preventing mucosal SHIV
infection in RM (53). In children, neutralization titers have been
shown to correlate with duration of shedding, with titers being
higher when shedding could still be detected 28 days after
immunization while being absent or lower when shedding was
shorter (54). Some concerns were expressed about recombinant
OPV capability of inducing significant cell mediated immunity
(55), therefore its use in combination with a DNA priming
appeared to us an interesting approach.

Here we combined a SHIVBG505 recombinant DNA prime
with a boost composed of two recombinant OPVs, one
expressing the SIV Gag CA-p6 fragment, containing the SIV
capsid (CA) and nucleocapsid (NC) proteins, and one secreting a
fragment of the HIV Env, covering the C1-V2 region and
recognized by a bNAb, from the infected cell. This regimen
was compared to one where the boosting vaccine was a
recombinant SHIVBG505-MVA. We report the immune
responses induced by these regimens in the Rhesus macaque
animal model and their effect on a SHIV rectal challenge.
MATERIALS AND METHODS

Construction of SHIVBG505 Vaccines
The plasmid pSHIVBG505Vacc3 used in the vaccination is a
derivative of pVacc7 (56) in which a fragment containing the
SIVmac239 env coding sequence was replaced by a corresponding
fragment that includes the HIVBG505 env coding sequence,
obtained by PCR amplification from a HIV-1 BG505 Env
Expression Vector (BG505.W6M.ENV.C2, NIH-AIDS Reagent
Program cat. No. ARP-11518) (57) with primers carrying SphI
and NcoI restriction sites and cloned in a similarly digested
pVacc7. The DNA sequence was confirmed by sequencing and
the profile of the non-infectious viral particle produced by the
construct was evaluated by cell lysate Western blot using a
macaque SHIV-positive plasma. pSHIVBG505Vacc3 DNA was
produced and purified at Aldevron Biotechnology (Fargo, ND).
The DNA amount of pSHIVBG505Vacc3 used in one vaccine dose
Frontiers in Immunology | www.frontiersin.org 3
(1 mg) was formulated in 1 ml of 20 mM DOTAP (1,2-dioleoyl-
3-trimethylammonium-propane, cholesterol (1:1) that forms
cationic liposomes (formulation made by FormuMax Scientific
Inc.Sunnyvale CA).

rMVA-SHIV-BG505 Immunogen (108 pfu/dose/animal),
expressing SIVmac239 Gag, Pol and HIVBG505 Env was
developed using HIVBG505 Env sequence (Gen Bank accession:
KU958484.1) with E64K-A316W-T332N-A433P, SOSIP
mutations (A501C, T605C, I559P) and was codon optimized
for MVA-mediated expression. This sequence was synthesized
from GenScript and was cloned using Xmal site in pLW-73 with
an independent mH5 promoter. It was subsequently recombined
and developed as previously described (58) into MVA essential
region expressing SIV Gag and Pol at Del III (provided by
B.Moss) between genes I8R and G1L. Gag and Env expression
in rMVA/SHIV-BG505 infected cells were confirmed by western
blotting and flow cytometry. Viral stock for immunizations was
purified from rMVA/SHIV infected DF1 cell lysates using 36%
sucrose cushion.

SHIVBG505-OPV is composed of two recombinant OPVs. To
obtain plasmid pSIVmac239CA-p6-OPV, nucleotides 1125 (bp
406-1530) of the SIVmac239 gag sequence (Accession #
M33262) (59) are cloned into the XbaI and SalI sites of
plasmid pSabin2-eGFP [a gift of Dr. R. Andino, UCSF (60)],
between two poliovirus protease cleavage sites, replacing the gfp
gene. The 375 amino acid (a. a.) SIV Gag polyprotein, covering,
CA, NC and p6 proteins, is expressed intracellularly after virus
infection and cleavage of the OPV polyprotein. Plasmid
pHIVBG505C1-V2-OPV carries a portion of the HIVBG505 Env
sequence, replacing the gfp gene in pSabin2-eGFP OPV.
pSabin2-eGFP was modified by removing the gfp sequences,
and by adding a 21 base pair sequence covering the Thosea
asigna virus 2A (T2A) polycistronic NPG/P cleavage site (61)
right after the 2A polio protease cleavage site and the G-linker to
achieve, after cleavage, the addition of only a proline at the N
terminus of a signal peptide, provided by the 23 a.a. of the tissue
plasminogen activator (tpA) signal peptide. This signal peptide
carries the 22P/A mutation, reported to significantly increase the
secretory expression of trimeric proteins (Figure 1A) (62). The
HIVBG505 C1-V2 Env fragment was obtained by PCR
amplification of the C1-V2 region from the Expression Vector
BG505.W6M.ENV.C2 (NIH-AIDS Reagent Program cat no.
11518) and includes the sequence for amino acids 30-209 of
HIVBG505 Env (sequence accession ABA61516, DQ208458.1)
(57), cloned 3’ of the signal peptide sequence. At the 3’ end of
the Env sequence, a sequence for a His tag was inserted to detect
and purify the secreted protein fragment. The HIV Env C1-V2
fragment, expressed in this virus as part of the OPV polyprotein, is
cleaved from the OPV polyprotein and independently secreted
from the infected cell. Virus production in HeLa cells and titration
of virus stocks were carried out according to Burril, C. P et al. (63)

The following bNAb, utilized to characterize the new
recombinants expressing HIV Env fragments, were obtained
through the NIH AIDS Reagent Program, Division of AIDS,
NIAID, NIH: Anti-HIV-1 gp120 Monoclonal (PG9) from the
International AIDS Vaccine Initiative (IAVI, cat# 12149) and
June 2021 | Volume 12 | Article 702705
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Anti-Human Immunodeficiency Virus (HIV)-1 gp120
Monoclonal Antibody (PG16), cat. # ARP-12150, also
contributed by IAVI (64).

