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T cells are the key players of the adaptive immune response. They coordinate the
activation of other immune cells and kill malignant and virus-infected cells. For full
activation T cells require at least two signals. Signal 1 is induced after recognition of
MHC/peptide complexes presented on antigen presenting cells (APCs) by the clonotypic
TCR (T-cell receptor)/CD3 complex whereas Signal 2 is mediated via the co-stimulatory
receptor CD28, which binds to CD80/CD86 molecules that are present on APCs. These
signaling events control the activation, proliferation and differentiation of T cells. In
addition, triggering of the TCR/CD3 complex induces the activation of the integrin
LFA-1 (leukocyte function associated antigen 1) leading to increased ligand binding
(affinity regulation) and LFA-1 clustering (avidity regulation). This process is termed
“inside-out signaling”. Subsequently, ligand bound LFA-1 transmits a signal into the T
cells (“outside-in signaling”) which enhances T-cell interaction with APCs (adhesion), T-cell
activation and T-cell proliferation. After triggering of signal transducing receptors, adapter
proteins organize the proper processing of membrane proximal and intracellular signals as
well as the activation of downstream effector molecules. Adapter proteins are molecules
that lack enzymatic or transcriptional activity and are composed of protein-protein and
protein-lipid interacting domains/motifs. They organize and assemble macromolecular
complexes (signalosomes) in space and time. Here, we review recent findings regarding
three cytosolic adapter proteins, ADAP (Adhesion and Degranulation-promoting Adapter
Protein), SKAP1 and SKAP2 (Src Kinase Associated Protein 1 and 2) with respect to their
role in TCR/CD3-mediated activation, proliferation and integrin regulation.
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INTRODUCTION

After T-cell maturation in the thymus, naïve CD4+ and CD8+ T
cells navigate into secondary lymphoid organs (e.g. lymph
nodes and spleen). In the lymph node, T cells migrate into the
T-cell zone where they scan and interact with APCs such as
dendritic cells (DCs). The TCR (T-cell receptor)/CD3 complex
of CD8+ T cells recognizes peptide-loaded MHC (Major
Histocompatibility Complex) class I molecules on DCs and
enables the differentiation of naïve CD8+ T cells into CTLs
(cytotoxic T lymphocytes). CTLs main function is to kill virus-
infected cells and tumor cells [for reviews please see (1, 2)].
Activation of naïve CD4+ T cells is initiated when their TCR/
CD3 complex detects foreign antigenic peptides presented on
MHC II molecules by DCs. Depending on the surrounding
cytokine milieu, CD4+ T cells subsequently differentiate into
Th (T helper) subtypes, for instance Th1, Th2 or Th17 cells.
These Th subtypes have various properties that enable them
to fight against pathogens, to activate B cells for antibody
production or to recruit/activate innate immune cells [for
reviews please see (3, 4)].

The simultaneous binding of the TCR/CD3 complex to
peptide loaded MHC complexes (signal 1) and of CD28 to
CD80/CD86 expressed by APCs (signal 2) is required for T-
cell activation (termed co-stimulation). The TCR/CD3 complex
consists of the TCRab heterodimer, the CD3ϵd and CD3ϵg
heterodimers and the zz homodimer (here referred as TCR/CD3).
Frontiers in Immunology | www.frontiersin.org 2
The TCR/CD3-induced downstream signaling is dependent on
phosphorylation of particular tyrosine motifs called ITAMs
(immunoreceptor tyrosine-based activation motifs) located
within the cytoplasmic domains of the CD3ϵ- and z-chains
(5–7). Lck (lymphocyte-specific protein tyrosine kinase) and
Fyn (feline yes-related protein), two members of the Src family
of protein tyrosine kinases phosphorylate the ITAMs upon
T cell activation. The precise mechanisms how Lck and Fyn
propagate the TCR/CD3-mediated signal is still under intense
debate (8–11). Nevertheless, following ITAM-phosphorylation,
the tyrosine kinase ZAP-70 (x-chain associated protein
of 70 kDa), a member of the Syk (spleen tyrosine kinase)
family, is recruited to the phosphorylated ITAMs via its
tandem SH2 domain and becomes activated by Lck. The
adapter protein LAT (linker for activation of T cells) becomes
subsequently phosphorylated by ZAP-70. Recently Lo et al.,
discovered that Lck promotes ZAP-70 activation for LAT
phosphorylation through the formation of a molecular bridge
between LAT and ZAP-70 (12) (Figure 1). In addition to
LAT phosphorylation ZAP-70 phosphorylates SLP-76 (SH2
domain-containing leukocyte phosphoprotein of 76 kDa) and
both adapter proteins form a signaling hub called the LAT
signalosome. This signalosome drives gene expression,
cytoskeleton re-organization and T-cell activation [for reviews
please see (13–15)] (Figure 1).

The LAT signalosome connects the TCR/CD3 complex to the
major downstream signaling pathways that regulate T-cell
FIGURE 1 | TCR/CD3 machinery leading to gene regulation and integrin activation. Upon TCR/CD3 complex stimulation, activated Lck phosphorylates ITAMs of the
CD3 complex allowing recruitment and activation of ZAP-70. Active ZAP-70 phosphorylates the adapter proteins LAT and SLP-76, thus facilitating the formation of
the LAT signalosome (includes LAT, SLP-76, Gads, Grb2, PLCg1, ITK, ADAP, and SKAP1). ITK phosphorylates PLCg1 which subsequently hydrolyses PIP2 into
DAG and IP3. IP3 induces a signaling pathway for activation of the transcription factor NFAT into the nucleus whereas DAG activates two different transcription
factors, NFkB (via the CBM/ADAP complex) and AP1 (Ras/ERK1/2 pathway). Translocation of these transcription factors into the nucleus facilitates T-cell activation
and synthesis of IL-2 to support T-cell proliferation and differentiation. At the same time, two LFA-1-activating signaling complexe with the ADAP/SKAP1-modules as
core elements are recruited to the cytoplasmic tails of LFA-1 promoting its activation for ICAM-binding. One LFA-1-activating signaling complexe binds to the
cytoplasmatic domain of the LFA-1 a-chain (CD11a) chain consists of ADAP/SKAP1/RAPL/Rap1/Mst1 while the other complex is associated to the cytoplasmatic
domain of the LFA-1 b-chain (CD18) contains ADAP/SKAP1/RIAM/Mst1/Rap1 connecting Talin and Kindlin-3 to LFA-1 and F-actin.
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activation and T-cell proliferation. Crucial interaction partners
of the LAT signalosome include the cytosolic adapter proteins
ADAP (Adhesion and Degranulation-promoting Adapter
Protein) and SKAP1 (Src Kinase Associated Protein 1), the
tyrosine kinase ITK (interleukin T cell kinase), the guanine
nucleotide exchange factor Vav and phospholipase Cg1
(PLCg1). Activation of PLCg1 is of particular importance, since
upon TCR/CD3 stimulation, PLCg1 hydrolyzes the membrane
lipid PIP2 (phosphoinositole-4,5 bisphosphate) to generate IP3
(inositol-1,4,5-triphosphate) and DAG (diacylglycerol) (16).
These so called second messengers lead to the activation of
three transcription factors – NFAT (nuclear activated T cells),
NFkB (nuclear factor kappa light chain enhancer of activated B
cells) and AP1 (activator protein 1), which control T-cell
activation (like CD69 upregulation), IL-2 production/release
and T-cell proliferation (13–15) (Figure 1).

