
Frontiers in Immunology | www.frontiersin.

Edited by:
Guido Moll,
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Complement impacts innate and adaptive immunity. Using a model in which the human
KEL glycoprotein is expressed on murine red blood cells (RBCs), we have shown that
polyclonal immunoprophylaxis (KELIg) prevents alloimmunization to transfused RBCs
when a recipient is in their baseline state of heath but with immunoprophylaxis failure
occurring in the presence of a viral-like stimulus. As complement can be detected on
antibody coated KEL RBCs following transfusion, we hypothesized that recipient
complement synergizes with viral-like inflammation to reduce immunoprophylaxis
efficacy. Indeed, we found recipient C3 and C1q were critical to immunoprophylaxis
failure in the setting of a viral-like stimulus, with no anti-KEL IgG alloantibodies generated in
C3-/- or C1q-/- mice following KELIg treatment and KEL RBC transfusion. Differences in
RBC uptake were noted in mice lacking C3, with lower consumption by splenic and
peripheral blood inflammatory monocytes. Finally, no alloantibodies were detected in the
setting of a viral-like stimulus following KELIg treatment and KEL RBC transfusion in mice
lacking complement receptors (CR1/2-/-), narrowing key cells for immunoprophylaxis
failure to those expressing these complement receptors. In-vitro studies showed
complement fixed opsonized RBCs were significantly less likely to bind to B-cells from
CR1/2-/- than wild type mice, potentially implicating lowered B-cell activation threshold in
the presence of complement as being responsible for these findings. We thus propose a
two-hit model for inflammation-induced immunoprophylaxis failure, where the first “hit” is
recipient inflammation and the second “hit” is complement production/sensing. These
results may have translational relevance to antigen-antibody interactions in humans.
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INTRODUCTION

Alloimmunization to red blood cells (RBCs) can be significant in
transfusion, transplantation, and pregnancy settings. Polyclonal
anti-D (RhIg) immunoprophylaxis has been used for over half a
century as an effective preventive measure for alloimmunization
to RBCs expressing the RhD antigen in pregnancy (1). Immune
regulation by antibody-antigen interactions is well known in
different immunological settings; however, the mechanism(s) by
which RhIg works remains controversial. Further, it is not
understood why breakthrough anti-D cases occur even when
RhIg is administered properly.

We have previously described a murine model in which
polyclonal anti-KEL (KELIg) immunoprophylaxis prevents
alloimmunization to transfused RBCs expressing the human KEL
glycoprotein when administered to recipient mice in their baseline
state of heath (2). However, immunoprophylaxis fails in the setting
of viral-like inflammation with poly (I:C) (3). We further showed
that although type 1 interferon (IFNa/b) generation and sensing is
sufficient to lead to immunoprophylaxis failure, it is not required
(3). As such, the mechanism(s) leading to this breakthrough
alloimmunization are only partially understood.

Complement plays a fundamental role in regulating immune
responses, and we have previously reported that anti-KEL
antibodies activate complement upon binding to KEL RBCs.
Accordingly, we hypothesized that complement activation is
involved in immunoprophylaxis failure and here we report that
complement is required for immunoprophylaxis failure in the
setting of poly (I:C). Complement receptors are likewise
required, supporting a model of C3 opsonization of antibody
bound RBCs that directly impacts immunoprophylaxis and its
failure. These findings elucidate new and undescribed
mechanistic details of antigen-antibody interactions.
METHODS

Mice
C57BL/6NCrl (B6) mice (strain code 027) were purchased from
Charles River (Wilmington, MA). Complement C3 knockout,
B6;129S4-C3/J(stock#003641) (C3-/-), C1qa knockout, B6(Cg)-
C1qatm1d(EUCOMM)Wtsi/TennJ (stock #: 031675 (C1q-/-),
and CR1/2 knockout, B6.129S7(NOD)-Cr2tm1Hmo/J (Stock
#008225) (CR1/2-/-) mice were purchased from Jackson (Bar
Harbor, ME). Transgenic mice expressing the entire human KEL
glycoprotein were previously generated; the mice used for these
experiments have been previously described as “KEL2B” and
express the KEL2 antigen in addition to the Jsb antigen, the Kpb