Vaccine Formulation, Vaccination Groups
and SHIVBG505 Rectal Challenge
Sixteen female Rhesus macaques were housed at Biomere
Biomedical Research Models, Worcester, MA, according to an
approved protocol under the guideline established by the Animal
Welfare Act and the National Institute of Health Guide for the
Frontiers in Immunology | www.frontiersin.org 4
Care and Use of Laboratory Animals. They were divided into 3
groups, each of 8 animals. Group 1 and Group 2 animals received
a total of three DNA doses of DNA plasmid pSHIVBG505Vacc3
on day 1, week 8, 16 that consisted of 1 mg of pSHIVBG505Vacc3
DNA, formulated in cationic liposomes as described (56). In
addition, on week 33, 41 and 49 Group 1 received rMVA-SHIV-
BG505 (108 pfu) and Group 2 received 5x107 pfu SHIVBG505-
OPV. The boosting schedule was delayed 9 weeks from the
original plan (week 24, 32, 40) because of intervening
implementation of OPV containment requirements in the
A

B

D

C

FIGURE 1 | (A) Schematic diagram of Recombinant OPVs: orange boxes illustrate the SHIV recombinant antigens that are ultimately produced by OPV. The
SIVmac239CA-p6 sequence was inserted between two 2A protease cleavage sites in pSabin2-eGFP, replacing gfp to generate SIVmac239CA-p6-OPV. The
corresponding protein becomes expressed intracellularly once the cleavage of the OPV polyprotein occurs. The HIVBG505 Env C1-V2 region was cloned linked to tPA
signal peptide that permits its secretion to generate HIVBG505C1-V2-OPV. The recombinant fragment amino acid sequence, starting and ending with polio protease
cleavage sequences, with polio protease TTY/G and T2A NPG/P cleavage indicated by a bar, and with HIV Env sequence underlined, is the following: GLTTY/
GFGHGGGGGGSRLEGSGEGRGSLLTCGDVEENPG/PMDAMKRGLCCVLLLCGAVFVSASAENLWVTVYYGVPVWKDAETTLFCASDAKAYETEKHNVWATHACVPT
DPNPQEIHLENVTEEFNMWKNNMVEQMHTDIISLWDQSLKPCVKLTPLCVTLQCTNVTNNITDDMRGELKNCSFNMTTELRDKKQKVYSLFYRLDVVQINENQGNRSNN
SNKEYRLINCNTSATQACPKVSFHHHHHHVDGLTTY/GFGH. (B) Stability of passaged recombinant OPVs: RT-PCR to detect recombinant OPV expression in RNA of
infected cells after virus passage. Selective passages from 0 to 12 are reported. (C) Left top panel: Western blot of cell lysates from 293T cells: non-infected (lane 2),
infected with Sabin2-eGFP (lane 3), transfected with SIVmac239 DNA (lane 4), infected with SIVmac239CA-p6-OPV (lanes 5-9, harvested at 12 to 48 hrs after infection).
A SHIV-infected monkey serum was used as primary antibody. Left bottom panels: flow cytometric analysis of 293T infected cells stained with an anti-SIV p27
antibody (unstained, DAPI stained, DAPI+anti-p27 panels). Right top panel: Detection of the HIVBG505C1-V2 fragment by Western blot, probed with anti-HIS mAb:
mAb PG16 (lane 2); mAb PG9 (lane 3), Protein A (lane 4), HIVBG505C1-V2 fragment, purified from tissue culture supernatant after HIVBG505C1-V2-OPV infection and
immunoprecipitated with NAb PG9 (lane 5) or with NAb PG16. (lane 6), purified HIVBG505C1-V2 (lane 7). Right bottom panels: flow cytometric analysis of 293T
infected cells stained with an anti-HIS mAb (unstained, DAPI alone staining, DAPI+anti-HIS staining panels). (D) Growth curve of recombinant OPVs in 293T
cells. After 293T cell infection at 0.1 MOI with Sabin2-eGFP, SIVmac239CA-p6-OPV and HIVBG505C1-V2-OPV, supernatants were harvested at time points indicated
on the X axis and the corresponding titer, obtained by TCID50 evaluation, is reported on the Y axis.
June 2021 | Volume 12 | Article 702705
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facility that housed the animals, requested by the CDC to comply
with the WHO program for poliovirus eradication. These
vaccines were formulated in PBS in a final volume of 1 ml.
The DNA vaccine was administered to the animals in the oral
cavity, applied to the mucosa between the gum and the cheek
while sedated. OPV is usually given to humans orally and infects
both the oral cavity and the gastrointestinal tract after
swallowing. This is harder to accomplish in awake animals
without any waste of the administered vaccine or prolonged
animal training. To be able to compare the administration of the
full dose selected for both vaccines and, at the same time, achieve
the distribution obtained in humans with OPV, we opted to
administer the vaccines partially in the mouth (1/5 of the dose)
and the remaining 4/5 in the stomach by gavage for SHIVBG505-
OPV and in the duodenum using an endoscope for rMVA-
SHIV-BG505 [a approached previously tested for SIV-MVA in
(56)]. Two animals in Group 2 were euthanized due to rectal
prolapse that occurred on weeks 44 and 45 after rectal biopsies
obtained on weeks 43, leaving 6 animals in this group. Eight
weeks after the last vaccination, Group 1 and Group 2 animals
and Group 3 (naïve controls) were inoculated with a 1:75
dilution in PBS of SHIVBG505 N332 S375Y DCT stock [a gift
from Dr. George Shaw, U. Pennsylvania (30, 65)]. The virus
amount corresponded to 1.4 x107 virions or 2 ng p27 and was
grown in RM CD3-activated PBMC depleted of CD8 T cells
[a complete characterization of the challenge stock with respect
to virion content and virion infectivity of the pathogenic virus
is provided in S1B in (45)]. SHIVmBG505 N332 S375Y DCT
was administered non-traumatically with needleless tuberculin
syringes as cell-free virus in the rectum (66). Challenge was
repeated weekly six times and RT-PCR tests were carried out to
detect positivity for virus in plasma.