The second messenger IP3 activates IP3 receptors in the
membrane of the ER (endoplasmic reticulum) to induce
calcium efflux from the ER. The reduced calcium levels within
the ER promote conformational changes of STIM 1 and STIM 2
(stromal interaction molecules 1 and 2). Subsequently, STIM1/2
homodimers translocate to ER-plasma membrane junctions and
interact with ORAI1 (Calcium Release-Activated Calcium
Modulator 1). ORAI1 together with ORAI2 and ORAI3 form
CRAC (calcium release activated channels) at the plasma
membrane. The formation of the CRACs enables the entry of
extracellular calcium into the cytosol (17). Here, calcium
activates the serine phosphatase calcinuerin, which in turn
dephosphorylates NFAT allowing the translocation of this
transcription factor to the nucleus (18).

In contrast to IP3, the second messenger DAG activates the
serine kinase PKCq (protein kinase C theta) which
phosphorylates CARMA1 (CARD-containing MAGUK protein
1). Subsequently, and in concert with the cytosolic adapter
protein ADAP (see below), phosphorylated CARMA1 recruits
Bcl10 (B-cell CLL-lymphoma 10) and MALT1 (mucosa-
associated lymphoid tissue lymphoma translocation gene 1) to
assemble the CBM (CARMA1-Bcl10-MALT1) complex (19).
The CBM complex (20, 21) activates IkB kinase (IKK).
Subsequently, activated IKK phosphorylates IkBa (inhibitor
of kappa B) which induces release of IkBa from NFkB.
While phosphorylated IkBa becomes polyubiquitinated and
degraded in the proteasome, activated NFkB translocates to the
nucleus where it initiates transcription of NFkB target genes
(22) (Figure 1).

Finally, activation of the transcription factor AP1 depends on
the Ras-Raf-ERK pathway. Ras (rat sarcoma) is a small GTPase
that is activated by the guanine nucleotide exchange factors
RasGRP1 (Ras guanyl-releasing protein 1) and Sos (son of
sevenless) (23). Activated Ras binds and activates the serine
kinase Raf-1 (rat fibrosarcoma) at the plasma membrane.
Activated Raf-1 leads to phosphorylation and activation of the
dual specificity kinases ERK1 and 2 (extracellular signal-
regulated kinase) which then translocate to the nucleus where
they phosphorylate AP1. Activated AP1 controls the
transcription of different genes and drives together with NFkB
Frontiers in Immunology | www.frontiersin.org 3
CD69 expression, commonly used as a marker for T-cell
activation (13, 24).

Besides inducing the above described signaling events,
triggering of the TCR/CD3 activates integrins. Integrins are
heterodimeric transmembrane receptors consisting of one a
and one b chain. Each ab subunit contains an extracellular
domain, a transmembrane domain, and an unstructured
cytoplasmic tail (Figure 1). T cells express members of the b1-
chain containing VLA family (very late antigen; a4b1 (VLA-4,
CD49d/CD29), a5b1 and a6b1) and the b2-integrin LFA-1
(leukocyte function-associated antigen-1; aLb2 or CD11a/
CD18). Ligands for VLA-4 are VCAM-1 (vascular cell
adhesion molecule 1) and the matrix protein fibronectin (25).
Binding of VLA-4 to its ligands is required for T-cell adhesion to
the extracellular matrix and migration of T cells to sites of
inflammation (26, 27). The ligands of LFA-1 are ICAM-1-5
(intercellular adhesion molecule 1-5) (25, 28). Ligand binding
between LFA-1 and ICAM-1-5 is important for T cell adhesion
on endothelial cells of the high endothelial venules, migration of
T cells into peripheral lymph nodes and T-cell interaction with
APCs (29).

On resting T cells, LFA-1 exists in a closed conformation
(bend conformation) which possesses a very low affinity for its
ligand, ICAM-1. In this state, the extracellular, ligand-binding
headpiece bends down to the plasma membrane and the
cytoplasmic domains of the a- and b-chains of LFA-1 are in
close proximity to each other (Figure 1). Ligation of TCR/CD3
induces a conformational change in LFA-1 resulting in changes
in affinity and avidity for its ligands (see below). The high affinity
state of LFA-1 is characterized by an exposed/open headpiece
and separated cytoplasmic domains of the a- and b-chains
(Figure 1). Active LFA-1 also forms clusters at the cell surface.
This process has been termed avidity regulation and represents
another way to increase ligand binding and to strengthen the
interaction of activated T cells with APCs. The signaling
pathways leading to affinity/avidity modulation of LFA-1 have
collectively been termed “inside-out signaling” (25, 29–31).
Ligand bound LFA-1 transmits a signal into the cell that
participates in T-cell activation (e.g. CD69 and CD25
upregulation and IL-2 production), T-cell proliferation and T-
cell differentiation (e.g. Th1 cells) (31–34). This process is called
“outside-in signaling” (25, 29–31). Hence, ICAM-1-bound LFA-
1 acts as an accessory signal to enhance T-cell activation (35).
However, recent data suggested that affinity regulation of LFA-1
promotes T-cell activation whereas clustering of this integrin
terminates adhesion [(36), see below].