antigen, and other antigens in the KEL family on their RBCs (4).
In this study they are referred to as “KEL” mice as the protein
being studied includes the entire human KEL glycoprotein. All
mice were housed in Yale University’s animal facilities. All mice
were 8-12 weeks of age and had a history of being backcrossed to
the C57BL/6 background for at least 8 generations. All
procedures and protocols were approved by Yale University’s
Institutional Care and Use Committee.
Frontiers in Immunology | www.frontiersin.org 2
KELIg Generation, Immunization,
and Other Mouse Treatments
Polyclonal KELIg antisera was generated as previously described
(2), by transfusing transgenic murine KEL RBCs into B6 recipients
pre-treated with an intraperitoneal injection of 100 mg of high
molecular weight poly (I:C) (Invivogen, San Diego, CA) a total of 3
times, separated by two weeks between each transfusion. Pooled
sera collected 2-4 weeks after the final transfusion was tested for
KEL binding ability by flow crossmatch with KEL or control B6
RBCs as targets; all IgG subtypes are represented (2). Following dose
titration experiments, recipient mice were passively transferred with
enough KELIg to lead to maximal RBC clearance (approximately 15
µL per experiment). In some experiments, poly (I:C) was
administered approximately 3 hours prior to RBC transfusion.

Blood Collection, Labeling,
and Transfusion
Donor KEL or wild type B6 RBCs were collected into anticoagulant
preservative solution (CPDA, citrate phosphorus dextrose adenine,
Jorgensen Labs, Henry Schein, Melville, NY), leukoreduced over a
syringe filter (Pall Corporation, Port Washington, NY), and washed
to remove residual citrate. Prior to transfusion in some experiments,
B6 RBCs were labeled with chloromethylbenzamido 1,1’-
dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate
(CM-DiI) and KEL RBCs were labeled with 3,3’-dihexad
ecyloxacarbocyanine perchlorate (DiO) according to the
manufacturer’s instructions (Molecular Probes, Eugene, OR) and
as previously described (5). Recipient mice were transfused via
lateral tail with 50 µL of KEL RBCs (in addition to control wild type
RBCs in RBC recovery experiments). Survival of the transfused
RBCs was determined by calculating the ratio of circulating DiO to
DiI RBCs in recipients at select time points post-transfusion.

Flow Cytometry
Sera was collected at multiple time points and anti-KEL IgG
responses were measured using a flow cytometric crossmatch
assay with antigen positive (KEL) or antigen negative (B6) RBC
targets. The secondary antibody was goat anti-mouse IgG
(Jackson Immunoresearch, West Grove, PA). The antigen
specific response [adjusted mean fluorescence intensity (MFI)]
was determined by subtracting the signal of serum with antigen
negative B6 RBCs from that of serum with antigen positive RBCs.
In experiments involving KELIg, the D0 timepoint was
normalized to a fluorescence intensity of 1000 and a similar
normalization was completed for the other timepoints.
Transfused RBCs were analyzed for the KEL antigen by
incubating with KELIg followed by anti-mouse IgG.

Following transfusion of KEL RBCs, complement was
evaluated on the visualized RBC surface using antibodies
against C3 (Cl7503B, Cedarlane, Ontario, Canada), C4 (clone
16D2, Santa Cruz), or Factor B (CL8824AP, Cedarlane, Ontario,
Canada) followed by streptavidin or a fluorescently conjugated
donkey anti-rabbit antibody (BioLegend, San Diego, California).

In other experiments, splenic cell subsets were evaluated
following the transfusion of labeled RBCs. Spleens were
harvested into ice-cooled RPMI 1640 media, finely minced
June 2021 | Volume 12 | Article 704072
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with a razorblade, and processed into single-cell suspensions by
passing the samples through a 70 µm nylon cell strainer and
collecting them on ice-cold FACS buffer (DPBS Modified, 0.2%
BSA, 0.5 M EDTA). RBCs were lysed with ammonium chloride
and splenocytes were treated with Fc block (anti-mouse CD16/
CD32; BD Biosciences, San Jose, CA) followed by incubation with
cell surface antibodies. Antibodies against CD19 (clone 6D5),
TCRb (clone H57-597), CD11b (clone M1/70), CD11c (clone
N418), CD8a (clone 53-6.7), F4/80 (clone BM8), CD115 (CSF-1R,
clone AFS98), Ly-6G/Ly-6C (GR-1, clone RB6-8C5), and PDCA-1
(CD137, BST2, clone 927) were purchased from BioLegend (San
Diego, CA). Anti-TER119 (clone TER119) was purchased from
Invitrogen (Thermo Fisher Scientific Carlsbad, CA). Zombie
Violet viability dye was purchased from BioLegend. For the in-
vitro experiments involving peripheral blood WBCs, antibodies
used also included CD19 (clone 6D5), B220 (clone RA3-6B2),
CD21/35(clone 7E9), and CD23 (clone B3B4). Samples were
analyzed on a BD LSR II cytometer, BD FACSCalibur, Miltenyi
MACSQuant, or Beckman coulter CytoFlex S.

