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The exquisite coupling between herpesvirus and human beings is the result of millions of
years of relationship, coexistence, adaptation, and divergence. It is probably based on the
ability to generate a latency that keeps viral activity at a very low level, thereby apparently
minimising harm to its host. However, this evolutionary success disappears in
immunosuppressed patients, especially in haematological patients. The relevance of
infection and reactivation in haematological patients has been a matter of interest,
although one fundamentally focused on reactivation in the post-allogeneic stem cell
transplant (SCT) patient cohort. Newer transplant modalities have been progressively
introduced in clinical settings, with successively more drugs being used to manipulate
graft composition and functionality. In addition, new antiviral drugs are available to treat
CMV infection. We review the immunological architecture that is key to a favourable
outcome in this subset of patients. Less is known about the effects of herpesvirus in terms
of mortality or disease progression in patients with other malignant haematological
diseases who are treated with immuno-chemotherapy or new molecules, or in patients
who receive autologous SCT. The absence of serious consequences in these groups has
probably limited the motivation to deepen our knowledge of this aspect. However, the
introduction of new therapeutic agents for haematological malignancies has led to a better
understanding of how natural killer (NK) cells, CD4+ and CD8+ T lymphocytes, and B
lymphocytes interact, and of the role of CMV infection in the context of recently introduced
drugs such as Bruton tyrosine kinase (BTK) inhibitors, phosphoinosytol-3-kinase
inhibitors, anti-BCL2 drugs, and even CAR-T cells. We analyse the immunological basis
and recommendations regarding these scenarios.
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INTRODUCTION

Human cytomegalovirus (CMV) is a DNA virus belonging to the herpesvirus family. Its
transmission, through saliva, sexual contact, blood and breast milk, makes it highly prevalent,
and the seroprevalence increases with age (1). The various studies carried out so far estimate a
seroprevalence between 30% and more than 90%, depending on the population under study. This
variation may be largely ascribed to age and socio-economic characteristics.
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The implications of acute infection are of little relevance in
terms of severity of infection and complications, as described
below. However, the interest in healthy populations lies in its
chronification and latency, and thereby in the development of an
immune response that accompanies the host throughout its life,
modulating its immune system through mechanisms that are not
yet fully understood.

CMV infection plays a very important role in some
population groups, such as immunosuppressed patients, and
especially haematological patients, since acute infection causes
significant morbidity and mortality in such patients.

The objective is to review the knowledge of CMV infection,
and to understand its immunological effects in healthy
individuals, in general, and in haematological patients.
CMV INFECTION

Primoinfection and Latent Phase
The infection is usually asymptomatic in adults, although
sometimes it occurs in the setting of a mononucleosis-like
syndrome. CMV is able to induce a persistent infection
throughout the host lifetime. This is due to its ability to
remain latent in some cells. It appears that CD34+ cells and
CD14+ monocytes and macrophages as well as dendritic cells
may constitute the fundamental reservoir (2–4). However, viral
DNA has also been found in other cells of the immune system, as
well as in epithelial and endothelial cells (3, 5–7) as they get also
infected and which would also explain the mechanisms by which
it is transmitted (Figure 1).

In the infectious phase (and endogenous reactivation), the
initial participation of proteins encoded by immediate-early (IE)
Frontiers in Immunology | www.frontiersin.org 2
genes is key, since they strongly activate the expression of the
genes that consolidate the infectious stage (7, 8). These IE genes
are expressed in cells that allow it (permissive), which are,
apparently, differentiated cells (9). This expression is subject to
the activation of the major immediate-early promoter (MIEP)
protein. There are a variety of cellular factors that repress the
activity of the MIEP in non-permissive cells (2, 10, 11). The
terminal differentiation of these cells, which initially does not
allow the reactivation of CMV, could decrease the expression of
these factors, leaving the promoter complex active, thereby
permitting viral reactivation (12, 13).

CMV infection induces specific IgA, IgG, and IgM
production. Neutralizing IgGs appear early after infection and
are permanently detectable thereafter. IgA can be detected for
several months and even years after primoinfection (14). Cellular
response is crucial in CMV infection control, CD4+ and CD8+ T
lymphocytes are directed to pp65 protein and IE1 protein. When
this control is well set, infection usually follows an indolent
course (15).

Chronic Infection and Possible
Oncogenic Role
Long-term effects on immune system have been described
despite the indolent course of CMV infection in the
immunocompetent population. CMV has an impact on the T
cell pool (and leaves a fingerprint) by large expansions of the
CMV-specific memory pool and expansion of terminally
differentiated T cells/effector T cells. This might impair the
immunological response to neoantigens as well as the number
of IL-2 and IL-4-producing CD8+ memory T lymphocytes in the
elderly. CMV-specific CD8+ T lymphocytes producing IFN-g,
might contribute to a proinflammatory status, but this is
FIGURE 1 | Summary of the innate and adaptive immune response against CMV in immunocompetent individuals.
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probably less clear. Therefore, some aging-associated processes
might be accelerated due to latent CMV infection (15, 16).
However, the role of CMV on aging is, in any case, a current
matter of debate. And a recent extensive review of this matter by
Jackson et al. has revealed that, according to existing data, there
is only limited evidence supportive of the formation and
maintenance of a large population of CMV specific CD8+ T
cells, known as “memory inflation”, as a mechanism of
immunosenescence (17).

Potential oncogenicity has also been studied, yielding
controversial results in solid and haematological tumours. This
may be because the multiple causes, over and above many of the
fundamental processes responsible for the development of solid
and haematological tumours, make it difficult to assess the
specific value of the individual primary causes.

The oncogenic role of other viruses and pathogens (hepatitis
C and B, papilloma, and the bacterium Helicobacter pylori) is
better established in the context of some solid neoplasms, such as
the liver in the case of the first two, the cervix and larynx in the
second, and stomach cancer in the case of H. pylori.

The association between CMV infection and numerous solid
tumours in relation to its oncogenic and immunomodulatory roles
has also been sought and found. In the case of colon cancer, the
association between CMV and the development of cancer varies
from study to study (18–21), whereby some find an association but
others confirm the absenceof one.A recent andvery detailed review
of US28 potential roles in aherosclerotic disease and cancer
demonstrates the difficulty of attributing the causation of US28 in
carcinogenesis and its role in atherosclerotic disease (22). In this
field, the results of the investigations are now very numerous and
not always concordant, so they must be integrated in order to
establish consistent concepts regarding the functionsof this protein.
This could later relate it to CMV infection, and thismoleculemight
then be used as a therapeutic target or disease marker and targeting
US28 might prevent CMV disease and could benefit
immunosuppressed individuals, including transplant patients (23).

CMV is expressed in most human glioma samples (24).
However, correlation with peripheral blood CMV detection in
glioblastoma patients is variable (25). The low incidence of
glioblastoma cases compared with the high prevalence of CMV
infection makes it difficult to explain the initiating role of
CMV in the development of this neoplasm. In addition,
anti-CMV treatment with antiviral drugs such as foscarnet or
valganciclovir has not definitively been shown to improve
survival in patients with glioblastoma multiforme (26–28). The
efficacy of anti-CMV immunotherapy (29) may be due to
targeting of CMV-expressing cells that drive tumour growth,
activation of other immune cells that cause additional killing of
CMV-negative cells, or cross-priming after killing of CMV-
positive tumour cells. Therefore, a proposed role for CMV in
gliomagenesis is most likely to be associated with an as yet
undefined event (30), although it seems that it might be
supported by CMV’s oncoimmunomodulatory role.

