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Infection and inflammation of the lung results in the recruitment of non-resident immune
cells, including neutrophils, eosinophils and monocytes. This swift response should
ensure clearance of the threat and resolution of stimuli which drive inflammation.
However, once the threat is subdued this influx of immune cells should be followed by
clearance of recruited cells through apoptosis and subsequent efferocytosis,
expectoration or retrograde migration back into the circulation. This cycle of cell
recruitment, containment of threat and then clearance of immune cells and repair is
held in exquisite balance to limit host damage. Advanced age is often associated with
detrimental changes to the balance described above. Cellular functions are altered
including a reduced ability to traffic accurately towards inflammation, a reduced ability
to clear pathogens and sustained inflammation. These changes, seen with age, are
heightened in lung disease, andmost chronic and acute lung diseases are associated with
an exaggerated influx of immune cells, such as neutrophils, to the airways as well as
considerable inflammation. Indeed, across many lung diseases, pathogenesis and
progression has been associated with the sustained presence of trafficking cells, with
examples including chronic diseases such as Chronic Obstructive Pulmonary Disease and
Idiopathic Pulmonary Fibrosis and acute infections such as Pneumonia and Pneumonitis.
In these instances, there is evidence that dysfunctional and sustained recruitment of cells
to the airways not only increases host damage but impairs the hosts ability to effectively
respond to microbial invasion. Targeting leukocyte migration in these instances, to
normalise cellular responses, has therapeutic promise. In this review we discuss the
current evidence to support the trafficking cell as an immunotherapeutic target in lung
disease, and which potential mechanisms or pathways have shown promise in early drug
trials, with a focus on the neutrophil, as the quintessential trafficking immune cell.
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INTRODUCTION

The lungs, especially the alveolar network, are the area of the
body where the external environment is in closest proximity to
the circulating blood. The average diameter of the alveolar
membrane is 0.2µm, and each minute, approximately 5L of
blood and 5-8L of air (and the pollutants and microbes
contained therein) pass through these organs, which have an
internal surface area of 50-75 square metres. The lungs serve to
enable gaseous exchange, but also need to preserve health by
preventing damage caused by infections or inflammation. In
health, the lungs maintain homeostasis through complex
interactions between the lung microbiome (defined recently as
the characteristic microbial community occupying the lungs,
prone to change in time and scale and thought crucial for host
function and health) (1), resident immune cells and defences and
the trafficking of non-resident immune cells from the systemic
circulation to the lung in the presence of more challenging
inflammation, infection or injury.

Non-resident immune cells include neutrophils, eosinophils
and monocytes, all of which are involved in the inflammatory
process. The exact make up of both the trafficking cell type and
cellular phenotype within cell types depends on the nature of the
challenge, but an optimal response includes a swift and accurate
recruitment of cells to the location of the injury or infection,
clearance of the threat (be that pathogens or inflamed/necrotic
tissue) through phagocytosis, and then resolution of
inflammation via programmed cell death and clearance by
efferocytosis or expectoration (within sputum) or retrograde
migration back into the circulation (2). Phagocytosis of
pathogens should lead to pathogen-killing through exposure to
proteinases (especially in the case of neutrophils), bactericidal
proteins or reactive oxygen species, combined and contained
within phagolysosomes. This intracellular process limits host
tissue exposure to injurious enzymes, but extracellular release
does occur (as part of degranulation, so called ‘sloppy eating’ or
during NETosis) and here, local tissue damage is unavoidable,
although limited by the presence of anti-oxidants and anti-
proteinases (3).

Pro and anti-inflammatory signals leading to immune cell
recruitment and immune cell clearance are held in exquisite
balance by cross talk between resident tissue and the migratory
cells as the inflammatory challenge is overcome. When these
processes go awry, through excessive, sustained cell recruitment,
inaccurate migration, or impaired clearance; unresolved
inflammation can lead to lung damage and contribute to the
development of chronic lung disease. This can lead to a vicious
cycle of lung damage, described first in Cole’s theory of
bronchiectasis [a suppurative lung disease (4)], where tissue
damage leads to an increased susceptibility to infection, which
leads to immune cell recruitment and degranulation, with
proteinases capable of digesting all components of the
extracellular matrix, which leads to increased inflammation
and subsequent on-going tissue damage. There is significant
interest in therapeutically breaking this cycle, potentially limiting
subsequent lung damage and maintaining lung health.
Frontiers in Immunology | www.frontiersin.org 2
Initially it was assumed that excessive immune cell
recruitment to the lung was a normal, physiological response
to a pathological stimulus. In this model, only the recruiting
stimuli (the lung inflammation or the microbe) could be targeted
to reduce cell infiltration. It was thought that targeting the
trafficking immune cell would lead to immunoparesis and
impair the ability to respond to subsequent infections, placing
the host at risk. However, there is increasing evidence of altered
and dysfunctional migrating cell behaviour in chronic and acute
lung disease (5, 6), and emerging evidence that targeting
leukocyte trafficking may improve these cells responses to
infection while reducing absolute numbers of cells in the lungs,
thus reducing the inflammatory burden. See Figure 1 for an
overview of this.