In-Vitro Experiments
In-vitro RBC experiments were completed by incubating KEL
RBCs with KELIg, followed by the addition of serum, serum
treated with EDTA, or serum treated with EGTA-Mg (Millipore
Sigma); the serum was freshly collected from wild type mice and
kept on ice until the addition of KEL RBCs. KELIg was diluted in
GVB buffer with Mg and Ca (Complement Technology) and the
cells were washed in GVB buffer without Ca or Mg. Other
in-vitro experiments involved incubating KEL RBCs (or wild
type RBCs) with or without KELIg, following by incubation with
sera or no sera, followed by incubation with peripheral blood
WBCs from wild type mice or CR1/2-/- mice, followed by
staining for flow cytometric evaluation.

Statistics and Images
All statistical analysis was performed using Graph Pad Prism
software (San Diego, CA). A Mann Whitney U test was used to
determine significant differences between two groups, and
ANOVA with Tukey’s multiple comparisons test was completed
in relevant experiments. Error bars represent one standard
deviation, and significance was determined by a p-value less
than 0.05. The visual abstract was created using BioRender.com.

Data Sharing Statement
For original data, please contact jeanne.hendrickson@yale.edu.
RESULTS

Complement Is Fixed on KEL RBCs
In-Vivo and In-Vitro in Response to
Polyclonal Anti-KEL (KELIg)
To evaluate the role of complement in immunoprophylaxis
failure, we first tested whether passively transferred anti-KEL
IgG (KELIg) leads to fixation by different complement
components. Following KELIg infusion, KEL RBCs labeled
with a lipophilic dye were transfused and RBCs recovered one
Frontiers in Immunology | www.frontiersin.org 3
hour later were evaluated for bound complement proteins
(Figure 1A shows the experimental design). Complement C3,
C4, and Factor Bb were detected bound to the recovered DiO
labeled KEL RBCs in mice treated with KELIg, but not in control
mice treated with saline (Figure 1B).

To determine which complement pathway was responsible, in-
vitro experiments were completed. KEL RBCs were incubated with
or without KELIg. After washing away unbound KELIg, KEL
RBCs were incubated with serum from wild type mice and RBC-
bound complement C3, C4, and Factor Bb were measured. Similar
to results from in-vivo experiments, C3 was readily detected bound
to KEL RBCs in the condition involving KELIg and serum; C4 and
Bb were more difficult to detect (Figure 1C). No complement was
detected in KEL RBCs with serum or KEL RBCs with KELIg
without serum control samples (Figure 1C). Other conditions
included serum treated with EDTA (which blocks complement) or
serum treated with EGTA and magnesium (which blocks the
classical pathway of complement). Very little C3 could be detected
under either of these conditions (Figure 1D), indicating the
classical (antibody-mediated) complement pathway is most
likely responsible for the RBC bound complement.

Recipient Complement Is Required
for KELIg Immunoprophylaxis Failure
in Mice Treated With Poly (I:C)
Since we observed that KELIg fixes complement (Figure 1),
we tested the role of complement in the efficacy of
immunoprophylaxis for recipients in their baseline state of health
and following inflammation induced by poly (I:C). We found that
immunoprophylaxis efficacy of KELIg when recipients are in their
baseline state of health is not dependent on complement fixation, as
KELIg remained as effective at preventing active anti-KEL formation
in transfusion recipients lacking C3 as in wild type recipients (6)
(Figures 2A,B).As shown inprior studies (2), theday 0 timepoint in
Figure 2B and other figures involving KELIg is a measure of passive
anti-KEL detected following KELIg administration; the day 14 time
point represents a mixture of passively administered KELIg and
actively formed anti-KEL, and by day 28 much of the passively
administered KELIg is gone. However, in contrast to what we
observed in wild type mice, poly (I:C) administration to C3-/-

recipients did not lead to immunoprophylaxis failure (Figure 2C).
This failure was likewise prevented in mice lacking C1q, which is
upstream of C3 in the classical pathway of complement activation
(Figure 2D) – suggesting that the classical pathway is required. Loss
of poly (I:C) immunoprophylaxis failure was not due to an
elimination of general poly (I:C) responsiveness in C3-/- or C1q-/-

mice, as poly (I:C) induced a significant increase of anti-KEL IgG in
response to KEL RBC transfusion in both strains (in the absence of
pretreatment with KELIg) (Figure 2E).