Although CMV is the virus whose impact seems to be the
most significant with respect to T lymphocyte deregulation, it has
not been given so much importance from the haematological
Frontiers in Immunology | www.frontiersin.org 3
point of view, and very little is known about its oncogenic role. In
fact, very few studies have analysed the influence of CMV on
haematological pathology. In contrast, the association of the
Epstein–Barr virus with the development of lymphomas is well
established (31–34). The fact that the EBV tropism occurs in the
B lymphocytes, where it remains latent (35–37), may make the
relationship much more direct for the etiological study. In
the case of CMV, no indirect association has been sought,
perhaps because, although not directly, the effect on, or
damage caused to the functionality of B lymphocytes and,
especially T lymphocytes, by chronic infection and successive
reactivations indirectly affects degree of predisposition
to lymphomagenesis.

Although no prospective studies have been carried out, at
least three retrospective studies have analysed the influence of
the virus in populations that develop lymphomas. Two of the
studies did not find a higher seroprevalence in patients with T
cell lymphomas compared to the age-controlled population (38,
39). However, another study (40) found a very high
seroprevalence in patients with mycosis fungoides and Sézary
syndrome (Table 1).

The expression of proteins and transcription factors of the
virus has also been observed in some series of patients.
Specifically, in a series of Iranian patients, the expression of
UL138 mRNAs (as latent infection markers) and IE1 proteins (as
reactivation markers) was studied by RT-PCR in patients with
Hodgkin and non-Hodgkin lymphomas. The expression of
UL138 mRNAs was found to be expressed in 20% of the T cell
lymphomas in the series (41). Of note, this observation remains
to be explained since T cells are not infected by CMV; casualty
seems to be difficult to demonstrate here due to a possible
indirect effect; indeed we are yet to know if a potential
immune dysregulation motivated by a chronic exposure to the
antigen might be responsible of this association.
CMV IN THE HAEMATOLOGICAL SETTING

CMV in Allogeneic Stem Cell
Transplantation
Definitions Regarding CMV Infection
Definitions of CMV infection and disease were initially
developed and published as part of the proceedings of the 4th
International CMV Conference in Paris in 1993 and have been
progressively updated, most recently in 2020 (42–45).

Infection involves the detection of CMV in biological
samples. When monitoring patients after transplant, it is
usually determined in blood. In these cases, it is worthwhile
differentiating whether the infection is detected by finding the
antigen (antigenemia), growth in cell culture (viremia), or
detecting DNA (DNAemia).

Primary infection takes place in seronegative patients, while
reactivation refers to virus detection in previously seropositive
patients. Recurrent infection refers to the detection of CMV in a
patient with evidence of infection, but when there has been a 4-
week infection-free gap between the two determinations.
October 2021 | Volume 12 | Article 703256
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Reinfection refers to a new infection by a different viral strain,
while reactivation is established when the same viral strain, of
endogenous origin is involved.

CMV disease involves the conjunction of signs and/or
symptoms that indicate organ involvement (pulmonary,
gastrointestinal, hepatic, retinal, renal, myocardial, encephalic,
pancreatic, etc.) together with the detection of CMV (using one
or more of the validated techniques) in the affected organ
or tissue.

T Lymphocyte Reconstitution and CMV: Cause
and Consequence
T lymphocyte reconstitution has an initial thymus-independent
phase, during which we observe the antigen-driven expansion of
T lymphocytes infused with the graft (Figure 2). The second
phase is thymus-dependent. Naïve T lymphocytes derived from
the donor with a diverse T lymphocyte receptor (TCR) repertoire
expand, although very slowly, so it takes years to complete the
reconstitutions of this subset (46). However, the process cannot
always be completed in this way because thymic function is
conditioned in many allogeneic SCT recipients, thymic involutes
in old patients and graft-versus-host disease (GVHD) damages
epithelial thymus cells (47). When this occurs, the thymic-
independent pathway rapidly generates CD8+T lymphocytes
(48), resulting in an inversion of the CD4:CD8 ratio that can
persist for years (49). It also leads to peripheral expansion of
memory T lymphocytes (CD45RO+CD27+/CD45RO+CD27-)
since generation of naïve T lymphocytes (CD45RA+/CD28+)
from prethymic progenitors depends on a functional thymus
(50). The differences between precursor sources, conditioning
regimens and donor features are a consequence of the absolute
numbers of CD4+ and CD8+ T lymphocytes infused. In any case,
the absolute number of CD4+ T lymphocytes (i.e., regulatory T
lymphocytes (Tregs) and conventional CD4+ T lymphocytes),
remain at unrecovered levels up to 2 years after hematopoietic
stem-cell transplantation (HCT). CD8+ T lymphocytes can
recover faster, but also depend on the conditioning regimen
Frontiers in Immunology | www.frontiersin.org 4
and immunosuppressors used. The TCR repertory is considered
to drive and be the result of disease control and GVHD activity.
With regard to disease control, a study including umbilical cord
blood donors (UCDs) and matched related or unrelated donors
using in vivo T cell depletion (TCD) showed that patients who
remained in remission had greater TCR diversity. A broader
TCR spectrum could have an antitumoral role. A narrower TCR
spectrum is in turn observed in those with GVHD, which would
presumably be related to preferential expansion of particular T
lymphocyte clones (51). In contrast, another study reported that
grade 2–3 acute GVHD is associated with greater TCR diversity
(52). These differences might be due to the high variability
among the conditioning regimens, immunosuppressive
therapy, and donor source (53).

Activity of T lymphocytes (CD4+ and CD8+) is essential for
the control of CMV infection (15, 53, 54). The correct
reconstitution of CD8+ and CD4+ T lymphocytes is associated
with the control of CMV infection (55). CMV-specific CD8+ T
lymphocyte reconstitution is usually delayed by around 3
months after transplantation. There have been reports of
prompt recovery, which is thought to be based on the
receptor’s ability to bring about T lymphocyte lymphopoiesis
(56). Knowing the HLA-typing of the donor, the source of the
graft and the type of conditioning are essential for this rapid
recovery and therefore the early control of the infection: HLA-
typing facilitates the reestablishment, which is faster in identical
donors without mismatch, but slower the more T depletion there
is. Receptor immunity also influences infection control until
immune reconstitution is established, especially in patients on
reduced intensity regimens (57).

The relation between T lymphocyte reconstitution and CMV
infection is bidirectional, and while delayed T lymphocyte
reestablishment compromises anti-CMV protection, prompt
reactivation of this virus conditions the characteristics of the
recovery (58). CMV expands effector memory T lymphocytes,
causing a linked contraction of all naïve T lymphocytes,
including putative CD31+ thymic emigrants (59).
TABLE 1 | CMV role in lymphoma development.