One negative regulator and several positive regulators and
have been reported to modulate TCR/CD3-induced LFA-1
activation. Filamin A has been described to serve as a negative
regulator for LFA-1 activation (37–39). Prior to T-cell activation
Filamin A interacts with the cytoplasmic tail of the LFA-1 b-
chain thereby keeping LFA-1 in an inactive conformation.
However, via an as yet unknown mechanism, stimulation of
the TCR/CD3 activates the serine/threonine kinase Ndr2
(nuclear Dbf2-related 2), which phosphorylates Filamin A at
serine (S) 2152 and induces its dissociation from the LFA-1
July 2021 | Volume 12 | Article 703534
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b-chain. The release of Filamin A from LFA-1 now allows
binding of positive regulators of LFA1-activation, e.g. Talin
and Kindlin-3 (see below) (37) (Figure 1).

In contrast to filamin A, loss of the FERM (4.1 Protein, Ezrin,
Radixin, Moesin)-domain containing proteins Talin and
Kindlin-3 interfere with TCR/CD3-mediated LFA-1 activation
(40–45). Talin and Kindlin-3 bind to distinct sites within the
cytoplasmic tail of the LFA-1 b-chain and stabilize its open
(active) conformation (46, 47).

Next to Talin and Kindlin-3, ADAP and SKAP1
constitutively interact with each other and form the ADAP/
SKAP1-module. The ADAP/SKAP1-module is the core
component for the assembly of two independent pools of LFA-
1-activating signaling complexes (48). Co-immunoprecipitation
studies had shown, that either the Rap1 effector proteins RIAM
(Rap1-GTP interacting adapter molecule) or RAPL (Regulator of
cell Adhesion and Polarization enriched in Lymphoid tissue)
constitutively associate with the ADAP/SKAP1-module via
binding to SKAP1 (49–51). Both RAPL and RIAM bind the
activated GTPase Rap1 (Ras-proximity-1) (52, 53). Loss of these
Rap1 effector proteins or of Rap1 in T cells attenuates TCR/CD3-
mediated LFA-1 activation (45, 53–56). Besides binding to
activated Rap1, RAPL interacts with the serin/threonine kinase
Mst1/2 (mammalian Ste20-like kinase 1/2) in T cells. Similar to
RAPL, Mst1/2 deficient T cells display reduced TCR/CD3-
mediated adhesion to ICAM-1 (55–57).

Two LFA-1-activating signaling complexes are recruited to
the plasma via interaction to the cytoplasmic domains of LFA-1.
One LFA-1-activating signaling complex contains the ADAP/
SKAP1/RAPL-module including Mst1 and binds via RAPL to
the a-chain (CD11a) of LFA-1 (Figure 1). In contrast, the
second LFA-1-activating signaling complex consists of the
ADAP/SKAP1/RIAM-module and is linked to Kindlin-3, Talin
as well as Mst1 and binds to the LFA-1 b-chain (CD18) [(48),
Figure 1]. In addition both Kindlin-3 and Talin possess binding
motifs for the interaction with filamentous (F)-actin [(58,
59) Figure 1].

It is important to note, that, in addition to plasma membrane
recruitment via binding to the cytoplasmic domains of LFA-1,
the two ADAP/SKAP1-modules are recruited to the
phosphorylated LAT signalosome via the Gads/SLP-76-
complex (60–62). Indeed, loss of SLP-76 in T cells attenuates
plasma membrane targeting of ADAP and SKAP1 and impairs
LFA-1 activation (62). In this review, we focus on recent findings
on the ADAP and SKAP adapter proteins for TCR/CD3-
mediated signaling events that regulate activation, proliferation
and integrin-mediated inside-out and outside-in signaling in
T cells.
ADAP

ADAP [alias SLAP-130 (SLP-76-associated protein of 130kDa
(60)], or FYB [Fyn-binding protein (63)] is expressed in
thymocytes, peripheral T cells and other hematopoietic cells
[for review please see (64)]. As depicted in Figure 2, ADAP
Frontiers in Immunology | www.frontiersin.org 4
possess a non-structured N-terminal region, a proline-rich
region (PRR), two helical SH3 (Src homology 3) domains, a
FPPPP-motif that mediates binding to members of the Ena
(Enabled)/VASP (Vasodilator-stimulated Phosphoprotein)
family and several tyrosine-based signaling motifs [for review
please see (65)]. Knockout and knockdown studies had shown
early on that ADAP is a positive regulator of T-cell development,
TCR/CD3-induced T-cell activation (CD69/CD25 upregulation),
IL-2 and IFN-g production, proliferation and LFA-1 affinity/
avidity regulation [for reviews please see (27, 64–67)].

Initial studies only investigated the pan T-cell population of
conventional ADAP-deficient mice (68, 69) and did not
distinguish between CD4+ and CD8+ T-cells. In contrast, a
recent study by Parzmair et al. focused on T-cell subset-specific
roles of ADAP revealing no differences in the expression levels of
ADAP protein between the two T-cell subsets in mice (70).
However, following TCR/CD3 stimulation, early activation and
proliferation of CD4+ T cells appear to be more dependent on
ADAP compared to CD8+ T cells. In addition, TCR/CD3-
induced adhesion to ICAM-1 seems to be controlled by ADAP
in the CD4+ but not in the CD8+ T-cell subset (70).

To analyze antigen-specific proliferation, conventional ADAP
knockout mice were crossed to OT-I and OT-II TCR transgenic
mice whose T cells recognize specific peptides of the model
antigen ovalbumin. Upon breeding of ADAP knockout mice
with OT-II mice, nearly no CD4+ T cells matured in the thymus
whereas ADAP-deficient OT-I TCR transgenic CD8+ T cells
showed normal T-cell maturation. Moreover, peripheral ADAP-
deficient OT-I TCR transgenic CD8+ T cells showed no defects
upon in vitro activation and proliferation in response to their
cognate antigen peptide. The authors concluded that ADAP is
critically involved in TCR/CD3 mediated signaling pathways for
CD4+ T-cell development, whereas CD8+ T-cell maturation and
functions are less dependent on ADAP (70). It is important to
note at this point that, in contrast to TCR/CD3-mediated signals,
ADAP appears to be required in both T-cell subpopulations to
propagate chemokine receptor mediated signals (70). However,
the molecular mechanisms, how ADAP regulates chemokine
receptor mediated pathways is still elusive.