Recipient Complement Does Not
Significantly Impact KEL RBC Clearance
After KELIg in the Presence of Poly (I:C)
Given that immunoprophylaxis failure occurred in wild type mice
but not in C3-/- or C1q-/- mice, we investigated the role of
complement in clearance rates of transfused KEL RBCs.
Following passive administration of KELIg and treatment with
June 2021 | Volume 12 | Article 704072
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poly (I:C), recipient mice (wild type, C3-/-, and C1q-/-) were
transfused with DiO labeled KEL RBCs mixed with DiI labeled
wild type RBCs. Blood was taken from recipient mice at 10
minutes, 1 hour, and 24 hours post-transfusion and the ratio of
DiO KEL RBCs to DiI wild type RBCs was evaluated. As we have
observed when KELIg is administered in the absence of
inflammation (6), C3-/- mice had slightly delayed RBC clearance
compared with wild type mice in the presence of inflammation
(Figure 3A), with C1q-/- mice having similar clearance patterns
compared with wild type mice (Figure 3B); Supplemental
Figure 1 shows C3-/- and C1q-/- recipient RBC clearance
following KELIg in the absence of poly (I:C).

The recovered DiO labeled KEL RBCs were then evaluated for
the presence of the KEL glycoprotein antigen by incubating the
Frontiers in Immunology | www.frontiersin.org 4
recovered cells with anti-KEL antibody followed by fluorescently
labeled mouse IgG. As previously shown, KEL antigen expression
on RBCs remains stable at 10 minutes, 1 hour, and 24 hours post-
transfusion in wild type mice transfused in the absence of KELIg
(2), and antigen expression is similar in the presence or absence of
poly (I:C) (3). The absence of C3 (Figure 3C), but not C1q
(Figure 3D), delayed KEL glycoprotein antigen modulation
compared with wild type mice after treatment with KELIg in the
presence of poly (I:C), for reasons that are not entirely self-evident.
Taken in combination, however, it is unlikely that either RBC
clearance or antigen modulation are responsible for explaining the
differences in immunoprophylaxis efficacy observed between
complement deficient and wild type mice in the setting
of inflammation.
A

B

C

D

FIGURE 1 | Complement is fixed on KEL RBCs in-vivo and in-vitro in response to polyclonal anti-KEL (KELIg). (A) General in-vivo experimental design: recipients
were treated with or without KELIg and transfused with DiO labeled KEL RBCs. (B) C3, C4, and Factor B were measured on recovered DiO positive KEL RBCs
1-hour post-transfusion; black filled histogram shows condition without KELIg; grey shaded histogram shows condition with KELIg. (C) In-vitro experiments were
completed with KELIg incubated with KEL RBCs in the presence (darkest histogram) or absence (lightest histogram) of serum; an additional condition included saline
incubated with KEL RBCs in the presence of serum (medium grey histogram). (D) Additional in-vitro conditions included KELIg incubated with KEL RBCs in the
presence of serum (darkest histogram), in the presence of serum with EGTA-Mg (lightest histogram) or serum with EDTA (medium grey histogram). These data are
representative of 3 independent experiments; p < 0.05 for C3 detection on RBCs in the presence or absence of KELIg.
June 2021 | Volume 12 | Article 704072
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Recipient Complement Enhances KEL
RBC Uptake by Inflammatory Monocytes
After KELIg in the Presence of Poly (I:C)
Complement is known to mediate antigen uptake by antigen
presenting cells (APCs) (7). Thus, despite the relatively similar
overall peripheral RBC clearance patterns in wild type mice
compared with those lacking complement, we hypothesized that
the incompatible KEL RBCs may be consumed by different APCs
more likely to promote alloantibody formation or that the APCs
consuming the transfused RBCs may be differentially activated in
the presence of complement. To evaluate RBC consumption,
wild type and C3-/- mice were transfused with DiO labeled KEL
RBCs and leukocyte subsets in their spleens were evaluated 1
hour and 16 hours later. First, we gated on single cells, live cells,
and non-T/non-B/non-RBCs (Supplemental Figure 2). Next,
splenic red pulp macrophages, dendritic cells (CD8a, CD11b
Frontiers in Immunology | www.frontiersin.org 5
and plasmacytoid), resident and inflammatory monocytes, and
neutrophils were quantified by percentage one hour (Figure 4A)
and 16 hours (Figure 4B) post-transfusion. Differences in these
cell subsets were observed between genotypes as shown, with an
increase in neutrophils after poly (I:C) treatment in wild type
mice being particularly prominent by 16 hours post-transfusion.
Next, RBC consumption of transfused DiO labeled KEL RBCs by
each of these cell subsets was determined. One difference
between wild type and C3-/- mice following KELIg and poly
(I:C), compared with KELIg alone, was the increase in DiO
labeled KEL RBC consumption by inflammatory monocytes that
occurred in wild type mice and that was seen to a lesser degree in
C3-/- mice (Figure 4C shows a histogram example at 16 hours
post-transfusion); these changes were evident one hour post-
transfusion (Figure 4D) but were even more pronounced by 16
hours post-transfusion (Figure 4E).
A