Study Aim of study Results

Gupta et al. (38) Seroprevalence SS/MF
vs Non-SS/MF

SS/MF 60.4 % (N=53)
Non-SS/MF 61.5% (N=26)

Ballanger et al. (39) Seroprevalence SS, MF& control group Control group 37% (N=124)
MF 66.67% (N=27)
SS 42.86% (N=21)
p=0.009

PCR in affected tissue CMV was not detected in diagnostic biopsies. CMV was detected in two SS
skin biopsies realized at an advanced stage

Herne et al. (40) Seroprevalence SS/MF vs bone marrow donors Control group 57.3% (N=1322)
MF/SS 97.4% (N=116)
p<0.05

Subanalysis with age-matched subgroups CTCL 93% (N=32)
Control group 53.6% (N=1103)
p<0.05

Mehravaran et al. (41) PCR in affected tissue IE1 (active replication) IE1 detected in 1/25 Non-HL
Nested-PCR in affected tissue UL138 (latency)
Hodgkin and No Hodgkin

UL138 in 5/25 Non-HL and 1/25 HL
SS, Sézary Syndrome; MF, Mycosis Fungoides; CTCL, Cutaneous T-cell lymphoma; HL, Hodgkin lymphoma.
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Donor Source Role
With respect to the source of the graft, patients who receive an
allogeneic umbilical cord blood (UCB) transplant are at the
highest risk of CMV infection because of the type of cells
present in UCB. In this type of transplant, T lymphocytes are
immature, which lower the risk of developing GVHD, but could
increase the risk of severe infections (60). UCB contains Tregs,
which are more potent suppressors than adult Treg (61). On the
other hand, this is consistent with the high dose of anti-
thymocyte globulin employed in the conditioning regimen,
which is needed to prevent mainly graft rejection but also the
effects of GVHD. In summary, T lymphocyte reconstitution is
delayed, and this is considered the main cause of the increased
risk of infection, particularly by CMV, in this cohort (62).

Patients who receive CD34+ (positively selected) allogeneic
SCT or T lymphocyte-depleted allogeneic progenitors belong to
the high-risk group for CMV infection because they lack the
mature and naïve T lymphocytes that should make cellular
immunity reconstitution possible.

The faster engraftment of peripheral blood progenitors
compared with bone marrow and cord blood progenitors, and
the concordant faster immune reconstitution demonstrated
Frontiers in Immunology | www.frontiersin.org 5
in vitro (63) and in vivo (64), lead us to expect that better
immune reconstitution against CMV would reduce the incidence
of CMV disease in this group. Several studies have compared the
sources and found mixed results for the risk of CMV reactivation
in peripheral blood and bone marrow. For example, a non-
randomized study of 158 patients showed that the incidence of
CMV reactivation (monitoring antigenemia) and CMV
interstitial pneumonia were lower in the peripheral blood than
in the bone marrow group (65). Another randomized study
(n = 172) showed the opposite relationship, with a higher
incidence of CMV infection in unmodified peripheral blood
SCT recipients (66). This latter theory of a higher risk of CMV
infection in peripheral blood than in UCB and bone marrow has
been described (63). However, another study found no such
differences (64).

This risk of CMV infection drops to an intermediate level as
time goes by, as long as anti-T drugs or high-dose steroids are
not added.

The influence of the HLA discrepancy between donor and
recipient is highly nuanced or dependent on the type of
conditioning and immunosuppressive treatment used since
these are adjusted based on these discrepancies. The greater
FIGURE 2 | CMV infection/reactivation in the context of antitumoral drugs used in haematological patients. BCR, B cell receptor; BTK, Bruton tyrosine kinase; CAR-
T cells, chimeric antigen receptor T cell; CMV, cytomegalovirus; CTLA4, cytotoxic T-lymphocyte antigen 4; MHC, major histocompatibility complex; NK, natural killer;
PI3K, phosphatidyl inositol 3 kinase; PD, programmed death; PD-1L, programmed death-ligand 1; PTEN, phosphatase and tensin homologue; SCT, stem cell
transplantation; TLR, toll-like receptor.
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the discrepancy, the greater the risk of viral reactivation, but as
explained above, this could be a response to the confluence of a
more powerful immunosuppressor therapy and the anti-T-
lymphocyte agents used.

Patients undergoing haploidentical allogeneic hematopoietic
SCT (Haplo-HSCT) have been considered to be at higher risk of
CMV reactivation than those receiving HLA-matched allografts
due to impaired CMV-specific T lymphocyte reconstitution.
Analysis of this and monitoring the CMV DNA load in
parallel with CMV-specific IFN-g-producing CD8+ and CD4+
T lymphocytes revealed that CMV was reactivated approximately
as often in PTCy-haplo and HLA-matched recipients, and that
CMV-specific T lymphocyte counts were similar in the two
groups at most of the times examined. These findings suggest
that the two groups reconstitute CMV-specific T lymphocyte
immunity in a similar fashion (67).

Immunosuppressors and Anti-T
Lymphocyte Agents
Steroids and anti-T lymphocyte agents are the cornerstone of the
prevention and treatment of graft rejection and, fundamentally,
of the development of graft-versus-recipient disease, the
appearance of which considerably increases transplant-related
mortality (not associated with relapse) (TRM). These data are
well established, and by way of example, in one of the most
recent series of patients treated with novel immunosuppressive
treatment options, an increase in mortality of 5 to 16% has been
described in patients with or without GVHD (68).

Patients who receive an allogeneic transplant from any source
and who are treated with high-dose steroids or who receive anti-
T lymphocyte agents, such as the aforementioned anti-
thymocyte globulin, but also high doses of cyclophosphamide
are also at high risk. This drug is necessarily employed in
haploidentical transplant after progenitor infusion to avoid the
GVHD that would accompany a half-discrepant haplotype.
However, T lymphocyte in vivo depletion with cyclofosfamide
is being used increasingly often in patients at high risk of GVHD
when they undergo non-haploidentical transplants.

Cyclophosphamide
The effects of cyclophosphamide as a T lymphocyte depletion
regimen were first studied in the haploidentical transplant setting
(69). Its benefits were then extended to other mismatched, or
even matched, donors (70). Cyclophosphamide is used as an
agent that depletes donor T lymphocytes in vivo. For this
purpose, it is administered during the first days of infusing the
progenitor cells – the post-transplant-cyclophosphamide (PTCy)
strategy. The mechanism by which cyclophosphamide modifies
the T lymphocyte response and thereby reduces GVHD has been
studied and extrapolated based on murine models of skin graft
rejections. However, there has been some disagreement about
whether the mechanisms involved are similar.

Nunes et al. developed a murine major histocompatibility
complex (MHC)-haploidentical HCT model (B6C3F1 !
B6D2F1) that is equivalent to the clinical HCT setting. They
described how PTCy, a non-T lymphocyte-cycle-dependent
Frontiers in Immunology | www.frontiersin.org 6
alkylator, affects both highly and lowly proliferative host-
alloreactive donor T lymphocytes. After infusion of
progenitors, host-alloreactive donor T lymphocytes become
activated, proliferative, and give rise to an inflammatory
environment. Between post-transplant days +3 and +7, there is
continued high-level proliferation of host-alloreactive donor
CD8+ effector T lymphocytes and reduced, but continued
proliferation of the surviving host-alloreactive donor CD4+ T
lymphocytes, both effector and Tregs (70). This time schedule
and pattern of proliferation is important for determining when
to apply PTCy, because the decrease in host-alloreactive donor
CD4+ effector T lymphocyte proliferation is needed to prevent
GVHD (71). Around day +5, the functionality of surviving host-
alloreactive donor effector T lymphocytes becomes impaired.
The severity of this increases over time, and the apparently rapid
effect of PTCy is enhanced by preferential reconstitution of
donor CD4+ Tregs between days +7 and +21, which
suppresses the host-alloreactive donor effector T lymphocytes.
Meanwhile, host-non-alloreactive donor T lymphocytes
maintain the slow proliferation, so the relative proportion of
alloreactive donor T lymphocytes ends up increasing. The
dynamics after these first stages might change over time and
due to antigenic stimulation.

It has been observed that the regulatory lymphocytes of
patients who receive PTCy recover quickly during the post-
transplant period; as little as 1 month after the transplant, they
are already at levels similar to the baseline of the donor, even
when the transplant patient still exhibits lymphopenia (72). In
patients receiving PTCy as the sole prophylaxis of GVHD in
identical transplants, it has been observed that recipients’ TCR
level after infusion of the progenitors is lower than that of the
donor in the first moments. However, beyond the first 3 months,
it begins to resemble the donor’s repertoire more closely, and in
CMV-positive cases, the number and repertoire increasingly
resemble those of the donor (73).