Collection of Specimens
Blood and secretions were collected 2 and 4 weeks post-
vaccination and were followed by monthly collection.
Premoistened Weck-Cel sponges were used to collect rectal and
vaginal secretions as described (67). Rectal, vaginal and lymph
node tissues were biopsied on the day of first vaccination and 2
weeks after each vaccination. Plasma and PBMC were isolated
from EDTA anti-coagulated whole blood using established
protocols (68). Isolation of mononuclear cells (MNC) from
colon-rectal mucosa was carried out according to previously
published procedures (69). Briefly, after Telazol anesthesia,
seven to eight biopsies/animal/time point were obtained from
the rectum and cervico-vaginal tissue using sterile forceps and a
small pinch biopsy device (Olympus endoscopic biopsy forceps).
MNC from tissues were obtained bymechanical dissociation using
GentleMACS dissociator (Miltenyi Biotech, Paris, France).
Suspensions were passed through a 70 mm pore size cell-
strainer and washed with 10% RPMI (70).

Measurement of Antibodies in Plasma
and Secretions
Concentrations of antibody to SIVmac239 p27 (Immune
Technology, New York, NY) and murine leukemia virus gp70
Frontiers in Immunology | www.frontiersin.org 5
scaffolded HIV-1 BG505 gp120 V1V2 (gp70-V1V2; from Dr.
Abraham Pinter, Rutgers, NJ) were measured using a customized
binding antibody multiplex assay (BAMA) as described (71, 72).
Briefly, BioPlex Pro magnetic carboxylated beads (Bio-Rad,
Hercules, CA) were labeled with p27 or gp70-V1V2 and mixed
overnight with serial dilutions of sample and standard. The
standard was pooled serum from SHIV-infected macaques,
which had been calibrated as described (73). Beads were
consecutively washed and treated with biotinylated goat anti-
monkey IgA (Rockland Immunochemicals, Pottstown, PA) or
anti-human IgG (SouthernBiotech, Birmingham, AL) and
neutralite-phycoerythrin (SouthernBiotech). A Bio-Rad Bioplex
200 was used to measure fluorescence intensity and construct
standard curves for interpolation of antibody concentrations.
Total IgA and IgG concentrations in secretions were measured
by ELISA as described (74) using rhesus dimeric IgA (NHP
Reagent Resource) and rhesus IgG (Antibodies Inc, Davis, CA)
as standards. The concentration of anti-p27 or anti-gp70-V1V2
IgA or IgG in each secretion was divided by the concentration of
total IgA or IgG to obtain the specific activity (ng antibody per µg
immunoglobulin). The secretion was considered antibody-
positive if it had a specific activity that was greater than the
mean specific activity + 3 SD in secretions of naïve animals. If a
preimmunization secretion had no detectable antibody, it was
assigned the mean specific activity value of naive macaques.
Concentrations of specific IgG in plasma were considered
significant if they were 3.4-fold greater than that measured in
the animal’s pre-immune plasma. OPV neutralization titer in
RM plasma was determined according to procedures in (75).

Immunophenotyping and Intracellular
Cytokine Staining (ICS)
105 MNC or 106 PBMCs were incubated for 14 hours with
medium (unstimulated), 1mg/ml pools of 15-mer SIV Gag or
HIV Env peptides (Peptide Pool, SIVmac239 Gag Protein, ARP-
12364, contributed by DAIDS/NIAID; Peptide Pool, HIV Type 1
Subtype C (Consensus) Env Region, ARP-12634, contributed by
DAIDS/NIAID). Cells incubated with 10 ng/ml PMA (4-a-
phorbol 12-myristate 13-acetate; Sigma) and 1mg/ml
ionomycin (Sigma) or without any stimulation provided
respectively positive and negative controls. Cultures contained
BrefeldinA (BD GolgiPlug Cat. # 555029; BD Biosciences) and
1mg/ml of anti-CD49d and anti-CD28. Cells were washed,
stained for surface markers in the dark, followed by fixation
and permeabilization. After the permeabilization, cells were
intracellularly stained for cytokine expression with anti-
cytokines antibodies for 1 hour in the dark according to
previously described procedures (74). The following antibodies
were used in this study and, unless otherwise stated, were
purchased from BD Bioscience, San Jose, CA: anti-CD3-pacific
Blue (clone SP34-2), anti-CD4-V500 (clone L200, anti-CD8-
APC-Cy7 (clone RPA-T8), anti-TNF-a-PE (clone MAb11),
anti-IFNg-Alexa Fluor-700 (clone B27), anti-IL-2-APC (Clone
MQ1-17H12), anti-CD95-FITC (DX2) and anti-CD28-PE-Cy5
(clone CD28.2), anti-IL-17-PerCP-Cy5.5 (clone eBio64DEC17,
eBioscence, San Diego, CA), anti-Foxp3-FITC (clone 206D,
June 2021 | Volume 12 | Article 702705
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BioLegend, San Diego, CA). For MNC, 200 ml of a 1:100 dilution
of the viability dye stock (VIVID, LIVE/DEAD kit, Invitrogen)
were added to the antibody cocktail to exclude dead cell
background. The acquisition of cells was done on LSRII flow
cytometer using FACSDIVA software. The data were analyzed
using FlowJO version 10.7.1 software (TreeStar, Ashland, OR).
Data for peptide-stimulated populations are reported as
percentage, determined after subtracting the percentage of
positive cells detected in unstimulated cells for each sample.
Evaluation of single, double or triple positive cells, was carried
out using FlowJo Boolean gate.