B C

D E

FIGURE 2 | Recipient C3 and C1q contribute to KELIg immunoprophylaxis failure in the setting of poly (I:C). (A) General in-vivo experimental design: recipients were
infused with KELIg and transfused the following day in the absence or presence of poly (I:C) treatment, with anti-KEL responses evaluated longitudinally. (B) Anti-KEL
IgG responses in wild type compared with C3-/- recipients transfused in the absence of poly (I:C). (C) Anti-KEL IgG responses in wild type compared with C3-/-

recipients transfused in the presence of poly (I:C). (D) Anti-KEL IgG responses in wild type compared with C1q-/- recipients transfused in the presence of poly (I:C).
(E) Baseline impact of recipient treatment with poly (I:C) on alloimmune responses to KEL RBCs in the absence of KELIg. These data are representative of 2-3
independent experiments, with 3-5 mice/group/experiment; error bars indicate standard deviation between individual mice. *p < 0.05 (C, D) d14,21,28, and all
comparisons for (E).
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In addition, monocytes and neutrophils were evaluated in the
peripheral blood at the 1 hour and 16-hour post-transfusion time
points (Supplemental Figures 3A, B). Similar to trends observed
in the spleen, peripheral blood inflammatory monocytes in the
wild type mice had significantly more DiO signal inside them
compared with those in the C3-/- mice (Supplemental
Figures 3C, D). Taken in combination, these findings suggest
that in the setting of inflammation, complement fixation may
direct the KEL antigen-containing RBCs towards antigen
presenting cells more likely to ultimately contribute to a
productive antibody response.

Complement-Fixed KEL RBCs Bind
In-Vitro to B-Cells From Wild Type Mice
As the interaction of complement, antigen, and complement
receptors has long been known to be critical for regulating
antibody production (8), we next turned our attention to
complement receptors on B-cells. Work by others has shown that
complement receptors 1 and 2 (CR1/2) are present on follicular
dendritic cells and B-cells in mice, and crosslinking of the B-cell
receptor (BCR) and CR1/2 on B-cells lowers the activation
threshold (9). As a first step to evaluate the role of complement
binding to B-cells in our model, we incubated DiO labeled KEL or
wild type RBCswith orwithout KELIg in-vitro. After washing away
unbound KELIg, the RBCs were incubated with sera and white
blood cells (WBCs). CD19+B220+ WBCs that were positive for
DiO had a mixture of C3 positivity and C3 negativity under
Frontiers in Immunology | www.frontiersin.org 6
conditions including KEL RBCs + KELIg + sera, and CD19+
B220+ WBCs that were negative for DiO were C3 negative
(Figure 5A). Control conditions, including those lacking KEL
RBCs, those lacking KELIg, and those lacking sera showed no C3
positivity (Supplemental Figure 4). To investigate which CD19
+B220+WBCsbound the complementfixedKELRBCs,weutilized
CD23 and CD21/35 staining. The CD19+B220+ cells most highly
positive for CD23 and CD21/35 (largest gate) that were positive for
DiO had uniform C3 positivity, whereas the CD19+B220+ cells
with less strong CD23 and CD21/35 positivity (smallest gate) that
were positive for DiO were predominantly C3 negative. The
conditions were then expanded, comparing WBCs from CR1/2-/-

mice with those from wild type mice. The CD19+B220+ B-cells
from CR1/2-/- mice showed decreased binding to KEL RBCs
compared with B-cells from wild type mice. Further, the CR1/2-/-

B-cells that bound DiO labeled KEL RBCs had less detectable C3
compared with those from wild type mice (Figure 5B). These
results suggest that B-cells bind to opsonized, complement fixed
KEL RBCs through CR1/2, raising a question of the role these
receptors play in immunoprophylaxis failure.