PTCy continues to prove to be one of the most beneficial
agents for the control of GVHD and even of relapse. In a
prospective multi-centre, randomized phase II clinical trial,
regimens of (i) tacrolimus, mycophenolate mofetil, and
cyclophosphamide, (ii) tacrolimus, methotrexate, and
bortezomib, and (iii) tacrolimus, methotrexate, and maraviroc
were compared against standard tacrolimus and methotrexate
(74). Only the PTCy-containing regimen resulted in superior
GVHD-free (severe acute and chronic), relapse-free survival.
However, this benefit might alter when CMV infection
appears. As previously stated, an increased CMV infection is
associated with Haplo-HSCT receiving PTCy (HaploCy).
However, the specific roles of the allograft source and the use
of PTCy in CMV infection and disease are unresolved. A recent
analysis of patients reported to the Center for International
Blood and Marrow Transplant Research (CIBMTR) has
addressed this aspect by comparing the cumulative incidence
of CMV infection at day 180 in three cohorts: one that had
received HaploCy (42%), a second group of sibling SCTs with
PTCy (37%) and a third cohort of sibling SCTs with calcineurin
inhibitor-based (23%) prophylaxis for AML/ALL/MDS. PTCy,
October 2021 | Volume 12 | Article 703256
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regardless of donor, was associated with a higher incidence of
CMV infection. The study also concluded that CMV infection
could negate the cGVHD protective benefit of PTCy (75).

Methotrexate
Methotrexate is an antitumor and immunosuppressive drug. It is
a structural analogue of folic acid; it blocks purine synthesis by
inhibiting numerous regulatory enzymes. It does not have
protumoral activity, unlike alkylating drugs, so it is of
particular interest in the context of patients undergoing
multiple therapies with potential induction of secondary
tumours. It targets the S phase of the cell cycle, which
determines that its action is largely confined to highly
proliferative cells. In the early post-transplant period, it
predominantly acts on highly proliferative alloreactive
lymphocytes. Its use in the context of marrow transplantation
dates back to 1970, when Donald Thomas described its role in
controlling GVHD in dogs (76). Since then, its use has been
maintained with dose modifications and optimizations in its
combinations. In combination with a calcineurin inhibitor, it has
been the standard of care for immunosuppression in
myeloablative matched hematopoietic cell transplants.

Calcineurin Inhibitors
Calcineurin inhibitors stop downstream signalling of the T cell
receptor (TCR) of naïve and memory T lymphocytes. This makes
them highly effective at suppressing alloimmunity after SCT (77).
They have undesirable collateral effects on anti-infectious and
tumour-protective immunity, and reactivation of latent herpes
viruses including CMV is frequent (78).

Anti-Thymocyte Globulin (ATG)
Low-dose ATG in transplants from high-risk alternative donors
reduces GVHD and transplant-related death. All four
randomized ATG trials undertaken demonstrated protection
against GVHD, and three of them found no detrimental effect
on survival (79–81). Two ATG formulations, derived from horse
and rabbit, have different mechanisms of action, effects on Tregs,
and depths of induced lymphopenia.

A direct association has consistently been found in both
formulations between the use of ATG and the occurrence of
viral infections, particularly CMV. This association has recently
been validated (72).

Steroids
Patients being treated with high-dose steroids in the setting of
GVHD, had significantly fewer activated CMV-specific T
lymphocytes, both CD8+/IFN-g+ and CD4+/IFN-g+ at all
developmental stages after allo-SCT. Reconstitution of CMV-
specific CD4+ and CD8+ activated lymphocytes was observed at
+180 days post-transplant, which was 80 days later than what
was observed in the non-steroid counterpart (83). This work
explains how and why steroid treatment increases the risk of
CMV infection in patients who, because of their serological
status and graft source, would otherwise not be at high risk
of reactivation.
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Some other groups have analysed how GVHD treatment
affects T lymphocyte functionality. Young patients with active
GVHD (based mainly on steroids) do not have adequate levels of
activated CMV-specific CD4+and CD8+T lymphocytes, and do
not produce IFN-g and IL-2 (51). The lack of control of CMV
reactivation after allogeneic SCT has been shown to respond to
an impaired function of antigen-specific CD8+ T lymphocytes,
whereas the amount of CMV-specific T lymphocytes does not
have such a marked impact (84).

Monitoring CMV Infection
Serological determination of CMV-specific antibodies is
important for determining a patient’s risk of CMV infection
after transplantation (85). However, it is worth noting that in
polytransfused patients (as exemplified by many haematological
patients awaiting an allogeneic transplant), the serological status
may be an artefact of a passive immunization mechanism.
Discrepancies in CMV have been observed in up to 29%-33%
of patients when this has been analysed (86, 87). Routinely
determined serostatus is still currently used as a criterion for
estimating CMV reactivation risk before transplant.

Without prophylaxis, the disease of 80% of patients who are
serologically positive for CMV would reactivate after allogeneic
transplantation. Strategies to prevent the development of CMV
disease have emerged in recent decades, based on antiviral
prophylaxis and CMV viremia monitoring (before developing
the disease), and treatment before the disease causes organ
damage (pre-emptive therapy). Serological status is not
appropriate for the purpose of detecting CMV infection. In
turn, detection of CMV in blood is the recommended strategy
for preventing CMV disease (88). It can be detected with pp65
antigen in leukocytes, or by the polymerase chain reaction (PCR)
technique, which is more sensitive (89) and therefore the most
frequently used. The presence of antigen in peripheral blood or
high loads of DNA are both predictive of CMV disease in these
patients (90, 91). Likewise, patients who are to receive SCT must
receive leukodepleted, filtered and irradiated products.

Treatment Options for CMV Infection:
Improving Anti-CMV Reconstitution
To decide the best therapy for each patient, we must consider
whether the patient has received antiviral prophylaxis, the risk
profile for CMV disease, T lymphocyte reconstitution (both
general and CMV-specific), viral load and potential drug
resistance (92).

Effective agents to control CMV infection have been notably
toxic. The three main drugs used in recent years are ganciclovir/
valganciclovir, foscarnet and cidofovir. Ganciclovir is an
analogue of nucleoside 2’-deoxyguanosine, which functions as
a competitive inhibitor with deoxyguanosine triphosphate
(dGTP) used by DNA polymerase of viruses for its replication.
Foscarnet reversibly blocks the pyrophosphate-binding site of
viral polymerase in a non-competitive manner and inhibits the
separation of pyrophosphate from deoxynucleotide
triphosphates, 100 times more strongly than its action against
cellular DNA polymerase a. Cidofovir, in its active form of
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cidofovir diphosphate, prevents viral replication by selectively
inhibiting viral DNA polymerases. It also inhibits human DNA
polymerases, but up to 600 times weaklier. Ganciclovir induces
haematological toxicity, in which neutropenia contributes to the
development of opportunistic bacterial and fungal infections (93,
94). Foscarnet and cidofovir cause kidney damage and require
strict analytical control that usually requires the patient’s
admission to hospital to receive the treatment (95, 96). They
are often used in the context of pre-emptive therapy, and, in fact,
when oral agents such as valganciclovir are used as primary
prophylaxis, there is no significant benefit (97). The strategy used
to date has therefore been pre-emptive therapy, except in
patients with a high risk of CMV disease, for whom alternative
strategies are warranted. This scenario might soon change with
the introduction of letermovir, which is known to reduce CMV
reactivation and decrease all-cause mortality, but without being
significantly toxic. In fact, it has performed similarly to the
placebo in the phase 3 trials (98).