This review will discuss the current evidence to support the
trafficking cell as an immunotherapeutic target in lung disease,
and which potential mechanisms or pathways have shown
promise in early drug trials, with a focus on the neutrophil, as
the quintessential trafficking immune cell.
LEUKOCYTE TRAFFICKING FROM
THE BLOOD

Pro-Migratory Signals
Inflammation within the lung parenchyma leads to the release of
a milieu of cytokines and chemokines from damaged epithelial
cells, as well as activated alveolar macrophages and other resident
or recruited immune cells such as neutrophils and T cells.
Chemokines attract leukocytes with varying affinity and
capacity. They are divided into groups based on the position of
their conserved cysteine residues, with theCXCandCC families the
most important for inflammatory disease (7). CXCL-8 and CXCL2
are important neutrophil chemokines, acting via tCXCR-1 and
CXCR-2 receptors (8), alongside monocyte chemoattractant
protein (MCP-1) for monocytes, which acts on the CCL2
receptor, resulting in monocyte recruitment and macrophage
activation (9). These topics have been extensively reviewed
elsewhere (10).

Initially it was thought that there was a simple relationship
between the release of Damage-associated molecular patterns
(DAMPs) and leukocyte recruitment. However, the complexity
of signalling cascades from inflamed tissues is increasingly
recognised. As vital components of the host defence,
leukocytes must sense, prioritize and integrate all of the
chemotactic cues from the environment into a migration
response towards damaged tissues (11). To achieve this,
neutrophils express more than 30 different receptors able to
sense pro-inflammatory mediators and modulate neutrophil
migration (12), whereas monocytes express various receptors
depending on their subset (13).

The migration of neutrophils to inflamed tissues is thought to
occur in phases. Early neutrophil recruitment (“scouting” cells)
respond to tissue DAMPs through the SRC family kinase LYN.
DAMPs induce the production of CXC-chemokines and
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leukotrienes from surrounding tissues (14). Early-arriving
neutrophils add to this inflammatory cocktail, as, through
activation, neutrophils directly and indirectly promote further
secretion of CXCL8 and leukotriene B4 (LTB4) to induce further
neutrophil recruitment from the circulation. The fine control of
neutrophil extravasation is seen with CXCL1 promoting
crawling of neutrophils along blood endothelial cells and then
CXCL2 promoting unidirectional movement across the
endothelium (15). In infection, the release of pathogen-
associated molecular patterns (PAMPs) and the presence of
other recruited immune cells prolongs and amplifies
neutrophil infiltration. There appears to be a signal hierarchy
with DAMPS and cytokines such as CXCL8 forming a migratory
“start” signal which can be superseded or ignored in the presence
of PAMPs such as fMLP (16, 17).

Monocytes exert many of their functions outside the vascular
compartment, thus requiring trafficking to tissues. Monocytes in
the tissues respond to chemokines and cytokines, differentiating
into macrophages or dendritic cells during infection, as well as
wound-associated macrophages or tumour induced myeloid
Frontiers in Immunology | www.frontiersin.org 3
suppressor cells (18). However, monocytes can also remain un-
differentiated, at least in the resting state.