Viral Load Quantitation
Plasma SIV RNA levels were measured by real-time RT-PCR
assay as described (76, 77). The Lifson assay has a threshold
sensitivity of 30 copy equivalents per milliliter. Inter-assay
variation is <25% (coefficient of variation). Mean viral loads
were calculated by transforming the number to its logarithmic
value and averaging the logarithmic values of all the animals of
the group at one specific time point.

Euthanasia
Animals were euthanized because of closure of the study or
earlier if they developed signs and symptoms consistent with the
definition of AIDS. AIDS was defined as being SHIV+
(detectable viremia) and experiencing one of the following
criteria: 1- weight loss >15% in 2 weeks or >30% in 2 months;
2- documented opportunistic infection; 3- persistent anorexia >3
days without explicable cause; 4- severe, intractable diarrhea, 5-
progressive neurologic signs, 6- significant cardiac and/or
pulmonary signs, 7- loss of CD4+ T cells below 200 or 10%.

Statistical Analysis
Calculations and statistical analyses were performed using the
GraphPad Prism version 8 software. Between groups comparisons
were carried out by two-tailed, t test or Mann-Whitney U test if
the value distribution was non- parametric, and among groups
one-way ANOVA was used. Results of statistical analyses were
considered significant if they produced p values ≤ 0.05. Display of
multi-component distributions was performed with SPICE v5.2
(freely available from http://exon.niaid.nih.gov/spice/) (78).
RESULTS

Engineering of Recombinant OPVs
In previous preclinical trials, we achieved significant systemic
and mucosal T-cell responses after rectal, nasal, vaginal, oral and
intestinal immunizations with SIV or SHIV DNA combined with
SIV- or SHIV-MVA and observed some level of protection,
particularly in terms of delayed CD4+ T-cell loss and
preservation of the Th17/Treg ratio, but also as significantly
higher number of vaginal challenges required to achieve
infection (56, 73, 74, 79, 80). However humoral responses were
not satisfactory. As poliovirus is capable of stimulating long-
lasting humoral responses in humans, and Cynomolgus macaque
Frontiers in Immunology | www.frontiersin.org 6
nasal immunization with 6 doses of a collection of 20
recombinant polioviruses expressing short SIV peptides and
covering the SIV gag, pol, env, and nef genes had provided
significant antibody responses, though not NAbs (55), we set out
to test recombinant OPVs in combination with a DNA platform
to maximize both T and B cell responses in a Rhesus macaque
model, recently shown to be infectable orally by poliovirus (81).
A previous trial where we explored a SIV immunization with 3
doses of SIV DNA plus SIV-OPV in Cynomolgus monkeys
provided significant T-cell responses but very limited anti-SIV
antibodies (82). We hypothesized that, among other factors, the
intracellular expression of the recombinant fragment expressed
by OPV, which does not become part of the virion, may be a
limiting factor in the development of a significant antibody
response and opted to modify the vector to achieve secretion
of the recombinant Env fragment from the poliovirus-infected
cells by engineering an OPV vector that could secret
recombinant antigens.

The structure of the SIV Gag and the HIV env OPV
expression vectors used in the vaccination are reported in
Figure 1A and in Materials and Methods. SIVmac239 CA-p6
sequences inserted in the OPV vector achieve intracellular
expression of these Gag proteins. This mode of expression was
selected because it is conducive to cell-mediated responses and
anti-Gag T-cell responses have been shown to be important for
viremia control after infection. Towards the goal of secreting
recombinant OPVs, the tPA signal peptide sequence was inserted
5’of the HIV Env sequences and a sequence for the T2A cleavage
site was positioned 5’ of the tPA element to obtain cleavage
compatible with secretion (61) (Figure 1A). Efficient replication
and virus stability of HIV Env recombinant OPVs constructed in
this vector did not occur for a few attempted constructs, possibly
due to misfolding of the recombinant OPV precursor, preventing
the appropriate cleavage of the polyprotein and therefore virus
assembly. Of two replication-competent, stable OPVs expressing
the V1V2 HIV region, we selected the construct HIVBG505C1-
V2-OPV, expressing 179 amino acids of HIV EnvBG505 and
covering the Conserved region 1 (C1) and the V1V2 domain,
as antibodies against this region have been shown to be
associated with protection in clinical trials (1, 3, 4, 6, 32, 33).
SIVmac239CA-p6-OPV and HIVBG505C1-V2-OPV replicated
efficiently over 12 cell passages, as indicated by the detection of
the appropriate size fragment by RT-PCR in 293T RNA
(Figure 1B). Expression of the SIVmac239 CA-p6 was detected
by Western blot in infected cell lysates and by flow cytometric
analysis (Figure 1C, left panels). The recombinant HIVBG505C1-
V2 fragment was detected by flow cytometry in infected cells and
could be immune-precipitated using the bNAb PG16 but not
PG9 (64) after its purification from tissue culture supernatant
(Figure 1C, right panels). These data support the conclusion that
secretion of the recombinant fragment could be achieved from
cells infected with the modified OPV vector and that the secreted
product retained the conformation necessary for the recognition
by a bNAb, supporting the in vivo occurrence of the same
conformation as well. Lastly, we evaluated whether the two
OPV recombinants retained in vitro replication kinetics similar
June 2021 | Volume 12 | Article 702705
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to those of the reference virus Sabin2-eGFP by evaluating the
growth curve of these viruses in 293T cells. Values for infection
at MOI of 0.1 are reported in Figure 1D. No significant
differences were observed for SIVmac239CA-p6-OPV and
HIVBG505C1-V2-OPV that were selected for the recombinant
OPV boosting and, mixed at a 1:1 ratio, are collectively defined as
SHIVBG505-OPV.