Complement Receptors (CR1/2) Are
Necessary for KELIg Immunoprophylaxis
Failure in the Presence of Poly (I:C)
To evaluate the functional role of CR1/2 in the immunoprophylaxis
setting of KELIg, we first needed to establish that these mice could
generate an anti-KEL response following a KEL RBC transfusion.
A B

C D

FIGURE 3 | Recipient complement, KEL RBC clearance, and KEL antigen expression. KEL RBCs were labeled with DiO and mixed with wild type RBCs labeled
with DiI; this mixture was transfused into recipients that had been infused with KELIg and treated with poly (I:C). (A) shows wild type compared with C3-/- recipients;
(B) shows wild type compared with C1q-/- recipients. Recovered DiO labeled RBCs were then evaluated for KEL glycoprotein expression by flow cytometry, after
incubation with KELIg and fluorescently conjugated anti-mouse IgG; (C) shows wild type recipients compared with C3-/- recipients; (D) shows wild type recipients
compared with C1q-/- recipients. These data are representative of 2-3 independent experiments with 3 mice/group/experiment; error bars indicate standard deviation
between mice. *p < 0.05 for all comparisons in (C) and p = ns, not significant for all comparisons in (D).
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Similar to wild type mice, we observed that CR1/2-/- recipients were
able to generate anti-KEL IgG antibodies following a KEL RBC
transfusion and to generate an enhanced response in the presence of
poly (I:C), albeit lower in magnitude than that observed in wild type
mice (Figure 6A). Next, we evaluated the response of CR1/2-/- mice
to KEL RBCs after prophylaxis with KELIg. As we have observed in
wild type mice, KELIg prevented anti-KEL alloantibody responses
in CR1/2-/- mice (data not shown). Compared to wild type mice, the
KEL RBCs recovered from the CR1/2-/- mice had similar post-
transfusion recover and survival as wild type recipients (Figure 6B),
with delayed kinetics of KEL glycoprotein antigen modulation
(Figure 6C) and a trend towards lower levels of bound C3
(Figure 6D). However, in the setting of poly (I:C)-induced
inflammation and KELIg, immunoprophylaxis failure and
breakthrough alloimmunization did not occur in CR1/2-/- mice
(Figure 6E). Taken together, these data indicate that CR1/2 are
required for immunoprophylaxis failure and further emphasize the
Frontiers in Immunology | www.frontiersin.org 7
lack of an association between peripheral RBC clearance rates and
outcome, supporting a model in which complement functions in
breakthrough alloimmunization by promoting antibody-generating
immune responses.
DISCUSSION

These studieswere undertaken tobetter understandwhy polyclonal
anti-KEL IgG (KELIg) prevents alloimmunizationwhen a recipient
is exposed to KEL RBCs in a baseline state of health but fails to
prevent alloimmunization (e.g. immunoprophylaxis failure) when
the recipient is in a state of viral-like inflammation. Prior studies
suggested that type 1 IFN (IFN-a/b) generated in recipients after
poly (I:C) treatment was sufficient but not necessary to lead to
immunoprophylaxis failure (3), leading us to search for other
pathways. The take home point of the current studies is that
A B