The Components of Leukocyte Trafficking
From the Systemic Circulation
In health, neutrophils and monocytes are released from the bone
marrow in a quiescent state and maintain this in the circulation
during homeostasis. They become primed in response to an
initial activation signal via a plethora of agents, including
bacterial products, cytokines and metabolic cues (19) and can
then become activated whereby effector responses are deployed
(20). Originally, the focus on neutrophil priming was on
enhancing the ROS response (19), but is now known to also
control other aspects of cell function including adhesion (21) and
chemotaxis (22). Primed neutrophils also show a slower transit
time through the lung vasculature, shown in patients that have
inflammatory lung diseases such as COPD (23) or even low-
grade inflammation (24). Priming of other immune cells such as
macrophage has also been described, whereby metabolic signals
such as exogenous heme or apoptotic bodies induce changes
FIGURE 1 | Immune response to inflammation and infection. Upon insult, either due to pathogen or sterile injury, resident immune cells such as macrophage are
ready to respond and promote the recruitment of monocytes and neutrophils via activation of the endothelium. As part of the response, monocytes differentiate in
the tissue to macrophage and these cells become activated to respond to the insult, promoting further recruitment of other immune cells such as T cells and carrying
out effector functions including phagocytosis and NETosis. In health, resolution follows by death of neutrophils and clearance by efferocytosis, promoting the release
of anti-inflammatory cytokines and repair. In disease, the persistent recruitment of immune cells and potential impaired effector functions of these cells perpetuate
inflammation and damage.
July 2021 | Volume 12 | Article 704173
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allowing the macrophage to respond to a later pathogenic and
activating signal (25).

Leukocytes are recruited to the lung from the pulmonary and
bronchial circulation, including alveolar capillaries and post-
capillary venules. Recruitment of leukocytes to the lungs is a
complex process, tightly regulated by both leukocytes and the
vascular endothelium. In the bronchial circulation, or in larger
vessels, the leukocyte trafficking cascade can be broadly split into
three stages: rolling, firm adhesion, and extravasation or
transmigration (26). Each of these stages has distinct groups of
adhesion molecules that govern the interaction of leukocytes
with the endothelium (27).

Rolling
Endothelial cells within the blood vessels detect chemokines and
are able to rapidly increase the expression of P-selectin (CD62P)
(28, 29) and E-selectin (CD62E) (30). These two selectins can be
bound by P-selectin glycoprotein ligand-1 (PSGL-1) which,
despite its name, can bind all three main selectins (CD62P, E
and L) (31). PSGL-1 is expressed on the surface of neutrophils
and monocytes (32, 33) allowing for increased interaction
between activated endothelium and passing leukocytes (31).
CD62L is the only selectin expressed by neutrophils (34), but
also by monocytes (35) and is maintained on the plasma
membrane (36). Human neutrophils are also able to directly
bind CD62E with CD62L (37). PSGL-1 is also expressed by
activated endothelium (38) and is, therefore, capable of also
binding to CD62L on the surface of the leukocyte. Together, the
expression of selectins and PSGL-1 results in rolling – a process
that occurs under shear stress in the circulation, and indeed
requires shear stress to function correctly (39). These
interactions provide multiple points for pharmacological
intervention to either block or enhance leukocyte recruitment
to sites of activated endothelium.

Extravasation/Transmigration
At the point of firm adhesion and rolling arrest, two processes
can occur: crawling along the vascular lumen or transmigration
into the tissue. Intraluminal crawling has been visualised in vivo
in mice using intravital microscopy, identifying the reliance on
LFA-1 for initial adhesion and Mac-1 for efficient crawling (40).
Transmigration predominantly occurs paracellularly (between
endothelial cell junctions) (41), however, movement through the
endothelial cytoplasm, known as transcellular migration (42),
has also been described in vitro (43).

Two major signalling pathways have been identified as of
central importance neutrophil chemotaxis: PI3K and MAPK
(16). Responses to intermediate chemoattractants are heavily
reliant on the dual action of phosphoinositide 3-kinase (PI3K),
specifically the gamma and delta isoforms in human leukocytes,
at the leading edge and phosphatase and tensin homolog
(PTEN) at the lagging edge (44, 45) – two enzymes that
control the phosphorylation of phosphatidylinositol. In
contrast, p38 MAPK co-ordinates neutrophil chemotaxis to
end-point chemoattractants (46).

The process of cellular recruitment through the pulmonary
vasculature is thought to occur via slightly different processes,
Frontiers in Immunology | www.frontiersin.org 4
dependant on adhesion receptor expression (42). At their
smallest diameter, tight and tortuous pulmonary capillaries
have an internal diameter of less than 2µm, significantly
smaller than a neutrophil, which, in an unpolarised form, has a
diameter of approximately 7µm. Despite this, in vivo studies have
demonstrated that in health, human neutrophils are able to pass
through the pulmonary capillaries with a similar speed to red
blood cells (47). Furthermore, the deformation of the neutrophil
in passing through these capillaries may actually provide an
innate mechanical mechanism to ‘de-prime’ neutrophils in the
circulation: neutrophils that were artificially primed ex-vivo and
reintroduced to the host circulation initially increased their
transit time through the lungs, but this effect was slowly lost
(47). Complementing these findings, forced mechanical
deformation ex-vivo of neutrophils also reversed the changes
observed in primed neutrophils, suggesting a mechanism of de-
priming (48). Neutrophil transit though narrow capillaries, such
as those in the pulmonary vasculature, might, therefore, have
important functions for immunomodulation, allowing primed
neutrophils to return to the quiescent state.