Oral Vaccination Stimulates Systemic
and Mucosal Anti SHIV Responses
We evaluated stimulation of systemic and mucosal cell-mediated
immunity and humoral immunity in Rhesus macaques that,
contrary to previous reports, were shown to be infectable by the
poliovirus (81). The two vaccine regimes included as primer the
DNA plasmid pSHIVBG505Vacc3, producing non-infectious viral
particles, formulated in liposomes, and administered in the oral
cavity, boosted in one group by three doses of rMVA-SHIV-
BG505, expressing SIVmac239 Gag/Pol and HIVBG505 Env, and in
the other group by SHIVBG505-OPV, both administered in the
Frontiers in Immunology | www.frontiersin.org 7
oral cavity and in the gastrointestinal tract according to the
vaccination schedule illustrated in Figure 2A. The rationale for
the choice of vaccine components is the following: anti-HIV and
SIV T-cell mediated immunity, particularly anti-Gag, which is
achieved with DNA immunization, has been shown to provide
control of viremia and to delay disease progression, which are
desirable features of an HIV vaccine (73, 79, 80, 83). The
boosting with two recombinant OPVs, one expressing SIV Gag
and one expressing HIV Env, was based on the rationale of
expanding responses primed by the DNA and, in the case of the
Env immunogen, covering the V1V2 domain to stimulate
antibody responses against this region, whose binding
antibodies have been shown to correlate with protection from
infection (5, 33). As the conformation of the C1-V2 fragment
after cell expression and secretion is recognized by the bNAb
PG16, this antigen appears to retain a V1V2 conformation
potentially able to induce bNAbs. As the C1 region has been
shown to be targeted by ADCC mediating antibodies (5, 84, 85)
having it included provided the possibility of generating ADCC
A

B

FIGURE 2 | (A) Vaccination scheme and animal groups. (B) Levels of anti-SIV p27 IgA (top 3 panels), anti-gp70-V1V2 IgA (middle panels) and anti-SIV p27 IgG in
saliva (left column), rectal (middle column), and vaginal secretions (right column) were measured by BAMA and normalized relative to concentrations of total IgA or
IgG, determined by ELISA. The specific activity (ng IgA or IgG antibody/µg total IgA or IgG, respectively) for individual animals at four time points during vaccination is
reported. The dashed line denotes the cut-off for significance and was calculated as the mean specific activity + 3 SD for pre-immunization samples. The specific
activity had to exceed the dotted line and be 3 times higher than the animal’s pre-immune sample to be considered significant. A few samples with insufficient total
IgA or IgG were not tested for SHIV-specific antibodies.
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antibodies against this domain. During the time course of the
vaccination, systemic and mucosal antibody responses were
evaluated in plasma and secretions (Figure 2B). Stimulation of
antibody responses was disappointing in both groups with anti-
SHIV IgG in blood being negative and anti-SIV p27 IgG in
secretion being positive in only a few animals (Figure 2B, bottom
panels). Positivity for anti-SIV p27 or gp70-V1V2BG505 IgA in
saliva, rectal, vaginal secretions was restricted to one or two
animals in each of the two groups in some of the tested time
points. We may have missed antibodies recognizing SIV pol or
SIV NC and p6, as these were not included as test antigens in the
multiplex antibody assay. Regardless, the SHIV-OPV
immunization did not achieve the significant antibody
responses we had expected. Although disappointing, the fact
that some animals did respond suggested that the vaccines can
stimulate antibody responses and that a higher dose might be
necessary to achieve more uniform, significant results.
Interestingly, we could not detect any neutralizing OPV titer in
the plasma of the animals that received the recombinant OPV,
when tested in a neutralization assay against the parent virus
Sabin2-eGFP. These results point more directly to this
immunization being low in dose, as plasma anti-OPV antibody
titers have been reported in Rhesus Macaques only when OPV
viremia is achieved, this required doses equal or higher than 108

and did not occur in animals infected with a dose of 107 TCID50

OPV (81). It appeared that detection of neutralizing antibodies
correlated with the resolution of viremia (81). In humans,
prolonged infection and shedding, a parameter we did not
measure, correlated with high titers of neutralizing antibodies
(54) and prolonged infection may be necessary to achieve the
transient viremia critical to induction of neutralizing antibodies.
Our dose of 5x107 TCID50 OPV, half of each for each
recombinant, was selected to avoid the possibility of
poliomyelitis that was observed more frequently in macaques
receiving higher doses (81) and would have required euthanasia.