D

C

E

FIGURE 4 | Poly (I:C) and KELIg immunoprophylaxis result in increased transfused KEL RBC consumption by splenic inflammatory monocytes in wild type compared with
C3-/- mice. DiO labeled KEL RBCs were transfused to wild type or C3-/- mice treated with KELIg in the presence or absence of poly (I:C) and splenic cell subsets were
evaluated at 1 and 16 hours post-transfusion (A, B). (C) Representative histograms for DiO RBC fluorescence patterns of inflammatory monocytes at 16 hours post-
transfusion, after first excluding TER119 positive RBCs on the exterior of the splenic cells; black open histogram is KELIg in wild type, dotted open histogram is KELIg and
PIC in wild type; white shaded histogram is KELIg in C3-/- and dotted shaded histogram is KELIg and PIC in C3-/-. DiO mean fluorescence intensity (MFI) of the splenic cell
subsets was evaluated at 1 hour (D) and 16 hours (E) post-transfusion. These data are representative of 2-3 independent experiments with 3 mice/group/experiment; error
bars indicate standard deviation between mice.
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recipient complement is a keymediator in inflammation-associated
immunoprophylaxis failure. As such, we propose a “two-hit”
hypothesis, where the first “hit” is recipient inflammation, and
the second “hit” is complement production/sensing (Figure 7).

Our findings thus support amodel in which immunoprophylaxis
fails in the setting of inflammation due to complement-mediated
promotion of alloantibody generation. The classical complement
pathway is activated by the binding of KELIg to KEL RBCs and the
alternative complement pathway is activated by poly (I:C) (10–12).
Free heme, generated as a result of RBC breakdown and known to
activate the alternative complement pathway (13), may also be
playing a role. Once generated, activated complement binds to
complement receptors (CR1/2) on B-cells to lower the activation
threshold for antibody generation. The requirement of C3 orC1q for
immunoprophylaxis failure support this model. Further, the
requirement of CR1/2 for immunoprophylaxis failure and the
decreased binding of complement coated opsonized RBCs in-vitro
to CR1/2-/- B-cells lead us to suspect that B-cells play a critical
“gatekeeper” role in our model.

CR1/2 on B-cells have been described to function as type 1 IFN
(IFN-a/b) receptors (14), something of interest given our past
studies showing that type 1 IFN is sufficient but not necessary for
inflammation-associated immunoprophylaxis failure. It is likely
that consumption of antibody coated RBCs by inflammatory
monocytes, potentially driven by type 1 IFN production or the
anaphylatoxins C3a and C5a [and presumably resulting in the
generation of cytokines including type 1 IFN aswell as C3a andC5a
which are further known to activate antigen presenting cell/T-cell
interactions and to create feedback loops (15, 16)], contribute in
part to our findings. In addition to serving as type 1 IFN receptors,
CR1/2 are key markers of marginal zone B cells that distinguish
them from follicular B cells; past studies in the KEL system have
shown the necessity of marginal zone B-cells but not follicular B-
cells for anti-KEL IgG responses (17). Recent studies suggest that
marginal zone B cell-mediated RBC alloimmunization may not
require transport of RBCs to the splenic follicle (18), pointing to an
intrinsic role of CR1/2 in B cell signaling following engagement of
RBCs bearing both alloantigen and C3 split products. While prior
studies demonstrated the importance of CR1/2 on B cells in anti-
KEL IgGresponses in the absencepoly (I:C) (19),we cannot exclude
the relevance of follicular dendritic cells to our present findings. Of
note, models of systemic lupus erythematosus have shown the
uptake of complement associated antigen by follicular DCs
generates type 1 IFN in an IRF-5 dependent pathway (20).

Past studies have taught us that recipient complement and Fcg
receptors in combination are important in incompatible RBC
clearance, KEL antigen modulation, and immunoprophylaxis
efficacy when a recipient is in a baseline state of health (6).
Although we previously thought RBC clearance patterns might
impact immunoprophylaxis efficacy, recent studies (3) (including
the present studies) show that may not be true in all settings. The
data presented here support observations by Stegmann (21) and
others (22) that RBC clearance patterns alone may be inadequate to
fully evaluate the immunoprophylaxis efficacy of candidate
monoclonal or polyclonal antibodies.
A