ADAP and NFkB Activation
It is well established that ADAP is crucial for the assembly of the
CBM complex (20, 21). However, it has been shown that murine
ADAP-deficient CD4+ T cells do not display a complete defect in
TCR/CD3/CD28-induced NFkB activation (20, 21). This might
be due to the fact that TCR/CD3 and CD28 use two independent
pathways to activate NFkB in T cells (71, 72). Thus, TCR/CD3-
induced NFkB activation via the CBM complex formation is
ADAP-dependent, whereas CD28-mediated signaling activates
NFkB in an ADAP-independent fashion via Grb2 (growth factor
receptor-bound protein 2) and Vav1.

ADAP and SLP-76
Signaling via the TCR/CD3 complex depends on the formation
of the LAT signalosome whose core elements are LAT and SLP-
76. In imaging studies SLP-76 was visualized in structures
July 2021 | Volume 12 | Article 703534
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termed SLP-76 microclusters, which contain many other
signaling molecules/complexes. Defects in SLP-76 microcluster
persistence and movement correlate with attenuated proximal
TCR/CD3-mediated signaling events, including calcium release
and CD69 upregulation (73, 74). Previous studies had shown that
the C-terminal SH2 domain of SLP-76 is crucial for microcluster
formation, suggesting that this domain facilitates incorporation
of other signaling molecules/complexes into the microclusters
(73). Three tyrosine phosphorylation sites (Y595, Y651 and
Y771) in ADAP were identified that are involved in the
interaction with the SH2 domain of SLP-76 (61, 75, 76).
Mutations of either two (Y595 and Y651) or all three tyrosine
residues abrogated TCR/CD3-induced adhesion, interactions
with APCs and integrin clustering (avidity regulation) [(76–
78), see also Figure 1]. Coussens et al. provided experimental
evidence that phosphorylation of any combination of two of the
three tyrosine phosphorylation sites within ADAP facilitates
multipoint binding and thereby allows its oligomerization with
SLP-76. Hence, the formation and persistence of SLP-76
microclusters appears to depend on an interaction between
SLP-76 and the ADAP/SKAP1 signaling modules (51, 76).

The study by Coussens et al. was substantially extended by
detailed quantitative analysis of ADAP containing SLP-76
Frontiers in Immunology | www.frontiersin.org 5
microcluster movement and persistence (79). ADAP exists in
two isoforms: -the 120 kDa isoform is preferentially expressed in
the thymus, while the longer 130 kDa isoform predominates
in mature T cells (80). Lewis et al. provided evidence that
both isoforms of ADAP move to TCR/CD3-induced SLP-76
microclusters (79). In addition, the multivalent interactions
between tyrosine Y595 and Y651 of ADAP and the SH2
domain of SLP-76 were confirmed in this study (78). The
interaction between ADAP and SLP-76 stabilized the
phosphorylation of ADAP at Y595 as analyzed by Western
blotting using a phospho-Y595-specific antibody (79).
Surprisingly, deletion of the N-terminal region of ADAP
reduced the phosphorylation at Y595 and disrupted SLP-76
microcluster formation. Importantly, this ADAP deletion
mutant not only lacks the non-structured N-terminal region
but also the PRR motif. It is well established that this motif
mediates the constitutive interaction between ADAP and SKAP1
(please see Figure 2) and stabilizes SKAP1 protein expression
(70, 81, 82). Thus, it seems that the interaction between SKAP1
and ADAP is mandatory for ADAP phosphorylation at Y595
and SLP-76 microcluster formation. Indeed, Ophir et al. showed
that knockdown of SKAP1 expression attenuated SLP-76
microcluster formation independently of ADAP in T cells (51).
FIGURE 2 | Structure of ADAP, SKAP1 and SKAP2. Amino acid (aa) numbering is given for human ADAP (short isoform NP_955367.1), SKAP1 (NP_003717.3) and
SKAP2 (NP_003921). ADAP possesses an unstructured N-terminal region (containing the predicted stop codon at position 131 of CARST patients with a Fyb gene
defect), a proline rich region (PRR), two helical SH3 domains (hSH3), an Evl/VASP binding site (FPPPP), a NLS motif (binding site for Ubc9) and multiple tyrosine
motifs (Y). Amino acid 340-364 of the PRR of ADAP binds to W333 within the C-terminus Src homology domain (SH3) of SKAP1. Both SKAP proteins possess a
dimerization domain (DM), a Pleckstrin homology domain (PH) and a SH3 domain. SKAP1 contains three tyrosine motifs (red diamond), but SKAP2 possess only two
of these motifs. Both SKAP proteins contain three amino acids at position V24/F27/V28 for SKAP2 or A17/F20/L21 for SKAP1 in the DM domain, which are
important for dimerization. The amino acids R131/140 and K152 within the PH domain contribute to lipid and actin binding and are required for plasma membrane
targeting. The amino acids D120/129 are critical residues for the DM-PH auto-inhibition model (see Figure 3). The S31 in the dimerization domain is involved in cell
cycle regulation via PLK-1 binding. Other binding partners of individual amino acids and domains are depicted.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Dadwal et al. ADAP, SKAP1 and SKAP2
Microscopic analyses revealed a second pool of ADAP that is
not phosphorylated at Y595 and colocalizes with F-actin-rich
lamellipodia (79). Lewis et al. postulated that the association of
non-Y595-phosphorylated ADAP within lamellipodia pre-
positions ADAP to potential TCR/CD3/MHC/peptide contact
sites, thus enabling the rapid assembly of SLP-76 microcluster
nucleation and their transport to the center of the immunological
synapse after TCR/CD3 stimulation. In light of these data, the
authors suggested a revised model of TCR/CD3 signaling where
ADAP is not a simple downstream effector of SLP-76 but where
both molecules function in parallel pathways that i) intersect at
the level of SLP-76 microcluster formation and ii) promote TCR/
CD3-induced adhesion via the Y595 phosphorylated ADAP/
SKAP1-modul but is less important for the activation of
NFkB (79).