During a time-course analysis, we evaluated anti-SHIV CD4+
and CD8+ T-cell responses in PBMC, lymph node (LN), rectal, and
vaginal MNC by evaluating anti-SIV Gag and anti-HIV Env
responses using cytokine intracellular staining after peptide
stimulation and flow cytometric analysis. Significant cell-mediated
responses were detected in all analyzed compartments after
immunization with both regimes (Figure 3). Each boosting
immunization increased the previously observed levels of cell-
mediated responses that were at very low levels in blood after the
third DNA dose (Figure 3A), but more significant in rectal and
vaginal mucosal MNC (Figure 3B). This result was expected, as
responses are usually higher at the site of immunization and of
lower magnitude at other sites due to the compartmentalization of
the immune system, particularly between mucosal and systemic
compartments, and therefore one is unlikely to achieve in blood
what is observed in the gastrointestinal tract after oral immunization
(44–50). The SHIVBG505-OPV boosting immunization stimulated
levels of responses that were significantly higher than those
observed with the rMVA-SHIVBG505 in all analyzed
compartments for most CD4+ and CD8+ T-cell responses
evaluated on week 43, 51 and 56 (Figure 3, p value range:
0.0001-0.039). The relative contribution of anti-SIV Gag and anti-
Frontiers in Immunology | www.frontiersin.org 8
HIV Env responses, reported as their sum in Figure 3, is shown in
Figure 4A for week 51 PBMC, two weeks after the last
immunization. Interestingly, although only shorter SIV Gag and
HIV Env protein fragments were included in the recombinant OPV
construct compared to the rMVA-SHIV-BG505 construct that
includes the entire Gag/Pol and Env gp120, significantly higher
anti-Gag and anti-Env responses were observed with the OPV-
based vector at the end of the immunization (Figure 4A, p value
range: 0.009-0.045, depending on cytokine and sample). Boolean
analysis of the expression of TNF-a+, IFNg+ and IL-2+, in antigen
specific cells revealed predominantly monofunctional responses for
the 3 cytokines tested, but multifunctional responses ranging
between 20 and 27% of the total were also present in all tissues
and no major differences in mono- or polyfunctionality distribution
were observed between the two groups (Figure 4B).

We compared the central memory (CM) and effector memory
(EM) subset fractions of the cell-mediated response in PMBC and
tissue MNC 2 weeks after the last immunization (week 51) and 7
weeks after the last immunization (week 56). Roughly equal
distribution of CM and EM responses was present in anti-SIV Gag
and anti-HIV Env responses on week 51 in both groups and the
percentages shifted in favor of the CM responses by week 56 in
both groups (Figure 4C), supporting the expected contraction of
the EM component and capability of the vaccination regimens to
maintain antigen-specific CM. Many percentages of CM and EM
were significantly higher in Group 2 when compared to those of
Group 1, especially at week 51 (P value range: 0.0001-0.043,
Figure 4C). Interestingly, vaginal T-cell responses were
comparable to those detected in the rectum, supporting this
platform of immunization as a way to achieve responses at two
sites that are highly significant in HIV transmission.

When all above data are considered together, we concluded
that the two vaccine modalities given orally were effective in
stimulating cell-mediated T-cell responses at multiple sites,
including those of HIV exposure, but significantly less effective
at stimulating humoral responses. These data indicate that the
oral route can be used as route of vaccination to stimulate broad
T-cell responses at mucosal sites relevant to HIV entry, and also
systemic sites as blood and lymph nodes. However, the
recombinant OPV and MVA at the dose and route used here
were insufficient to stimulate consistent and high titer antibody
responses to the recombinant antigens and neutralizing
antibodies to OPV. As antibodies to SIV fragments shorter
than those used here, expressed by recombinant OPVs, were
induced after six nasal doses in the study by Crotty et al. (55), the
reason for our results remains unclear but it may have been due
to administration of too low of an oral dose.

Resistance to Challenge
and Disease Progression
To evaluate whether the vaccination could provide protection
from infection or disease progression, on week 57, 8 weeks after
the last immunization, all vaccinated animals and eight naïve
female controls received a rectal challenge with SHIVBG505 (37).
As previously observed for control animals rectally inoculated
with the same dose of SHIVBG505 (37), all controls became
infected after a single dose. Among vaccinated animals, 11
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animals became infected after one dose, one animal became
infected after 2 doses and two animals, both in the SHIV DNA/
MVA vaccine group, resisted six challenges, after which no more
challenges were administered. No significant differences were
observed between groups when post-infection viral loads were
evaluated in the infected animals (Figure 5A). The control group
obtained a better control of SHIV viremia than what we have
observed with SIV and recovery to normal level of CD4+ T cells
occurred in this group as in vaccinated animals (Figure 5B).
However, when the ratio of Th17/Treg was investigated at
multiple time points after infection, both vaccinated groups
recovered from the initial decrease to a better ratio than
controls during the chronic phase of the infection and this was
true in PBMC and in rectal MNC (Figure 5C). The differences
between Group 1 or Group 2 vs. Controls were statistically
significant (p value range: 0.0001-0.021) on week 8, 16 and 20,
with the only exception being week 20, PBMC samples, where
Frontiers in Immunology | www.frontiersin.org 9
differences were significant for Group 2 compared to controls but
not for Group 1 vs. controls. These results may reflect a better
recovery and subsequent preservation of the Th17 cells that are
lost in the intestine during HIV and SIV infection, supporting
protection by the vaccination of the heavily targeted intestinal
immune compartment. This parameter has been shown to be the
most accurate predictor of disease progression (86–89) and it is
possible that delayed occurrence of disease could have happened
in the vaccinated groups if kept for a longer period of time
under observation.
DISCUSSION

Significant protection from SIV infection but not from disease
progression was previously observed in Rhesus macaques after
intestinal immunization and the reverse was true for oral cavity
A