Letermovir inhibits the CMVDNA terminase complex, which
is required for cleavage and encapsidation of the resulting viral
DNA, thereby interfering with virion formation and without
significant toxicities compared to placebo (98). This is
extremely important since both ganciclovir, cidofovir and
foscarnet have well known hematologic and renal toxicities that
frequently limitate their use. The rationale for its potential benefit
in comparison with other drugs is a different therapeutic target,
that could overcome the resistance observed in the clinic (92, 99).
There is an urgent need of drugs that effectively treat CMV
reactivation, both in patients who are refractory to ganciclovir
and in those who do not admit additional toxicities induced by
the antivirals used. For this reason its use has been approved by
some regulatory agencies and in the coming years we will verify
the real impact on the clinic of transplant patients, fundamentally.

To improve T lymphocyte recovery and CMV control,
strategies that aim to improve thymus function could be key.
These include protection of thymic epithelium, thymopoiesis
enhancement and increasing the number of T lymphoid
precursors (47). These in vivo strategies have been highly
diverse, including the use of specific lymphokines, growth
factors and hormones, among others. On the other hand,
cellular therapies have also been developed. Among these,
infusion of ex vivo-expanded virus-specific cytotoxic T
lymphocytes (CMV-VSTs) has been of particular note (100).
These specific cytotoxic lymphocytes have been used either with
the original donor source or with partially matched donors. In
general, this strategy has proved efficacious in post-transplant
CMV reactivation and disease (101, 102). There appear to be
correlations (based on retrospective studies) between the baseline
CD4+ level (the recipient’s previous immunity) and the rate and
duration of engraftment and treatment success, probably because
the CD4+ component is essential for mediating the engraftment
and activity of the effector cells (103).

Attempts have been made to vaccinate against CMV, the most
recent using techniques being based on DNA vaccines as well as
peptide-based CMV conjugated with TLR agonists (104). The
most advanced vaccines are those combined from CMV
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glycoprotein B (gB) with the adjuvant MF59. Its use has been
tested in transplant patients to prevent post-transplant CMV
disease, and in seronegative pregnant women or adolescents. In
the first cohort (phase 2 study) of vaccinated vs placebo (105), a
decrease in viremia was demonstrated in vaccinated patients
proportional to the antibody load generated, although we know
that the humoral response constitutes only one line of defence
against the CMV, the results were not negligible, and
confirmation of efficacy is awaited in phase 3 studies. In the
cohort of young women, the vaccine was safe and immunogenic,
although with an efficacy of 45% after 2 doses, therefore which
was considered insufficient to continue the line of research (105).
It is highly likely that the advances in DNA and RNA vaccine
technology during 2020 and 2021 will change the spectrum of
vaccines, and that the landscape will change in the years to come.

CMV in Other Haematological Settings:
CMV Reactivation and Drugs in
Haematological Malignancies
CMV and Autologous Stem Cell Transplantation
The role of CMV reactivation or infection has been much less
extensively studied in patients receiving an autologous transplant
than in those receiving an allogeneic transplant. From the
perspective of the treatment of haematological disease, which
usually have high short-term mortality rates, CMV reactivations
have been studied to determine whether or not the disease will
develop. The implications of these reactivations for the immune
system in the medium and long term have been considered less
important. In fact, the available series confirm that reactivation is
a relatively frequent event in patients receiving autologous
parental transplants. CMV reactivates in up to 41% of patients
during the post-transplant period. Anyway, the rate of CMV
disease remains low (106). Those patients receiving high doses of
steroids, irradiation, purine analogues or alemtuzumab would
require more attention (107).

CMV and Lymphoproliferative Disorders
The immunosuppression observed in many haematological
tumours is conditioned by the underlying disease itself, but also
fundamentally by the type of treatment used. Lymphoid pathology
(acute and chronic) reveals a fundamental involvement of theB and
T lymphoid compartments. This creates a tendency to develop viral
and fungal infections, as well as infections borne by some
intracellular parasites, such as Pneumocystis jirovecii. The cellular
immunosuppression observed in this group of patients determines
many of the prophylaxis strategies, which are sometimes
conditioned to the treatment, but in others are more typical of the
immune defect that generates the disease.

Thus, trimethoprim/sulfamethoxazole prophylaxis and the
use of acyclovir in lymphoproliferative syndromes are
quite widespread.

Acute and chronic myeloid pathologies, such as acute
leukaemias or myelodysplastic syndromes, involve the myeloid
compartment. Neutropenia mainly conditions bacterial and
fungal infections. Their long evolution, the use of purine
analogues in treatment regimens, or the frequent consolidation
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with allogeneic transplantation in this group causes CMV
infection to be a concern in more advanced stages of the
disease. CMV serostatus and non-relapse mortality rate after
transplant are quite well established in acute myeloid leukaemias
(108). In turn, recent explorations of series featuring other
pathologies such as diffuse large B-cell lymphoma (DLBCL)
have not been able to demonstrate such an association (109).

B-cell chronic lymphocytic leukaemias (B-CLL) is the most
frequent chronic leukaemia in western countries. It has been
suggested that this disease features a CD8+ T lymphocyte
expansion that increases as the disease advances. Analysis of
specific immune responses with tetrameric CMV-peptide
complexes showed that patients exhibiting such an expansion,
actually have an increase of CMV-specific CD8+CD45RA
+CD27- T lymphocytes. This change is actually specific to
CMV-seropositive patients and might reflect the greater effort
required to control CMV reactivations (110). Similarly, another
analysis of CMV in CLL patients has revealed that the expanded
CMV-specific response observed in CLL patients apparently
arises with the onset of chemotherapy and stabilizes thereafter
(111). Some researchers have called attention to the possible
consequence of redirecting autologous CMV-specific cytotoxic T
lymphocytes (CTLs) towards B-CLL cells for cancer
immunotherapy (112). CMV infection in patients with CLL
usually occurs in the context of treatment with purine
inhibitors, alemtuzumab, or even alkylating agents such as
chlorambucil, and the disease itself. Of all the mechanisms
involved in CLL immunosuppression, which falls beyond the
scope of this review, hypogammaglobulinemia seems to be of
great importance. It has been thoroughly described in CLL and
has recently been associated with a shorter time until the next
treatment (113).

CMV and Purine Analogues
All purine analogues mimic metabolic purines. Of them,
fludarabine is the most extensively used in hematologic cancer.
Fludarabine inhibits multiple DNA polymerases, DNA primase,
and DNA ligase I, and is S phase-specific (since these enzymes
are highly active during DNA replication). Fludarabine acts
particularly on T cells, and is therefore very toxic to
this compartment.

Normal T lymphocyte function is essential to the control of
CMV reinfection. The use of agents such as purine analogues,
that have a very potent T lymphocyte suppressor profile while
being highly effective for treating chronic lymphoproliferative
disorders (114), are highly relevant to the development of
CMV reactivations.

Cases of CMV retinitis have been documented in patients
with low-grade lymphomas treated with rituximab, fludarabine
and steroids (115). Previous serological status was not available
for most patients, probably because there is not a specific
approach with CMV seropositivity outside transplant
scenarios. Despite being a very rare event even in the
seropositive population, the sequelae were adverse (blindness)
in 86% of patients. CMV monitoring, and clinical observation of
possible infection and reactivation, must be considered when
these regimens are used.
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CMV and Alemtuzumab
Alemtuzumab is a monoclonal antibody which acts on the CD52
protein found on the surface of peripheral blood and lymph
node lymphocytes.