ADAP and Ubc9: A New Player for TCR/
CD3-Mediated LFA-1 Activation
ADAP was the first adapter protein identified that is involved in
TCR/CD3-induced inside-out and outside-in signaling events of
LFA-1 (27, 65–67). Recently, Ubc9, the small ubiquitin-related
modifier (SUMO) E2 conjugase was identified as an inducible
binding partner of ADAP (83). Sumoylation is a multistep
enzymatic process, which results in covalent attachment of
SUMO to a lysine based consensus sequence in proteins.
Amongst others, the biological function of sumoylation
includes transcriptional regulation, nuclear transport and DNA
repair (84). The multistep sumoylation process involves E1, E2,
and E3 enzymes. Ubc9 is the sole E2 conjugating enzyme and
depletion of Ubc9 leads to a blockade of the SUMO pathway in
various cellular systems. Ubc9 knockdown studies in Jurkat T
cells and in primary mouse T cells showed a reduced LFA-1
mediated adhesion to ICAM-1 upon TCR/CD3 stimulation (83).
Co-immunoprecipitation studies further revealed an indirect
interaction between Ubc9 and ADAP after TCR/CD3
stimulation (83). Using ADAP deletion mutants, the C-
terminal NLS (nuclear localization site) was identified as
binding site for Ubc9. This was the first description of a
biological function of the NLS motif within ADAP in T cells
(80). Mechanistically, downregulation of Ubc9 impaired TCR/
CD3-mediated Rac1 activation and plasma membrane targeting
of Rap1 and its effector protein RAPL Importantly, membrane
targeting of RIAM was not attenuated. Interestingly, knockdown
of Ubc9 had no impact on global tyrosine phosphorylation and
IL-2 promotor activity in response to TCR/CD3stimulation. The
authors concluded that Ubc9 is required for TCR/CD3-induced
activation of Rac1, membrane targeting of Rap1 and RAPL and
subsequent T-cell adhesion to ICAM-1. Further investigations
are needed to clarify if and how an ADAP mutant lacking the C-
terminal NLS for Ubc9 regulates plasma membrane recruitment
of activated Rap1 bound to RAPL independently of RIAM to
attenuate TCR/CD3-mediated adhesion to ICAM-1.

ADAP and the Actin Cytoskeleton
Microscopic analyses of ADAP showing its colocalization with
actin-rich lamellipodia structures [(79), see above] suggested that
Frontiers in Immunology | www.frontiersin.org 6
ADAP is also involved in remodeling of the actin cytoskeleton.
Two independent signaling complexes have been described that
link ADAP to processes facilitating actin-remodeling: the Nck-
WASP complex or the Ena/VASP complex (78, 85–88). Pauker
et al. proposed that the TCR/CD3-mediated interaction of Nck
(Non-catalytic region of tyrosine kinase) with ADAP facilitates
the association between SLP-76 and WASp (Wiskott-Aldrich
syndrome protein) (88). Numerous reports show that T cells
from WASp patients exhibit defective actin responses upon
TCR/CD3 triggering [for review please see (89, 90)]. Similar to
WASp deficient T cells, T cells lacking either ADAP or Nck
revealed a partial impairment of F-actin dynamics, whereas
knockdown of both ADAP and Nck showed severe defects in
F-actin polymerization and lamellipodia formation (88).

The FPPPP motif within ADAP represents the binding region
for proteins of the Ena/VASP family (Figure 2) (85). These
proteins are regulators of the actin cytoskeleton. They control F-
actin polymerization (91, 92) and reduce the length of F-actin
filaments within lamellipodia structures (93). VASP and/or Evl
(Ena-VASP-like) can associate with the ADAP/SKAP1-module
by either directly binding to ADAP (85) and/or indirectly via
RIAM (49, 53). Recently Estin and colleagues showed that T cells
from Evl/VASP double knockout mice showed attenuated
chemokine-mediated F-actin polymerization (94). Hence, it is
likely that Ena/VASP proteins contribute to ADAP-mediated
defects in F-actin polymerization and/or lamellipodia formation
in response to TCR/CD3 stimulation leading to an attenuated
LFA-1 activation and interaction of T cells with APCs.

ARAP an ADAP-Homologue?
In 2016, Jung and colleagues identified a novel adapter protein
termed ARAP (activation-dependent raft-recruited ADAP-like
phosphoprotein) (95). The ARAP cDNA encodes for a protein of
728 amino acids with a predicted molecular weight of 83 kDa.
ARAP shares sequence homology with ADAP: both proteins
possess the N-terminal proline-rich region, conserved tyrosine-
based signaling motifs and the N-terminal hSH3 domain. The
binding site for Ena/VASP proteins (FPPPP), the N-terminal
hSH3 domain and the putative nuclear localization sites (NLS)
are unique for ADAP, whereas only ARAP contains an internal
lysine-rich sequence. The mRNA of ARAP was found in various
lymphoid tissues and the endogenous protein is expressed in
Jurkat T cells. It was shown, that ARAP is required for TCR/
CD3-mediated proximal signaling such as PLCg1 activation and
Ca2+ release, T-cell adhesion to ICAM-1 but not for TCR/CD3-
mediated actin polymerization. In addition, interaction of ARAP
with SLP-76, SKAP1, Lck and Fyn was demonstrated (95). Since
confirmatory reports about ARAP are still missing, the biological
significance of ARAP in T cells remains elusive.
SKAP PROTEINS

The SKAP (Src Kinase-Associated Phosphoprotein) proteins
includes SKAP1 (66) [also termed SKAP55 (Src Kinase-
Associated Phosphoprotein of 55 kDa (96)] and its homolog
July 2021 | Volume 12 | Article 703534
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SKAP2 (97) [also referred as SKAP-HOM (SKAP55-homolog
(98)] or SKAP-55R [SKAP-55-related (99)]. Both proteins share
the same domain composition such as a DM (Dimerization)
domain, a PH (Pleckstrin Homology) domain and a C-terminal
SH3 (Src Homology 3) domain. They share 44% identity on the
protein level, mainly in their PH and SH3 domains (98, 99)
(Figure 2). Human SKAP1 contains three tyrosine-based
signaling motifs at amino acid position 219, 232 and 271 (51,
96) in the inter-domain, whereas human SKAP2 possess only
two motifs at amino acid 261 and 298 (98) (Figure 2).

SKAP1
SKAP1 is expressed in T lymphocytes (96, 100). The tryptophan
333 (W333) within the SH3 domain of SKAP1 interacts with the
PRR motif of ADAP [see above, (81, 101, 102)]. Marie-Cardine
and colleagues have shown that 70% of ADAP interacts with
SKAP1 and depletion experiments further revealed that there is
no free (=ADAP-unbound) SKAP1 protein present in T cells
(101). Several studies subsequently demonstrated that loss of
ADAP destabilizes SKAP1 leading to its degradation at the
protein level while the mRNA levels remain unaffected (70, 81,
82). However, it is still unknown how ADAP protects SKAP1
from degradation. Huang et al. demonstrated that the half-life of
SKAP1 drops from 90 minutes to 15 minutes in the absence of
ADAP (81). They further suggested that ADAP either stabilizes a
protease/caspase-resistant conformation of SKAP1 or that
ADAP targets SKAP1 to subcellular compartments, which are
less accessible to the proteases/caspase machinery (81). In
summary, ADAP and SKAP1 form a functional unit and are
here referred to as the ADAP/SKAP1-module. Knockout and
knockdown studies of SKAP1 in T cells revealed that this adapter
protein is involved in different TCR/CD3-mediated signaling
pathways that regulate proliferation, IL-2 and IFN-g production
and LFA-1 avidity/affinity (27, 66, 67).