B

FIGURE 3 | Quantitative analysis of the anti-SHIV cell-mediated responses measured during the immunization phase, reported as percentages of CD4+ and CD8+
T cells producing IFNg, TNF-a and IL-2, detected by ICS and flow cytometric analysis upon stimulation with SIV Gag or HIV Env peptide pools. (A) PBMC, asterisks
indicate that T-cell percentages (Gag + Env) at the indicated time points are significantly higher for Group 2 (SHIVBG505-DNA+SHIV BG505-OPV, blue) compared to
Group 1 (SHIVBG505-DNA+ rMVA-SHIV-BG505, green); (B) LN, rectal and vaginal MNC; the graphs show the total SHIV-specific T-cell responses (Gag + Env) for the
two vaccinated groups, Group 1 (dashed line) and Group 2 (solid line). Color refer to the source of samples examined (LN, vaginal or rectal). The color of the asterisks
used in panel (B) to report statistical significance matches the color used for the samples in question. Asterisks under brackets indicate that values from week 43 to
week 56 are all significantly higher for the specific tissue when Group 2 is compared to Group 1 (p value range: 0.0001-0.039). Between groups comparisons reported
in panels (A, B) were carried out by two-tailed, t test or Mann-Whitney U test when the value distribution was non-parametric.
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immunization with a vaccine made of non-infectious proviral SIV
DNA plus SIV-MVA (79). We hypothesized that an
immunization at both sites (oral cavity and intestine) may
achieve both outcomes and that a recombinant OPV vaccine
could be a good vector to achieve this goal, considering its
capacity to replicate in the oral cavity and in the entire
gastrointestinal tract. In addition, OPV should provide
significant stimulation of humoral responses, both mucosally
and systemically. We compared this platform to a previously
tested boosting of DNA immunization with recombinant MVA
(79), this time administering it both orally and intestinally.
Significant responses were observed for stimulation of cell-
mediated immunity at both rectal and vaginal sites, where most
HIV transmissions occur. Antigen-specific pre-existing immunity
permitted a better recovery of the Th17/Treg ratio, one of the most
Frontiers in Immunology | www.frontiersin.org 10
significant predictors of disease progression after infection and a
parameter highly dependent on preservation of intestinal Th17
cells. Although measuring tissue-resident memory T cells was
beyond the scope of this trial, it is very likely that an approach that
utilizes a gastrointestinal route of vaccination will establish a
higher percentage of antigen-specific tissue-resident memory T
cells (Trm) in the intestinal mucosa. These cells do not recirculate,
can immediately be activated when pathogen breaches the
mucosal barrier without the need for antigen presentation in
lymph nodes, and they are the largest contributor to the
expansion of the response upon restimulation (90–93). Trm can
therefore more promptly control local infection. In a smallpox
skin reinfection model, circulating memory T cells cleared the
infection after 26 days while only 6 days were required for
clearance by Trm cells (94). The availability of antigen-specific
A B

C

FIGURE 4 | Qualitative analysis of the anti-SHIV cell-mediated responses stimulated by the vaccination. (A) Anti-SIV Gag and Env percentages observed 2 weeks
after the last immunization in the two vaccinated groups in PBMC, LN, rectal and vaginal MNC. Asterisks indicate significant difference between Group 1 and Group
2 and are placed adjacent to the relevant column segment. (B) Pie graphs representing the diversity of anti-SHIV CD4+ and CD8+ T-cell responses as relative
fractions of the total percentages of positive cells, expressing a IFNg, TNF-a and IL-2 alone or a combination of them within anti-SIV gag (left panel) or anti-HIV env
(right panel) responses. Functional analysis is in biopsies 2 weeks after the last immunization (week 51) and two weeks before challenge (week 56). The total mean
percentage and SE of the antigen-specific responses for each analyzed variable is shown below each pie. (C) Central memory (CM) and effector memory (EM)
fractions in SHIV-specific cell-mediated T-cell responses present in PBMC on week 51 (2 weeks after last immunization) and week 56 (naïve cells: CD28+CD95-; memory
T cells: CD28+CD95+; and effector T cells: CD28-CD95+). The average percentages of anti-Gag and anti-Env T cells in each group are stacked in the column and
shaded differently. Asterisks adjacent to column segments indicate a significant difference between Groups 1 and 2 for that segment. Between groups comparisons
reported in panels (A, C) were carried out by two-tailed, t test or Mann-Whitney U test if the value distribution was non- parametric (p value range: 0.0001-0.045).
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Trm cells in the rectum could be particularly important for
preventing rectal transmission of HIV.

Results of humoral responses with recombinant SHIVBG505-
OPV were disappointing. A number of reasons could justify the
results, the most likely being a low dose and/or number of
immunizations, as sporadic antibodies to SHIV antigens could
be detected in some animals, supporting the capability of the
immunogen to stimulate antibody responses. Antibody
production is known to require higher amounts of antigen
than those required for stimulation of cell-mediated immunity
(95). The capability of recombinant OPV to induce antibodies is
supported by the study by Crotty et al. (55), where antibodies to
recombinant OPV expressing fragments shorter than those used
here were observed after six doses administered via the nasal
route, a route that is known to be better than other mucosal
routes at inducing systemic immunity. This result support the
Frontiers in Immunology | www.frontiersin.org 11
capability of obtaining antibodies to a recombinant peptide
expressed in the context of the OPV vector. However, the 179
amino acid Env fragment of the ~480 amino acid gp120 Env
protein, inserted in the OPV recombinant used here, could be
poorly suited to generate antibodies when expressed in the
context of OPV infection. Additional support for an
insufficient total dose of recombinant OPV vaccination comes
from the fact that we could not detect neutralizing antibodies
against OPV that usually occur after OPV vaccination nor
against the 375 amino acid Gag fragment that covers 75
percent of the Gag polyprotein. Dose-escalation experiments
with immunizations of the recombinant OPVs used here
administered via either the gastrointestinal route or the nasal
routes might address this issue and determine if higher doses or a
nasal administration of this vaccine provide the ideal platform
for stimulation of significant humoral responses in addition to
A

B

C

FIGURE 5 | Rectal SHIVBG505 challenge outcome: (A) Viral loads reported as geometric group means (Log10) in the left panel and for each individual animal in the
right panel. (B) PBMC CD4+ T-cell levels reported for each group as average percentages (left panel) or as percentages for each animal (right panel) during the
course of the infection. (C) Th17/Treg ratio in PBMC (top) and rectal MNC (bottom) CD4+ T cells, reported as group average ± SE (left panel) or as individual values
for each animal (right panel) during the course of the infection. Statistical significance among groups was tested with 1-way ANOVA with Sidak’s multiple comparisons
test (*p value range: 0.0001-.021). Black asterisks indicate time points when both Group 1 and Group 2 values were significantly greater than those in the control
group. The blue asterisk in the PBMC panel indicates significance for Group 2 value vs. control group.
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cell-mediated responses, or if these recombinants are simply not
suited for the induction of antibodies.