Response Within the Parenchyma
Neutrophils are the first wave of leukocytes to arrive in the lungs
upon infection, followed by monocytes (10, 49). To migrate
through the dense and elastic extracellular matrix of the lungs, it
has been suggested that neutrophils release small amounts of
proteinases and then reactive oxygen species sequentially (50).
Inflamed tissue tends to be hypoxic and lactataemic, conditions
that promote neutrophil survival via a distinct signalling
pathway involving hypoxia-inducible factor 1a (HIF-1) (51).
In the lungs, neutrophils actively kill invading pathogens by a
number of processes, including phagocytosis and by the release
of antimicrobial molecules including reactive oxygen species
(ROS) and neutrophil extracellular traps (NETs) (52). Once in
the lungs and in response to inflammatory stimuli, monocytes
differentiate into monocyte-derived macrophages (MDM) or
monocyte-derived dendritic cells (MoDC) dependant on the
microenvironment (53).

On resolution of inflammation, a proportion of neutrophils die
by apoptosis, and many are cleared by macrophages through a
process called efferocytosis (54). Apoptosis is triggered either by
intrinsic loss of mitochondrial membrane integrity, causing release
of cytochrome c into the cytoplasm and promoting activation of
caspase 3; or by extrinsic signalling through death receptors to drive
caspase 8-dependant activation of caspase 3 (55). Apoptosis triggers
the externalisation of phosphatidylserine (PS), an ‘eat me’ signal, as
well as downregulation of ‘don’t eat me’ signals CD47 and CD31.
This process can be regulated by the cell, suggesting modulation of
the pathways and receptors involved may be a mechanism by which
efferocytosis of excessively trafficked neutrophils could be enhanced
in lung disease (54).

Other mechanisms of clearance of neutrophils and other
dying immune cells from the lung include via the mucociliary
escalator (56), whereby ciliated epithelial cells covered with a
mucus layer beat synchronously to move entrapped particulates,
including cells, up to the throat for removal by expectoration. In
lung diseases such as COPD and IPF, there are both increases in
July 2021 | Volume 12 | Article 704173
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mucus production and expectoration and increases in the
number of trafficking cells within these secretions (57, 58).
Neutrophils may also leave the site of inflammation through a
process known as reverse transmigration, whereby neutrophils
migrate across the endothelium and re-enter the vasculature (59).
Although not yet fully characterised this, and integrins which are
needed for this activity, may be another therapeutic target.

Neutrophil phagocytosis occurs through direct interactions
between bacteria and immune cells (“unopsonised phagocytosis”)
but is more efficient when bacteria are coated with
immunoglobulins and complement (“opsonised phagocytosis”).
Optimal opsonisation requires both immunoglobulins and
complement (60). However, unopposed neutrophil elastase can
impede both immunoglobulin and complement activity, cleaving
the hinge region of IgA and complement C3bi, forming a
functional opsonin mismatch (61, 62) which may be important
in predisposing the host to secondary lung infections in
chronic illness.

Neutrophils are not the only cells implicated in these processes.
Monocytes are able to phagocytosis to a small extent, but they are
also key modulators of the immune response through inflammatory
mediator release. In response to inflammatory stimuli, monocytes
are induced to differentiate into MDM through high levels of GM-
CSF in the lungs, which is elevated during inflammation (63).
MDM add to the pool of local alveolar macrophages, and contribute
to high levels of phagocytosis of bacteria, inflammatory mediator
release and, on resolution of inflammation, efferocytosis of dying
neutrophils and epithelial cells, to ensure safe clearance of these
dying cells (10, 54). MoDC also supplement the local pool of
dendritic cells, to take up infectious agents, process and present
antigen on the cell surface, followed by migration to the lymph
nodes to activate T cells and the adaptive immune response (64).