SKAP1 and SLP-76 Microclusters
Microscopic studies revealed that the ADAP/SKAP1-module is
recruited into SLP-76 microclusters (51). Similar to ADAP-
deficient Jurkat T cells, loss of SKAP1 attenuated SLP-76
microcluster persistence and movement (51). In this context
SLP-76 microcluster stabilization was not affected upon
mutation of the three tyrosine-based signaling motifs to
phenylalanine within the inter-domain or deletion of the PH
domain of SKAP1, but rather was dependent on the SH3 domain
(the binding site for ADAP) and the DM domain (the binding
site for RAPL or RIAM see Figure 2) within SKAP1. Deletion of
the SH3- or the DM-domains within SKAP1 not only impaired
SLP-76 cluster formation but also attenuated T-cell adhesion to
fibronectin/ICAM-1 and interaction of T cells with APCs
(49–51).

SKAP1 and Inside-Out/Outside-Signaling of LFA-1
The DM domain enables SKAP1 or SKAP2 homodimer
formation (103, 104). Upon mutation of the three amino acids
valine 24, phenylalanine 27 and valine 28 within the dimerization
interface (V24/F27/V28), mutant SKAP2 failed to dimerize with
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wild type SKAP2. These three amino acids within the DM
domain of SKAP2 correspond to alanine 17, phenylalanine 20,
lysine 21 (A17/F20/L21) in the DM domain of SKAP1
(Figure 2). Similar to SKAP2, mutation of A17, F20 and L21
attenuated dimer formation of SKAP1. Surprisingly however,
attenuated SKAP1 dimer formation did not interfere but rather
enhanced RAPL binding. A possible explanation might be that
dimerization limits SKAP1 binding to RAPL (or probably to
RIAM). However, functional consequences of these mutations
for TCR/CD3-mediated LFA-1 activation could not be analyzed
due to low expression levels of the mutated protein in T
cells (104).

As depicted in Figure 2, SKAP1 exhibits a central PH
domain. PH domains are known to mediate protein/protein or
protein/lipid [phosphatidylinositol (PI)] interactions that
facilitate membrane targeting of signaling protein, including
the SKAP proteins (105). We showed that the isolated PH
domain of SKAP1 binds PIP3 [a lipid product generated by the
PI3 (phosphatidylinositol-3) kinase (PI3K)] in vitro (106). Three
amino acids, lysine 116 (K116), arginine 131 [R131,
corresponding to R140 in SKAP2 (103)] and K152 were
identified to be required for PIP3 binding in vitro. Localization
studies in Jurkat and primary human T cells further revealed a
constitutively associated plasma membrane targeting of the
isolated PH domain of SKAP1. Surprisingly however, the
constitutive membrane targeting of the PH domain was not
affected following inhibition of PI3K by wortmannin or
Ly294002 indicating that PIP3 localized at the plasma
membrane is not required for membrane targeting.
Surprisingly mutation of K152 within the PH domain to
glutamic acid (K152E) completely interfered with plasma
membrane targeting (106). Besides lipid-binding to PH
domains, positively charged amino acids within these domains
interact with actin as described for the PH domain of Btk
(bruton’s tyrosine kinase) (107). Indeed, immunoprecipitation
studies showed that the isolated PH domain of SKAP1 interacts
with actin, whereas the K152E mutant failed to do so. This
suggests that the isolated PH domain is targeted to the plasma
membrane by a K152-mediated interaction with actin. However,
co-sedimentation and co-precipitation assays using purified G
(globular)- and F-actin revealed that the recombinant PH
domain does not directly interact with actin (106). Therefore,
identification of protein(s) that link the isolated PH domain of
SKAP1 to actin requires further investigation. Possible
candidates are the three members of the ezrin/radixin/moesin
(ERM) family. In resting T cells, these proteins are located at the
plasma membrane and are additionally linked to F-actin (108).

The functional relevance of the PH domain of SKAP1 for
TCR/CD3-induced LFA-1 activation is controversially discussed
in the literature (51, 82, 106, 109, 110). Burbach et al. and Raab
et al. showed that deletion of the PH domain or mutation of R131
within the PH domain of SKAP55 impairs adhesion and
conjugate formation of T cells with APCs (109, 110). In
contrast, two other studies showed that neither deletion of the
PH domain within full-length SKAP55 nor overexpression of the
isolated PH domain of SKAP55 alters TCR/CD3-mediated
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adhesion (51, 82). However, mutation of K152E within full-
length SKAP1 attenuated TCR/CD3-induced LFA-1 activation,
adhesion and interaction of T cells with APCs. Of note, the defect
in LFA-1 activation mediated by the K152E mutant was not due
to impaired plasma membrane targeting of SKAP1 via the
inducible interaction of ADAP with SLP-76 but rather on an
attenuated assembly of RAPL to the a-chain and Talin/RIAM
binding to the b-chain of LFA-1 (106). Why a single point
mutation like K152E within the PH domain of full-length SKAP1
produces such a functional defect for TCR/CD3-mediated LFA-1
activation, whereas a deletion of the whole PH domain of
SKAP55 does not alter integrin functions remains to be an
unanswered question (106). No significant differences in the
composition of the LFA-1-associated signaling molecules
between full-length SKAP1 and deletion of the PH domain in
SKAP1 expressing Jurkat T cells were observed in response to
TCR/CD3 triggering (106). However, currently there is no model
that would explain this contradicting and previously reported
results that have been obtained by using deletion mutants of the
PH domain versus a single point mutation (51, 82, 106).