Ideally, a dose-escalation study would be necessary to figure out
the most appropriate dose to be administered. We employed the
dose reported with the minimal side effects in Rhesus macaques to
avoid having to euthanize animals after vaccination, if paralysis
occurred (81). The dose was half for each recombinant OPV and it
is possible that each needs to be used at a higher dose.

The combined use of the SHIVBG505-DNA and rMVA-SHIV-
BG505 did not provide the protection from infection that we had
observed in an oral SIV-Rhesus model of intestinal vaccination
with the same DNA/MVA modality, where 50% of the animals
resisted 32 vaginal challenges in a trial where the median number
of challenges for control was 8 (64), although in this trial, 2 of 8
Group 1 animals (25%) did not become infected after exposure to
6 challenges when instead one challenge was sufficient to infect all
control animals. In that investigation, challenge was vaginal and
not rectal and the dose of SIVmac251 used for repeated low dose
challenge was most likely lower, considering the number of
challenges that were required to infect the controls. We also
noticed that in this trial the reduction of SHIVBG505 viremia
from peak to the chronic levels was more significant in controls
than in SIVmac251 infected macaques. This is reflected in the
recovery of CD4+ T cell percentages to normal values in all
controls as well as in vaccinated animals, making it difficult to
reveal a protective effect of the vaccine with this parameter. In the
study by Jones et al. (96), antibody development and partial
protection against rectal challenge were observed after oral
vaccination with HIV-MVA combined with recombinant
trimeric gp120. In this case, HIV-MVA was administered via a
needle-free injector and this tool, also used to deliver oral
anesthesia, allows for systemic exposure of the antigens, favoring
a different stimulation of the immune system.

Despite inefficient stimulation of antibodies, detection of
significant antigen-specific T-cell responses after Gag or Env
stimulation of macaque MNC indicates that both recombinant
OPVs expressed the Gag and Env fragments in vivo in amounts
sufficient to stimulate cellular immunity. The SHIVBG505-OPV
vaccine stimulated cell-mediated responses both at mucosal and
systemic sites, a parameter known to be achievable at lower doses
of immunogen, yet sufficient to confirm the immunogenicity of
the vaccine. Many parameters of cell mediated immunity were
significantly higher in the SHIVBG505-OPV vaccinated animals
than in those given rMVA-SHIV-BG505, particularly when it
comes to vaginal immune responses that could be useful when
viral exposure is vaginal. Importantly, SHIVBG505-OPV, like
rMVA-SHIV-BG505, permitted a reduced loss and better
recovery of Th17+/CD4+ T cells, as indicated by a significantly
better CD4+ Th17/Treg ratio compared to controls observed in
the chronic phase of the infection, supporting functional efficacy
of the induced cell-mediated immunity. This outcome most
likely reflects a prompter, earlier control of viral replication in
the gastrointestinal mucosa where the bulk of Th17 loss occurs
even when antiretroviral therapy is administered and maintained
(97, 98). It is likely that the oral route of vaccination favors this
outcome, as it has been shown that mucosal immunity occurs at
Frontiers in Immunology | www.frontiersin.org 12
the highest level at the site of immunization (51). Unfortunately,
plans to evaluate viral loads in the GI tract during the infection
were not in place and therefore direct data for this parameter are
not available.

The simultaneous presence of both mucosal and systemic
humoral and cell-mediated immunity could be important in
preventing the establishment of a chronic HIV/SIV infection and
in controlling viremia and disease progression when chronic
infection occurs. Immunologically-mediated containment of
local infection during its initial local phase (or eclipse phase, as
the virus in not detected in the plasma) might be possible even in
the absence of sterilizing immunity, and humoral mucosal
immunity could be critical to achieve this goal before a large-
scale anamnestic immune response occurs (99). If control of HIV
or SIV infection needs to be achieved at the site of exposure,
before a chronic systemic infection becomes established, it is
important to have persistence of virus-specific antibodies in
addition to memory cell-mediated mucosal immunity that
requires activation and responds more slowly (18, 100, 101).
Secreted antibodies might provide the first line of defense against
the virus inoculum and local interstitial antibodies could act as the
second line of defense against virus that succeeds at entering the
mucosa together with virus-specific cytotoxic T cells (53, 102,
103). Regional immunity could eliminate any residual infectivity.
Once chronic viremia is established, the immunity provided by
vaccination would be important to contain virus replication and
delay disease as clearance of infection appears to be extremely
difficult, even when the infection occurs with highly attenuated
viruses (104, 105). As a significant anamnestic response takes
longer than the limited amount of time that usually occurs
between exposure and systemic dissemination, the intervention
of multiple arms of the vaccine-induced immunity may be one
way to reduce within manageable limits the magnitude of the local
infection and prevent chronic systemic infection. Most HIV
infections are sexually transmitted and if immune responses are
needed in both the genital tract and rectum, mucosal
immunization may provide this outcome more likely than
systemic immunization (51).

Considering the rationale illustrated above and the
immunogenicity data of SHIV-OPV provided here, it seems
reasonable that recombinant OPVs receive a further evaluation
where a higher amount of delivered vaccine is achieved either
with three higher doses or with more than three doses similar in
amounts to those used here. The persistence of antibodies
provided in humans by OPV, and the maturation of the
response achievable with a replicating vector that provides
prolonged stimulation for days after inoculation, could provide
the ideal vector to deliver the HIV Env immunogen most suited
to induce bNAbs once it is identified.
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