The containment of the inflammatory signal to where it is
needed, for only as long as needed is especially important in lung
tissue. The lungs rely on their elastic properties to maintain
adequate ventilation. Elastic fibres are highly complex matrix
structures because of their size, molecular complexity, and the
requirement for numerous helper proteins to facilitate fibre
assembly (65). Previous studies have conclusively shown that
elastin degradation caused by neutrophil proteinases is a key step
in the pathogenesis of many chronic lung diseases and that lung
cells are unable to repair damaged elastic fibres, leading to
permanently compromised lung function and ongoing
degenerative disease (66).
CHANGES WITH AGE AND IN
LUNG DISEASE

Alterations in the innate immune response have been identified
in lung diseases including COPD and IPF, but it is important to
note that most lung diseases are more common with advancing
age, and there are changes to both the structure and function of
the lung and immune cells (including neutrophil) responses with
age, which might influence cellular trafficking. This has identified
a number of processes that could be targeted for treatment.
Frontiers in Immunology | www.frontiersin.org 5
Ageing
Increased age is associated with both elevated rates of infections and
chronic lung disease, as well as worse outcomes after illness or
injury. In the UK, 95% deaths from pneumonia (67) and 86% of
deaths from influenzae (68) were in those over 65 years of age.
During the COVID-19 pandemic, 73% of deaths recorded so far
occurred in those aged 75 or over (69). Over 90% of those with
COPD (70), 75% of those with IPF (71) and 90% of those with
bronchiectasis (67) are aged over 65 years of age. This elevated risk
is likely due to a number of factors. There are age-associated changes
to the lung structure and function. These include a less compliant
thoracic cage; a weaker diaphragm; less elastic lung parenchyma
leading to senile emphysema; reduced efficiency of the muco-ciliary
escalator reducing the clearance of bacteria and microparticles from
the lung as well as a reduced ability to maintain homeostasis
(including reduced responsiveness to hypoxia and hypercapnia)
(72). Ageing is associated with chronic low grade inflammation
characterised by increased basal levels of cytokines including
Interleukin (IL)-1, IL-6 and tumour necrosis factor (TNF)-a (73).
The function of the immune system can also alter with age, termed
immunosenesence, with impaired innate and adaptive immune
responses to infections and inflammation, and this includes
alterations in most neutrophil cellular functions.

Neutrophils show a gradual decline in the accuracy of migration
(chemotaxis) with increasing age, although chemokinesis, or the
ability to move in any direction, appears unaltered (74, 75).
Imprecise migration is thought to have significant consequences,
leading to both a delay in reaching the site of inflammation, but also
contributing to inflammation, as these cells appear to release both
proteinases and reactive oxygen species during their convoluted
migratory pathways. The deficit is associated with frailty, with adults
displaying more pronounced frailty having the most impaired
neutrophil responses (76). In vitro studies have suggested
impaired migration can be restored to levels which reflect those
of a younger adult by inhibiting PI3K, especially gamma and delta
isoforms, indicating involvement of this pathway (77, 78). As well as
alteration to migration, neutrophils that are recruited to the aged
lungs show suboptimal superoxide generation and degranulation,
and reduced phagocytosis (79, 80). The cause of these changes is
unclear, but in vitro work suggests that merely exposing neutrophils
to the inflammation found with age (by incubating cells from young
adults with plasma or serum from older adults) is insufficient to
reproduce the cellular phenotype, suggesting the altered functions
are not merely a consequence of the inflammatory environment
(76, 77).

Once again, these age-related changes are not only seen in
neutrophils. Monocytes also show changes during ageing, with
levels of intermediate (CD14++CD16+) and non-classical
(CD14+CD16++) monocytes increased compared to younger
adults. These cells also show impaired phagocytosis, altered
cytokine release and elevated expression of migration marker
CD11b (81, 82). On stimulation, aged monocytes produce less
inflammatory cytokines including IL-1b, TNFa, IL-6 and IFNa
(83–85) which may contribute to susceptibility to respiratory
infection. As with neutrophils, there is a link with frailty and
increased monocyte number, however it is as of yet unclear how
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this relates to cell function (86). Mitochondria in aged classical
monocytes have reduced membrane potential compared to
young monocytes, which may impair cell function due to
impaired energy generation (87). Further analysis of metabolic
effects of aging on monocyte function may reveal novel insights
about the role of these cells in normal aging.

Neutrophil Trafficking in Lung Disease
There is evidence that the detrimental changes to cellular
function seen with age are heightened in lung disease and
indeed most chronic and acute lung diseases are associated
with an influx of neutrophils to the airways as well as
neutrophilic inflammation. Hypoxia is another feature of lung
disease, with the potential to alter neutrophil responses further,
as described above. Indeed, across many lung diseases,
pathogenesis and progression has been associated with an
exaggerated and sustained presence of trafficking cells, with
specific examples discussed below.