B

FIGURE 5 | Complement-fixed KEL RBCs bind in-vitro to wild type donor
derived B-cells but not to CR1/2-/- B-cells. DiO labeled KEL RBCs were
incubated with KELIg in the presence of sera, followed by incubation with
peripheral blood derived WBCs from donor mice. (A) In wells using WBCs from
wild type donor mice, CD19+B220+ B-cells cells were separated by DiO
positivity and then by C3 positivity. The CD19+B220+ cells were next
separated by their CD23 and CD21/35 expression, with the cells highest for
CD23 and CD21/35 gated in the larger gate and those less strongly positive for
CD23 and CD21/35 gated in the smaller gate; the DiO positive and negative
populations were then evaluated for their C3 positivity. Shaded histograms are
the DiO positive population, open histograms are the DiO negative population.
(B) In wells using WBCs from CR1/2-/- mice, CD19+B220+ B-cells cells were
separated by DiO positivity and then by C3 positivity. Shaded histograms are
the DiO positive population, open histograms are the DiO negative population.
These data are representative of more than 3 independent experiments, with 2
involving CD23 and CD21/35 staining.
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Our model and findings may have translational relevance for
better understanding immunoprophylaxis failures (to RhIg). It
remains unclear why some women become alloimmunized against
the D antigen during pregnancy/childbirth despite prophylaxis with
polyclonal RhIg (21, 23). FcgR 2/3 polymorphisms have been
evaluated in such women, with the conclusion that high-
affinity alleles encoding these receptors do not influence RhIg
efficacy. Although antibodies to the RhD antigen are thought
not thought to fix complement on RBCs themselves, it is
possible that background complement activation or C3a/C5a
generation as a result of heme or inflammation-associated
complement pathway activation may play a role. Increasing
evidence also supports the role of complement activation (24) in
the pathophysiology of antibody positive as well as antibody
negative (25) delayed hemolytic transfusion reactions, with
Frontiers in Immunology | www.frontiersin.org 9
complement blockade being shown to mitigate li fe-
threatening reactions (26).

Study limitations should be considered. These studies were
focused on a single blood group antigen and a single type of
inflammation. Another consideration is that responses to different
antigens on murine RBCs involve different pathways, with some
being T-cell dependent (27) and others being T-cell independent;
this is presumably true in humans as well. Complement has
recently been shown to serve as a “switch” between CD4+ T-cell
dependent and independent responses (19) and it is possible that
poly (I:C) induced immunoprophylaxis failure is overcome by the
CD4+ T-cell dependency of the alloantibody response in
complement deficient mice. Our KELIg preparation is polyclonal
with all IgG subtypes represented; monoclonal antibodies, either
individually or in combination, may give different results (28).
A B

C

E

D

FIGURE 6 | CR1/2 are required for KELIg immunoprophylaxis failure in the setting of poly (I:C). (A) KEL RBCs were transfused into wild type recipients or recipients
lacking CR1/2, in the presence or absence of poly (I:C). (B) RBCs were labeled with DiO and mixed with wild type RBCs labeled with DiI; this mixture was transfused into
wild type or CR1/2-/- recipients that had been infused with KELIg and treated with poly (I:C). Recovered DiO positive KEL RBCs were evaluated for (C) KEL glycoprotein
expression, and (D) bound complement C3. (E) Wild type or CR1/2-/- recipients were infused with KELIg and transfused the following day in the absence or presence of
poly (I:C), with anti-KEL responses evaluated longitudinally. *p < 0.05 for d14, 21 and 28 of (A) between CR1/2-/- mice treated with or without poly (I:C); p < 0.05 for
10 min and 1-hour timepoints in (C); p < 0.05 for d14, 21, and 28 in (E). These data are representative of 2-3 independent experiments with 3 mice/group/experiment;
error bars indicate standard deviation between mice. ns, not significant.
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Further, in contrast to KEL, immunoprophylaxis to murine RBCs
expressing an alternate (HOD, containing HEL) antigen can occur
independent of complement or Fcg receptors, suggesting that
distinct antigen-antibody combinations may dictate the relative
influence of complement, Fcg receptors and inflammation on the
success or failure of immunoprophylaxis (29–31). Indeed, anti-
KEL and anti-HEL antibodies can induce antigen specific
immunoprophylaxis following exposure to RBCs expressing
both the KEL and HOD antigens (32). In contrast, antibodies
directed toward one antigen may enhance or inhibit alloantibody
formation against the non-target alloantigen (32–34). As such,
distinct mechanisms of immunoprophylaxis should be considered
depending on the target alloantigen involved (35, 36). One final
consideration is that co-engagement of the B-cell receptor and
complement receptors in humans may lead to different responses
than those observed in mice (37).
Frontiers in Immunology | www.frontiersin.org 10
In conclusion, our data highlight the critical role that
complement plays in inflammation-induced immunoprophylaxis
failure. Generated in one model, the mechanisms described here
likely have broader applicability. Although complement was
identified as contributing to disease more than half a century
ago (38), it is likely that the era of studying and targeting
complement activation and break down products, in transfusion
medicine and beyond, has just begun.
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