CMV reactivations in patients receiving alemtuzumab
treatment for CLL are common, with a rate of around 20% in
the phase II study with the drug that was evaluated in 78 patients
(116). However, viral load monitoring and pre-emptive
treatment manages to prevent the disease in most cases (117).

Some studies have even proposed the use of primary
prophylaxis with valganciclovir in patients receiving
alemtuzumab in whom the drug has a high efficacy (118).
However, the main concern with using prophylactic
valganciclovir is the additional myelosuppression beyond the
already significant amount produced by the alemtuzumab-based
regimens themselves. An attempt to reduce cost and toxicity by
using lower weekly doses (119) produced lower toxicity and
acceptable efficacy. However, due to the aforementioned
concerns, primary prophylaxis is not common practice in this
group of patients.

CMV and New Agents in the Treatment of
Lymphoproliferative Syndromes
Many drugs have been introduced into the therapeutic arsenal to
treat lymphoproliferative syndromes, in particular, CLL.
However, CMV seropositivity in the era of new therapies has
not led to reduced survival or relapse in CLL patients when
prospectively compared with seronegative patients (120).

Bruton Tyrosine Kinase Inhibitors
CMV infection is not common in the case of a BTK inhibitor
such as ibrutinib, although some cases have been reported (121).
Although these are infrequent, we should always be aware of this
possibility among immunocompromised patients, particularly
those who have been treated with new agents, because this is a
curable condition and early therapy seems to be critical if a good
outcome is to be achieved.

PI3K Inhibitors
Recommendations for the management and prophylaxis of CMV
reactivation have been established in patients treated with
idelalisib. These patients can develop a serious infectious
disease, with a high risk of CMV reactivation and the
involvement of other opportunistic germs (122). It has been
shown how idelalisib impairs IFN-g production by activating T
lymphocytes in CLL-treated patients, highlighting the
importance of PI3Kd in this process. Idelalisib inhibits T
lymphocytes in relation to generic TCR stimulation and in
response to virus-specific stimulation. The CD4+ and CD8+ T
lymphocyte subsets both seem to be affected. This might explain
the higher rate of CMV reactivations in those CLL patients who
are treated with it. Finally, idelalisib has also been shown to alter
T lymphocyte migration in vitro (123).

The high risk of CMV reactivation in this therapy group has
meant that the guidelines have been adapted to those for the use
of alemtuzumab (124). CMV-seronegative patients should
receive CMV-negative or filtered blood products (this is blood,
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platelet, and plasma transfusions. Progenitor cell transplantation
products are not irradiated due to the need to maintain the
viability of the infused cells). Seropositive patients should be
periodically tested for CMV. Idelalisib should be discontinued
and ganciclovir or valganciclovir pre-emptively initiated in
patients with positive CMV PCR/antigen and symptoms
consistent with CMV infection, as well as in patients with fever
and no clear source, and for whom quantitative CMV testing is
unavailable, and in asymptomatic patients with a rising viral
load (125).

Proteasome Inhibitors
Bortezomib and the next-generation proteasome inhibitors have
been cornerstones of multiple myeloma (MM) treatment for
several years. Although sufficiently relevant to be considered one
of the causes of the increase in survival in this group of patients,
they have also entailed infectious risks that should be
highlighted. Bortezomib was reported to increase the risk of
varicella-zoster virus (VZV) reactivation by up to four times
(126), and a high incidence of CMV reactivation in fit patients
receiving autologous transplantation due MM after treatment
with bortezomib-based regimens was recently reported. Of 80
patients who underwent autologous SCT after bortezomib-based
therapies, seven (4.1%) received an antiviral treatment for a
symptomatic CMV reactivation and one died (127). Although no
specific cause has yet been determined, in vitro studies have
demonstrated that bortezomib can reduce proliferation, number,
and function of natural killer cells and CD8+/CD4+ T and alter
the cytokine profile, in particular decreasing Th1 cytokine
secretion (128).

In the setting of allogeneic transplantation, bortezomib
induces preferential apoptosis among alloreactive T
lymphocytes (decreasing Th1 response) by inhibiting nuclear
factor-kB (NF-kB) activation, whilst unstimulated T
lymphocytes are barely affected. This might explain its
potential use as a drug for GVHD treatment.

All these mechanisms could help explain the increased
incidence of Herpesviridae family viruses (of which VZV is the
best known) in MM patients and might contribute to the
increased susceptibility to CMV reactivation in MM patients
treated with bortezomib-based regimens followed by
ASCT (129).

CMV and CAR-T-Cells
One of the most significant innovations in recent years has been
the treatment with the CD19-directed chimerical antigen
receptor T lymphocyte. Currently, data regarding the rate and
type of viral infections in patients receiving this treatment are
scarce. However, there are already some data on the incidence of
CMV infections and reactivation in real clinical practice. In a
retrospective series of 60 patients with aggressive lymphoma
treated with CAR-T, who received antiviral prophylaxis for
herpes simplex virus (HSV) according to the recommendations
of each hospital, 10 viral infections were documented in the first
30 days, of which two corresponded to CMV reactivations,
without organ affectation. During days 31-180, another
reactivation by CMV occurred, again without organ disease.
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None of them, therefore, compromised the life of the
patient (130).

Considering now the patients with ALL, data were collected
from 83 patients up to 21 years of age who had received CAR-T
therapy for this reason (131). Sixteen of them developed viral
infections within the first 28 days; these were caused mainly by
respiratory viruses, without specifying infection by CMV in these
reported cases. Between days 29 and 90, seven patients got viral
infections, all of which were due to respiratory viruses.

There are documented cases of CMV reactivation in the first
month and during the first three months. Previous therapies,
disease stage and patient basal characteristics seem to be crucial.

Regarding prophylaxis against viral infections, there are no
unique internat ional recommendat ions , and these
recommendations are heterogeneous (132). The European
recommendations are based on data from allogeneic transplant
recipients (133). In general, antiviral prophylaxis is established
with acyclovir or valacyclovir at least up to one year after CAR-T
infusion, or until a CD4+ T lymphocyte level greater than 0.2 x
109/L is documented (134). In paediatrics, nonspecific
immunoglobulins are also frequently used to maintain total
IgG levels above 0.4 g/L (135). With respect to monitoring, the
EBMT guidelines recommend that PCR be performed when
clinically indicated (133).
CONCLUSIONS

The relationships between CMV infection and haematological
pathologies are well known. Fundamentally, as a result of the
important repercussions from the management of the infection
and reactivation of the virus in the post-allogeneic transplant.
However, there are many other situations that give rise to severe
immunosuppression, either due to the haematological pathology
itself or to the treatments used, which should increase vigilance
concerning the complications derived from infection by this
virus. Thus, it is necessary to study the effect of new drugs on the
immune system and so adapt CMV prophylaxis and infection
monitoring to different treatment schemes and situations, now
that new anti-CMV drugs with fewer secondary effects are
available for this purpose.

In contrast, knowledge about the role of this virus in the
development of haematological diseases, in other words, its
oncogenic or oncomodulatory potential, is much more limited.
The difficulty in finding it may be because CMV infection is
associated with age and the fact that its main effect is to bring
about the dysfunction of T lymphocytes. T cell lymphomas are
quite rare. The search for causality in the more commonly
occurring counterpart B-cell lymphomas involves looking for
indirect causes arising from the basic relationship between T and
B lymphocytes.