In contrast to the constitutive plasma membrane localization
of the isolated PH domain, full-length wild type SKAP1 primarily
localizes in the cytosol in resting T cells (106) and only
translocates to the plasma membrane upon T cell activation.
Based on these observations it was proposed, that SKAP1 exists in
two functional and conformational states: a closed, DM-PH auto-
inhibited conformation that is located in the cytosol and an open
conformation that localizes at the plasma membrane. That the
DM and PH domains induce an auto-inhibited conformation was
first shown for SKAP2 (103). Here, crystal structure analyses
demonstrated that the isolated PH domain of SKAP2 (binds PIP3)
has a different conformation compared to the PH domain within
a DM-PH fragment. Within the DM-PH fragment, the b1-b2
loop of the PH domain adopts an open loop conformation and
rearranges itself to a short helix that packs into a hydrophobic
groove within the DM domain. The interaction of the PH domain
of SKAP2 with the DM domain is predicted to represent an
inhibited conformation that hinders binding to PIP3 (103). The
aspartic acid at position 129 (D129) in SKAP2 (103) was
identified to be responsible to mediate the closed DM-PH
conformation. Indeed, mutating D129 to lysine (D129K) in
SKAP2 induced a constitutive localization of the full-length
protein to actin-rich membrane ruffles in macrophages (103).
D129 of SKAP2 corresponds to D120 in SKAP1 (both localized
within the PH domain; Figure 2) and, similar to the mutation
D129K in SKAP2, mutation of D120K in SKAP1 resulted in
constitutive membrane localization of full-length SKAP1 and
induced a constitutive active state of LFA-1 in resting T cells
(106). Importantly, these functional effects were abolished when
an additional K152E mutation was introduced. Of note, in
contrast to the D120K single mutant, the D120K/K152E double
mutant was no longer able to interact with Talin, LFA-1 and
actin. Consequently, it was proposed that an intra-molecular
switch mechanism dynamically modifies the interaction of the
N-terminal DM domain with the PH domain and enables the
released PH domain of SKAP1 to localize to the plasma
Frontiers in Immunology | www.frontiersin.org 8
membrane and to initiate LFA-1 signaling events (Figure 3).
These findings could bring SKAP1 in touch with RIAM and
Talin, which are regulated in an auto-inhibitory manner for the
TCR/CD3 -induced LFA-1 machinery (111, 112) and other
adhesion-regulating molecules in various cell types (113).

Outside-in signaling of LFA-1 acts as a co-stimulatory signal
for T-cell activation and differentiation (35). In the literature it
was shown that the cytosolic adapter proteins SLP-76 and ADAP
are also involved in LFA-1-mediated signaling events, indicating
that the TCR/CD3 and LFA-1 use the two adapter proteins to
initiate different signaling pathways (114–116). In this regard,
Raab et al. recently showed that LFA-1 mediates both adhesion
upon affinity induction and de-adhesion upon avidity regulation
(clustering of LFA-1) (36). Cross-linking of LFA-1 (clustering)
induced the phosphorylation of LAT on Y171 by members of the
focal adhesion kinase family FAK-1 (Focal Adhesion Kinase-1)
and PYK-1 (proline-rich tyrosine kinase-1). Phosphorylated
Y171 acts as the binding site for a complex consisting of Grb2
and SKAP1 (and probably ADAP) (36). The SH3 domain of
Grb2 was shown to interact with the inter-domain of SKAP1
(Figure 2), although the binding motif or the involved amino
acids were not identified. The LAT/Grb2/SKAP1 complex
appears to be distinct from the LAT/Gads (Grb2-related
adapter downstream of Shc)/SLP-76 complex, which is
required for TCR/CD3-induced calcium release, CD69
upregulation and LFA-1 activation (117). It was proposed that
LFA-1 affinity regulation mediated contact/adhesion with APCs
is followed by clustering of LFA-1 that subsequently terminates
adhesion. The termination of adhesion by LFA-1 is mediated via
activation of FAK-1, which phosphorylates LAT at Y171 and
thus re-structures the LAT-signalosome (LAT/Grb2/SKAP1
complex) in T cells. Hence, the model proposes that LFA-1 is
an “auto-regulatory on-off” receptor that can mediate adhesion
and de-adhesion dependent on affinity versus avidity regulation
of LFA-1 (36). However, until now, dynamic data are missing
which would show a time dependent exchange of the LAT-
associated Gads/SLP-76/ADAP-complex (mediated by TCR-
activated ZAP-70) with a SLP-76-independent Grb2/SKAP1/
ADAP-complex (induced by LFA-1 mediated activation of
FAK-1).

SKAP1 and Cell Cycle Progression
SKAP1 is not only involved in TCR/CD3-induced LFA-1
activation, but also regulates T cell proliferation (118). In the
study of Liu et al. it was stated, but not shown that SKAP1 and
ADAP are localized in the nucleus of T cells (99). However, this
observation prompted Raab and colleagues to test an array of
kinases that are involved in proliferation for their ability to
phosphorylate SKAP1 in vitro. The authors identified SKAP1 as
substrate for the serin/threonine kinase PLK-1 (polo-like kinase-
1) (119). PLK-1 is not expressed in resting but in proliferating T
cells (120) where it regulates multiple stages of mitosis and cell
cycle progression (121). PLK-1 phosphorylates serine 31 (S31)
within the N-terminal dimerization domain of SKAP1.
The interaction of SKAP1 with PLK-1 is needed for PLK-1
kinase activity to promote optimal cell cycling and growth of
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T cells (119). It seems that the SKAP1/PLK-1 complex is not
needed for early T-cell activation events when LFA-1 activation
takes place but rather participates in late signaling events when
proliferation and DNA replication occurs in the nucleus. Of note,
a similar multi-functional role at different subcellular locations
has been described for SLP-76, which regulates TCR/CD3
proximal signaling pathways required for calcium mobilization
or binding to RanGAP1 (Ran GTPase activating protein 1) to
promote the transport of transcription factors into the nucleus of
T cells (122).