Chronic Obstructive Pulmonary Disease
COPD is a common, debilitating and chronic disease thought to
affect 10% of the adult population. It is currently the fourth
leading cause of death globally and defined by persistent
respiratory symptoms and airflow limitation which is
associated with airways inflammation (88). The disease is often
complicated by acute worsening of symptoms, termed
exacerbations and commonly caused by viral or bacterial
infections (89). Innate immune cells are considered to be key
drivers of COPD. COPD is associated with greatly increased
numbers of neutrophils in lung secretions, having been recruited
from the systemic circulation into the airways due to epithelial
damage, inflammation and infection (2). Both the lung tissue and
secretions contain elevated numbers of macrophages (20x) as a
result of elevated influx of monocytes which differentiate into
monocyte derived macrophages (90–92).

Alveolar macrophages are likely to be a key driver of elevated
leukocyte recruitment to the lungs during COPD, with COPD
sputum and bronchi-alveolar lavage (BAL) containing elevated
levels of CXCL-8 (93), LTB4, growth-related oncogene (GRO)
alpha (94, 95), andMCP-1 (96), amongst other inflammatory agents.

Despite this high number of neutrophils and macrophages in
the lungs or airways of patients with COPD, patients suffer with
recurrent infections which suggests these cells are dysfunctional
(53). In keeping with this, neutrophils from patients with COPD
from mild to severe disease have been shown to have an
increased speed of migration but also a reduced accuracy of
migration towards single chemokines, bacterial products and
sputum, associated with reduced pseudopod extension but
correctable with PI3K inhibition (97). Of note, similar
characteristics were seen in smokers aged between 30 and 40
years of age with respiratory symptoms including chronic
bronchitis but no airflow obstruction (98), suggesting altered
cellular functions are an early manifestation of disease. Once
established the airways inflammation and altered cellular
functions appear to persist even after smoking cessation, with
heighted cell trafficking to the lungs seen even many years after
the patients have stopped smoking (99).
Frontiers in Immunology | www.frontiersin.org 6
Monocytes from COPD patients show enhanced migration to
chemoattractant, which may contribute to enhanced levels of
MDM in the COPD lung (100). These monocytes display a
heightened pro-inflammatory phenotype, including elevated
IL-6 and MCP-1 release (101), but do not show impaired
phagocytosis compared to AMC (102). Monocyte-derived
macrophage phagocytosis is impaired in COPD (102, 103),
alongside impaired mitochondrial function (104) which
implicates defective monocytes as pre-cursers to these cells.

Idiopathic Pulmonary Fibrosis
Idiopathic pulmonary fibrosis (IPF) is a progressive condition
believed to arise in genetically susceptible individuals as a
consequence of an aberrant wound-healing response following
repetitive alveolar injury. It is characterised by progressive
deposition of extracellular matrix and collagen within the
interstitium of the lung, leading to impaired gas exchange,
breathlessness and eventually death. The involvement of
leukocytes is acknowledged but remains unclear. CXCL-8
levels are elevated in IPF, with BAL neutrophilia a risk factor
for early death. Neutrophil elastase damages epithelial cells, and
it has been hypothesised that this damage and the subsequent
release of DAMPS drives ECM component turnover. Indeed, NE
deficient mice are resistant to bleomycin induced PF, however
the role in humans is still unclear (105) just as it is unclear what
drives the neutrophil recruitment to the lungs in the
first instance.

Recently, a role for N-formyl peptide (fMLF) receptors
(FPRs) has been described, which might be specific for lung
fibrosis. FPR-1–deficient (fpr1–/–) mice are protected from
bleomycin-induced pulmonary fibrosis but can develop renal
and hepatic fibrosis as normal with the model utilised (106). It is
known that infections can drive IPF progression, so potentially
the neutrophils may have initially been recruited in response to
an infective event, with subsequent recruitment reflecting the
abnormal response to wound repair (107). However, the
initiating driver of recruitment might reflect other stimuli, as
an increasing number of alternative, non–formyl peptide ligands
for FPR-1 are being uncovered. Monocytes and macrophages
may play a role in disease pathogenesis, although this is yet to be
fully determined. Depletion of murine LyC6 monocytes reduces
both alveolar macrophages and fibrosis in mice (108), while in
humans, an association has been described between monocyte
numbers and survival in IPF, with a high monocyte count linked
to poorer outcomes (109).