Living with this herpesvirus is a situation that has arisen from
years of evolution, which has apparently produced a balanced
and tolerable relationship. This would imply that its effect, does
not directly or indirectly limit survival or favour oncogenesis. In
the forthcoming era of medicine we are approaching, there will
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be infinite possibilities for producing antiviral agents with very
low toxicity and for immunizing against the most prevalent
microorganisms. These promising possibilities should inspire an
exhaustive study of the real effects of CMV and other
microorganisms on the oncogenesis and mortality of
individuals and populations. It seems clear that the ultimate
answer about the oncogenic role of the virus will come from a
prospective design approach that will allow us to determine
whether human beings who are not infected have a lower risk of
developing haematological neoplasms or other conditions than
those who are infected.
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80. Socié G, Schmoor C, Bethge WA, Ottinger HD, Stelljes M, Zander AR, et al.
Chronic Graft-Versus-Host Disease: Long-Term Results From A
Randomized Trial On Graft-Versus-Host Disease Prophylaxis With or
Without Anti-T-cell Globulin ATG-Fresenius. Blood (2011) 117:6375–82.
doi: 10.1182/blood-2011-01-329821

81. Kröger N, Solano C, Wolschke C, Bandini G, Patriarca F, Pini M, et al.
Antilymphocyte Globulin for Prevention of Chronic Graft-Versus-Host
Disease. N Engl J Med (2016) 374:43–53. doi: 10.1056/nejmoa1506002

82. Figgins B, Hammerstrom A, Ariza-Heredia E, Oran B, Milton DR, Yeh J.
Characterization of Viral Infections after Antithymocyte Globulin–Based
Conditioning in Adults Undergoing Allogeneic Hematopoietic Stem Cell
Transplantation. Biol Blood Marrow Transplant (2019) 25:1837–43.
doi: 10.1016/j.bbmt.2019.05.020
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Alonso-Álvarez et al. Cytomegalovirus in Haematological Tumours
Stem Cell Transplantation From a Matched Related Donor. Biol Blood
Marrow Transplant (2007) 13(11):1304–12. doi: 10.1016/j.bbmt.2007.07.007

95. Mattes FM, Hainsworth EG, Geretti AM, Nebbia G, Prentice G, Potter M,
et al. A Randomized, Controlled Trial Comparing Ganciclovir to Ganciclovir
Plus Foscarnet (Each at Half Dose) for Preemptive Therapy of
Cytomegalovirus Infection in Transplant Recipients. J Infect Dis (2004)
189(8):1355–61. doi: 10.1086/383040

96. Reusser P. Challenges and Options in the Management of Viral Infections
After Stem Cell Transplantation. Support Care Cancer (2002) 10(3):197–203.
doi: 10.1007/s005200100299

97. Boeckh M, Nichols WG, Chemaly RF, Papanicolaou GA, Wingard JR, Xie H,
et al. Valganciclovir for the Prevention of Complications of Late
Cytomegalovirus Infection After Allogeneic Hematopoietic Cell
Transplantation: A Randomized Trial. Ann Intern Med (2015) 162(1):1–
10. doi: 10.7326/M13-2729

98. Marty FM, Ljungman P, Chemaly RF, Maertens J, Dadwal SS, Duarte RF,
et al. Letermovir Prophylaxis for Cytomegalovirus in Hematopoietic-Cell
Transplantation. N Engl J Med (2017) 377(25):2433–44. doi: 10.1056/
NEJMoa1706640

99. Kilgore JT, Becken B, Varga MG, Parikh S, Prasad V, Lugo D, et al. Use of
Letermovir for Salvage Therapy for Resistant Cytomegalovirus in a Pediatric
Hematopoietic Stem Cell Transplant Recipient. J Pediatr Infect Dis Soc
(2020) 9(4):486–9. doi: 10.1093/jpids/piz050

100. Barrett AJ, Bollard CM. The Coming of Age of Adoptive T-Cell Therapy For
Viral Infection After Stem Cell Transplantation. Ann Transl Med (2015) 3
(5):62. doi: 10.3978/j.issn.2305-5839.2015.01.18

101. O'Reilly RJ, Prockop S, Hasan AN, Koehne G, Doubrovina E. Virus-Specific
T-Cell Banks for 'off the Shelf' Adoptive Therapy of Refractory Infections.
Bone Marrow Transplant (2016) 51(9):1163–72. doi: 10.1038/bmt.2016.17

102. Prockop SE, Hasan A, Koehne G, Doubrovina E, Sauter CS, Barker JN, et al.
Third Party Donor Derived CMV Specific T Cells for the Treatment of
Refractory CMV Viremia and Disease after Hematopoietic Stem Cell
Transplant. Blood (2014) 124:184–4. doi: 10.1182/blood.v124.21.184.184

103. Fabrizio VA, Irene Rodriguez-Sanchez M, Mauguen A, Dahi PB, Doubrovina E,
O’Reilly RJ, et al. Adoptive Therapy with CMV-Specific Cytotoxic T
Lymphocytes Depends on Baseline CD41 Immunity to Mediate Durable
Responses. Blood Adv (2021) 5:496–503. doi: 10.1182/bloodadvances.2020002735

104. Kharfan-Dabaja MA, Boeckh M, Wilck MB, Langston AA, Chu AH, Wloch
MK, et al. A Novel Therapeutic Cytomegalovirus DNA Vaccine in
Allogeneic Haemopoietic Stem-Cell Transplantation: A Randomised,
Double-Blind, Placebo-Controlled, Phase 2 Trial. Lancet Infect Dis (2012)
12:290 299. doi: 10.1016/S1473-3099(11)70344-9

105. Nakamura R, La Rosa C, Longmate J, Drake J, Slape C, Zhou Q, et al.
Viraemia, Immunogenicity, and Survival Outcomes of Cytomegalovirus
Chimer ic Epitope Vaccine Supplemented With PF03512676
(CMVPepVax) in Allogeneic Haemopoietic Stem-Cell Transplantation:
Randomised Phase 1b Trial. Lancet Haematol (2016) 3:e87–98.
doi: 10.1016/S2352-3026(15)00246-X

106. Marchesi F, Pimpinelli F, Ensoli F, Mengarelli A. Cytomegalovirus Infection
in Hematologic Malignancy Settings Other Than The Allogeneic Transplant.
Hematol Oncol (2018) 36(2):381–91. doi: 10.1002/hon.2453

107. Hebart H, Schröder A, Löffler J, Klingebiel T, Martin H, Wassmann B, et al.
Cytomegalovirus Monitoring By Polymerase Chain Reaction ofWhole Blood
Samples From Patients Undergoing Autologous Bone Marrow or Peripheral
Blood Progenitor Cell Transplantation. J Infect Dis (1997) 175:1490–3.
doi: 10.1086/516484

108. Zhang YL, Zhu Y, Xiao Q, Wang L, Liu L, Luo XH. Cytomegalovirus
Infection is Associated With AML Relapse After Allo-HSCT: A Meta-
Analysis of Observational Studies. Ann Hematol (2019) 98(4):1009–20.
doi: 10.1007/s00277-018-3585-1

109. Mariotti J, Maura F, Spina F, Roncari L, Dodero A, Farina L, et al. Impact of
Cytomegalovirus Replication and Cytomegalovirus Serostatus on the
Outcome of Patients With B Cell Lymphoma After Allogeneic Stem Cell
Transplantation. Biol Blood Marrow Transplant (2014) 20(6):885–90.
doi: 10.1016/j.bbmt.2014.02.015

110. Mackus WJM, Frakking FNJ, Grummels A, Gamadia LE, De Bree GJ,
Hamann D, et al. Expansion of CMV-Specific CD8+CD45RA+CD27- T
Frontiers in Immunology | www.frontiersin.org 14
Cells in B-Cell Chronic Lymphocytic Leukemia. Blood (2003) 102:1057–63.
doi: 10.1182/blood-2003-01-0182