SKAP2
In contrast to SKAP1, SKAP2 is ubiquitously expressed, including
T and B lymphocytes (98, 100). Similar to SKAP1, the SH3
domain of SKAP2 binds to ADAP and this interaction is
essential for stable SKAP2 protein expression in T cells (82, 99).
The role of SKAP2 has been studied using SKAP2-deficient mice
(100). The expression levels of SKAP1 and ADAP are comparable
in SKAP2-deficient and wild type T cells, indicating that SKAP2
does not interfere with SKAP1 stability. SKAP2-deficient B cells,
which do not express SKAP1, showed reduced B cell receptor
(BCR)-mediated proliferation and defective LFA-1 mediated
adhesion or cluster formation (100). Strikingly, mature B cells
do not express ADAP (100, 123) indicating that in wild type B cells
another interaction partner stabilizes SKAP2 expression. One
possible candidate could be RIAM that possesses two PRR
regions and is also mandatory for BCR-mediated LFA activation
(54). In contrast to B cells, SKAP2 knockout mice display no T-cell
defects (100). The unaffected function of SKAP2 knockout T
Frontiers in Immunology | www.frontiersin.org 9
cells might be due to the ability of SKAP1, which is expressed in
T cells but not in B cells, to compensate for the loss of SKAP2.
Studies investigating the ability of SKAP2 to compensate for
SKAP1 in T cells are controversial (51, 124). Thus, one study
showed that knockdown of SKAP1 leads to attenuated LFA-1
clustering and impaired interaction of T cells with APCs that
could not be reconstituted by expression of SKAP2 (124). In
contrast, a second study by Ophir and colleagues revealed that
when expressed at comparable levels, SKAP2 is able to rescue
SLP-76 microcluster dynamics and T-cell adhesion to fibronectin
in SKAP1 deficient cells (51). However, similar (but not as
pronounced) as for ADAP-deficient mice, SKAP1-deficient T
cells show attenuated proliferation, impaired IL-2/IFN-g
production and LFA-1 adhesion upon TCR/CD3 complex-
stimulation (118). Hence, it would be interesting to find out,
whether SKAP1/SKAP2 double knockout mice display
comparable T-cell defects as reported for ADAP-deficient animals.
CONCLUSION AND OUTLOOK

The three adapter proteins ADAP, SKAP1 and SKAP2 play
crucial roles in the organization of different signalosomes at
different subcellular locations and time points to regulate TCR/
CD3-mediated signaling events for LFA-1 activation/
deactivation and proliferation.

The core elements of the LAT signalosome are LAT and SLP-
76. Genetic defects for LAT and more recently for SLP-76 in
humans have been reported to cause severe immunodeficiencies
FIGURE 3 | Auto-inhibition model of SKAP1 that controls targeting of SKAP1 to the plasma membrane. In resting T cells, SKAP1 is in a closed (auto-inhibited)
conformation where aspartic acid 120 (D120; depicted in black) within PH domain mediates an interaction with the DM domain (DM-PH). In this conformation,
SKAP1 is localized in the cytoplasm and is constitutively associated with ADAP, RAPL and RIAM. In TCR/CD3 -stimulated T cells, the DM-PH interaction is released
by an unknown mechanism to stabilize the open (active) conformation, which enables recruitment of the constitutive interaction partners (ADAP, RAPL and RIAM) of
SKAP1 to the plasma membrane. The now accessible lysine 152 (K152) within in the PH domain of SKAP1 inducible interacts with actin and promotes Rap1/Talin
binding to RIAM and to LFA-1. Under these conditions LFA-1 is in an open conformation to facilitate adhesion.
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and defective T-cell signaling (125, 126). A recent study by Levin
et al. identified a homozygous mutation in the human FYB gene
(that encodes ADAP). Importantly, and similar to ADAP-
deficient mice, none of these patients developed primary
immune defects or showed signs of unusual infections but all
of them displayed small-platelet thrombocytopenia and an
increased bleeding tendency (69, 127, 128). A c.393G>A
mutation was detected that leads to the introduction of a stop
codon (TGA) instead of tryptophan (TGG) at position 131 of the
ADAP amino acid sequence [(128), Figure 2]. The introduction
of this stop codon would interfere with all described functions of
ADAP (SKAP1/2 expression, inducible interaction with SLP-76,
LFA-1 activation and proliferation) in resting or stimulated T
cells. Investigation of these patients’ lymphocytes would be
helpful to address whether similar ADAP-dependent T-cell
defects reported in mice exits in human T cells of these patients.

Several studies have used conventional ADAP-knockout mice
to investigate the contribution of this adapter protein for infection
(Listeria monocytogenes and H5N1 influenza virus) and diseases
models [anti-tumor response, allogenic grafting and experimental
autoimmune encephalomyelitis (EAE)]. T cells are essential for
adaptive immune responses against pathogens and tumors and
are involved in the immunopathogenesis of autoimmune diseases.
However, besides its critical role in T cells, ADAP is expressed in a
variety of immune cells of the innate immune system and in these
cell types loss of ADAP interferes with various functions [for
review see (64)]. Engelmann et al. had previously demonstrated
that conventional ADAP knockout mice show strongly
attenuated EAE (129). This was shown for active EAE as well
as for passive EAE after adoptive transfer of activated TCR
transgenic T cells specific for the MOG35-55 peptide (myelin
oligodendrocyte glycoprotein-MOG) (129). In this disease model,
myelin-specific CD4+ T cells are activated and expand in the
peripheral lymphoid tissue; they cross the blood-brain barrier and
enter the CNS. The inflammatory response leads to the
recruitment of other immune cells including monocytes,
macrophages, dendritic cells, B cells, and NK cells (130, 131).
The invading monocytes, macrophages and dendritic cells
express high amounts of MHC-II molecules and are involved in
antigen presentation and reactivation of T cells within the CNS.
In addition, resident microglia, monocytes and macrophages
secrete pro- as well as anti-inflammatory cytokines depending
on their environment and, furthermore, produce reactive oxygen
species and nitric oxid (132). The inflammatory process leads to
Frontiers in Immunology | www.frontiersin.org 10
demyelination and axonal damage. All above-mentioned
hematopoietic cells - T cells, NK cells, myeloid cells and
platelets - express ADAP [for review see (64)]. Hence, analysis
of conventional ADAP knockout mice cannot answer the
question, which cell population contributes to the lower EAE
severity in ADAP-deficient mice. To dissect the role of ADAP in
different immune cell types during EAE, cell type specific ADAP-
knockout mice were generated. ADAP was deleted in T cells,
myeloid cells, NK cells and platelets using Cre recombinase under
control of lineage specific promoters (133, 134). Afterwards,
active EAE was induced in these animals by immunization with
the MOG35-55 peptide. The clinical course of EAE was
significantly milder in mice with loss of ADAP in T cells,
myeloid cells and NK cells compared to ADAP-sufficient
control littermates (133). Surprisingly, specific deletion of
ADAP in platelets resulted in a more exacerbated disease (134).
These findings indicate that in conventional ADAP knockout
mice T cell-dependent and T cell-independent mechanisms are
involved in the resistance to EAE.
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