Community Acquired Pneumonia
It is not just chronic disease where altered leukocyte functions,
including neutrophil migration, are associated with poor
outcomes. During Community Acquired Pneumonia (CAP),
neutrophils are recruited to the airways in high numbers, with
the alveolar spaces becoming filled with an exudate made up of
inflammatory cytokines, immune cells and systemic proteins
leading to hypoxia and ventilation/perfusion mismatch.
Neutrophil functions have been shown to be impaired in CAP,
with reduced migratory accuracy but increased degranulation
and NETosis (110). Of note, in older adults, the defect appears
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sustained and to worsen with the severity of the infectious event,
with less dysfunction in simple lower respiratory tract infections
and most dysfunction when CAP is associated with sepsis (111).
In this instance, dysfunction could be replicated by exposure to
plasma from septic patients (110), suggesting the inflammatory
systemic environment adds to the cellular dysfunction. This CAP
neutrophil phenotype again appears correctable, with correction
associated with improved patient outcomes (112), highlighting
the potential benefit of targeting these cells.
CURRENT STRATEGIES TO TARGET
LEUKOCYTE TRAFFICKING IN
LUNG DISEASES

The wealth of evidence describing the negative associations with
lung disease and excessive or sustained leukocyte influx into the
lungs highlights the need to target these processes, without
compromising the hosts’ ability to respond to infections. A
plethora of drugs targeting leukocyte trafficking have been
developed, however, many to date have failed to make it to
market for respiratory diseases. Table 1 describes the potential
targets and therapies developed, but key examples are provided
below and Figure 2 provides an overview of potential mechanisms.

Targeting Priming Agents, Chemokines or
Their Receptors
CXCR2 Inhibitors
CXCR2 is a major neutrophil and monocyte chemokine receptor,
responsible for controlling migration towards ligands such as
CXCL8. Inhibition of CXCR2 signalling is, therefore, an
attractive target to dampen recruitment to CXCL8-rich tissue.
The first report of a selective CXCR2 antagonist demonstrated
reduced neutrophil migration to CXCL8 both in vitro using
human neutrophils and in vivo blockade of neutrophil
margination within rabbits (120). Several studies confirmed
that blockade of CXCR2 reduced neutrophilic inflammation
including in cigarette smoke-exposed rats (121); in an acute
Frontiers in Immunology | www.frontiersin.org 7
lung injury model in mice (122) and in an LPS airway challenge
model in guinea pigs (123). Despite broad evidence from in vivo
and in vitro models, clinical trials using CXCR2 antagonists
provided a mixed picture.

The CXCR2 antagonist MK-7123 was used at various doses in
a small phase 2 study including 616 patients with COPD,
reporting that the highest dose of MK-7123 was able to
improve FEV1 and increase the time to exacerbation,
indicating a clinical benefit to patients. However, reductions in
absolute neutrophil counts led to withdrawal of 18% of patients
for safety reasons and there was also a significant increase in the
inflammatory marker, C-Reactive protein (CRP) (124).

In a clinical trial of danirixin, another CXCR2 inhibitor, initial
studies suggested clinical benefit in COPD (116). A subsequent
larger trial (including 614 COPD patients) (116) found no
significant clinical benefit in respiratory symptoms but
significantly exacerbations and pneumonia events in the highest
dose group, suggesting impairments in host responses to infection.

Targeting Other Chemokines and
Their Receptors
LTB4 is a potent and proinflammatory chemoattractant,
synthesised by neutrophils following the enzymatic conversion
of arachidonic acid and facilitated by 5-lipoxygenase activating
protein (FLAP). A study by Crooks et al. showed an increased
concentration of LTB4 at presentation of infective exacerbation,
compared to resolution of exacerbation, in a cohort of chronic
bronchitis patients. Moreover, this finding coincided with an
increase in sputum chemotactic and MPO activity, suggesting
the role of LTB4 in bronchial inflammation (125).

Blockade of LTB4 was investigated in a phase II, randomised and
placebo-controlled trial in a small cohort (n=17) of stable COPD
patients (115). Participants were randomised to receive BAYx1005,
an antagonist against FLAP, or placebo, for 14 days. Follow-up
spontaneous sputum collection (day 14) revealed significant
reduction of LTB4, compared to baseline, in the treated group.
Although this reduction did not show complete suppression of
LTB4, the observed change was similar to that observed at resolution
of an exacerbation of chronic bronchitis. Hence, this trial suggested
TABLE 1 | Therapeutic agents that target leukocyte function and their clinical trial results.