111. Pourgheysari B, Bruton R, Parry H, Billingham L, Fegan C, Murray J, et al.
The Number of Cytomegalovirus-Specific CD4+ T Cells is Markedly
Expanded in Patients With B-Cell Chronic Lymphocytic Leukemia and
Determines the Total CD4+ T-Cell Repertoire. Blood (2010) 116:2968–74.
doi: 10.1182/blood-2009-12-257147

112. Mous R, Savage P, Remmerswaal EBM, van Lier RAW, Eldering E, van Oers
MHJ. Redirection of CMV-Specific CTL Towards B-CLL via CD20-Targeted
HLA/CMV Complexes. Leukemia (2006) 20:1096–102. doi: 10.1038/
sj.leu.2404185

113. Parikh SA, Leis JF, Chaffee KG, Call TG, Hanson CA, Ding W, et al.
Hypogammaglobulinemia in Newly Diagnosed Chronic Lymphocytic
Leukemia: Natural History, Clinical Correlates, and Outcomes. Cancer
(2015) 121:2883–91. doi: 10.1002/cncr.29438

114. Morra E, Nosari A, Montillo M. Infectious Complications in Chronic
Lymphocytic Leukaemia. Hematol Cell Ther (1999) 41(4):145–51.
doi: 10.1007/s00282-999-0145-0

115. Chan TSY, Cheung CYM, Yeung IYL, Hwang YY, Gill H, Wong IY, et al.
Cytomegalovirus Retinitis Complicating Combination Therapy With
Rituximab and Fludarabine. Ann Hematol (2015) 94:1043–7. doi: 10.1007/
s00277-014-2296-5

116. Ferrajoli A, O’Brien SM, Cortes JE, Giles FJ, Thomas DA, Faderl S, et al.
Phase II Study of Alemtuzumab in Chronic Lymphoproliferative Disorders.
Cancer (2003) 98:773–8. doi: 10.1002/cncr.11551

117. Laurenti L, Piccioni P, Cattani P, Cingolani A, Efremov D, Chiusolo P, et al.
Cytomegalovirus Reactivation During Alemtuzumab Therapy for Chronic
Lymphocytic Leukemia: Incidence and Treatment With Oral Ganciclovir.
Haematologica (2004) 89(10):1248–52.

118. O’Brien S, Ravandi F, Riehl T, Wierda W, Huang X, Tarrand J, et al.
Valganciclovir Prevents Cytomegalovirus Reactivation in Patients Receiving
Alemtuzumab-Based Therapy. Blood (2008) 111:1816–9. doi: 10.1182/blood-
2007-03-080010

119. Hwang YY, Cheung WWW, Leung AYH, Tse E, Au WY, Kwong YL.
Valganciclovir thrice Weekly for Prophylaxis Against Cytomegalovirus
Reactivation During Alemtuzumab Therapy. Leukemia (2009) 23:800–1.
doi: 10.1038/leu.2008.282

120. Parry HM, Damery S, Hudson C, Maurer MJ, Cerhan JR, Pachnio A, et al.
Cytomegalovirus Infection Does Not Impact on Survival or Time to First
Treatment in Patients With Chronic Lymphocytic Leukemia. Am J Hematol
(2016) 91:776–81. doi: 10.1002/ajh.24403

121. Reddy Y, Baig M, Kalva N, Puli S, Dhillon S. Cytomegalovirus Proctitis in a
Patient with Chronic Lymphocytic Leukemia on Ibrutinib Therapy: A Case
Report. Cureus (2020) 12(4):e7837. doi: 10.7759/cureus.7837

122. Greenwell IB, Ip A, Cohen JB. PI3K Inhibitors: Understanding Toxicity
Mechanisms and Management. Oncol (Williston Park) (2017) 31(11):821–8.

123. Martinelli S, Maffei R, Fiorcari S, Quadrelli C, Zucchini P, Benatti S, et al.
Idelalisib impairs T-Cell-Mediated Immunity in Chronic Lymphocytic
Leukemia. Haematologica (2018) 103:e598–601. doi: 10.3324/
haematol.2017.187070

124. Cuneo A, Barosi G, Danesi R, Fagiuoli S, Ghia P, Marzano A, et al.
Management of Adverse Events Associated With Idelalisib Treatment in
Chronic Lymphocytic Leukemia And Follicular Lymphoma: A
Multidisciplinary Position Paper. Hematol Oncol (2019) 37:3–14.
doi: 10.1002/hon.2540

125. Cheah CY, Fowler NH. Idelalisib in the Management of Lymphoma. Blood
(2016) 128:331–6. doi: 10.1182/blood-2016-02-702761

126. Chanan-Khan A, Sonneveld P, Schuster MW, Stadtmauer EA, Facon T,
Harousseau JL, et al. Analysis of Herpes Zoster Events Among Bortezomib-
Treated Patients in the Phase III APEX Study. J Clin Oncol (2008) 26:4784–
90. doi: 10.1200/JCO.2007.14.9641

127. Marchesi F, Mengarelli A, Giannotti F, Tendas A, Anaclerico B, Porrini R,
et al. High Incidence of Post-Transplant Cytomegalovirus Reactivations in
Myeloma Patients Undergoing Autologous Stem Cell Transplantation After
Treatment With Bortezomib-Based Regimens: A Survey From the Rome
Transplant Network. Transpl Infect Dis (2014) 16:158–64. doi: 10.1111/
tid.12162
October 2021 | Volume 12 | Article 703256

https://doi.org/10.1016/j.bbmt.2007.07.007
https://doi.org/10.1086/383040
https://doi.org/10.1007/s005200100299
https://doi.org/10.7326/M13-2729
https://doi.org/10.1056/NEJMoa1706640
https://doi.org/10.1056/NEJMoa1706640
https://doi.org/10.1093/jpids/piz050
https://doi.org/10.3978/j.issn.2305-5839.2015.01.18
https://doi.org/10.1038/bmt.2016.17
https://doi.org/10.1182/blood.v124.21.184.184
https://doi.org/10.1182/bloodadvances.2020002735
https://doi.org/10.1016/S1473-3099(11)70344-9
https://doi.org/10.1016/S2352-3026(15)00246-X
https://doi.org/10.1002/hon.2453
https://doi.org/10.1086/516484
https://doi.org/10.1007/s00277-018-3585-1
https://doi.org/10.1016/j.bbmt.2014.02.015
https://doi.org/10.1182/blood-2003-01-0182
https://doi.org/10.1182/blood-2009-12-257147
https://doi.org/10.1038/sj.leu.2404185
https://doi.org/10.1038/sj.leu.2404185
https://doi.org/10.1002/cncr.29438
https://doi.org/10.1007/s00282-999-0145-0
https://doi.org/10.1007/s00277-014-2296-5
https://doi.org/10.1007/s00277-014-2296-5
https://doi.org/10.1002/cncr.11551
https://doi.org/10.1182/blood-2007-03-080010
https://doi.org/10.1182/blood-2007-03-080010
https://doi.org/10.1038/leu.2008.282
https://doi.org/10.1002/ajh.24403
https://doi.org/10.7759/cureus.7837
https://doi.org/10.3324/haematol.2017.187070
https://doi.org/10.3324/haematol.2017.187070
https://doi.org/10.1002/hon.2540
https://doi.org/10.1182/blood-2016-02-702761
https://doi.org/10.1200/JCO.2007.14.9641
https://doi.org/10.1111/tid.12162
https://doi.org/10.1111/tid.12162
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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