Category Target
(therapeutic agent)

Cohort Outcome Reference

Priming agent TNF-a (Infliximab) n=234 stable COPD,
randomised

No therapeutic benefit Rennard et al. (113)

TNF-a (Etanercept) n=81 AECOPD, randomised No therapeutic benefit vs prednisone Aaron et al. (114)
Migratory stimuli LTB4 (BAYx1005) n=17 stable COPD Non-significant reduction in bronchial inflammation Gompertz and Stockley (115)
Migratory receptors
(PMNs)

CXCR2 (Danirixin) N=614 symptomatic COPD,
randomised

No therapeutic benefit, increased exacerbations in
treated groups

Lazaar et al. (116)

Proteinases Neutrophil elastase
(Alvestat)

N=615 stable COPD,
randomised

No clinical benefit Kuna et al. (117)

Alvestat N=38 bronchiectasis,
randomised

Improved FEV1 Stockley et al. (118)

Migratory pathways PI3K (Idelalisib) N=5 lymphoma/leukaemia
patients

Impaired neutrophil functionality Alflen et al. (119)

Statins N=62 CAP+S Improved neutrophil chemotaxis Sapey et al. (112)
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the efficacy of LTB4-blockade for the reduction of neutrophil-
associated bronchial inflammation in patients with chronic
lung disease.

Animal models of COPD have begun testing other chemokine
receptor antagonists to identify promising candidates. CCR6 and
CXCR3 knockout mice displayed reduced lung inflammation and
evidence of protection against emphysema, when exposed to
cigarette smoke (126, 127). Treatment with anti-CCR5 in an
emphysema mouse model resulted in the reduction of apoptosis,
DNA injury and alveolar remodelling with a subsequent reduction
in lung inflammation (128). Whether there are any benefits of
targeting these receptors in human disease remains to be tested.

Priming Agents
TNF-a is a priming agent for neutrophils, inducing their
expression of b2 integrins and augmenting cell migration
(129). TNF-a-induced degranulation, release of reactive
oxygen intermediates and phagocytosis gives rise to local and
systemic inflammatory responses (130). Given its pro-
inflammatory consequences, studies suggest its role as a
primary mediator of inflammation in COPD disease
pathogenesis (131). Inhibition of TNF-a in COPD was
investigated by Rennard and colleagues who conducted a
randomised, placebo-controlled trial to assess the efficacy of
TNF-a antagonism in moderate to severe COPD patients
(113). A total of 157 patients were randomised to receive
Frontiers in Immunology | www.frontiersin.org 8
Infliximab, an anti-TNF- a antibody. No benefit was observed
in the treated groups compared to placebo, in terms of changes in
health status, lung function or exacerbation frequency. A later
trial, using an alternative TNF-a-antagonist, sought to determine
the efficacy of anti-TNF-a for the reduction of inflammation
in a cohort of exacerbating COPD patients (114) with no
clinical benefits.

Targeting Intracellular Processes
PI3K
The PI3K pathway, activated by binding of ligands to G-protein
coupled receptors, or tyrosine kinase receptors on the cell
surface, is implicated in numerous leukocyte functions (132).
Downstream effectors of PI3K activation include protein kinases
that regulate cell motility and membrane trafficking, scaffolding
proteins and other signalling processes (133). Neutrophils,
monocytes, macrophages and T cells have all been show to
require PI3K for chemotaxis, but also for phagocytosis through
similar mechanisms of actin remodelling (134). In vitro
experiments from neutrophils from older adults and COPD
patients showed a relationship between inaccurate neutrophil
migration and increased PI3K signalling, and that inhibition of
PI3Kg or d restored accuracy (77). Further in vitro experiments
using idelalisib, a PI3K inhibitor used for non-Hodgkin
lymphoma, showed that after TREM-1 ligation, idelalisib
reduced L-selectin shedding, oxidative burst, degranulation and
FIGURE 2 | Molecular targets for altering leukocyte trafficking. Multiple receptors and proteins have been targeted to alter leukocyte trafficking. Chemokine
receptors CXCR1, CXCR2, CXCR4 CCR5 and CCR6 have all been investigated either using pharmacological intervention or in early studies with gene knockout
models. Within the cell, key enzymes such as phosphoinositide 3-kinase (PI3K) and b-Hydroxy b-methylglutaryl-CoA reductase (HMG CoAR) that have been
implicated in cell motility.
July 2021 | Volume 12 | Article 704173

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Belchamber et al. Leukocytes and Lung Disease
cytokine release in neutrophils (119). The reduction in all key
neutrophil functions has led to some concerns about the
potential safety of this therapy, with both the potential to
normalise and neutralise neutrophil responses. In recognition
of this, studies in COPD have used inhaled PI3K inhibitor
therapies in the first instance, limiting systemic exposure. First
reports suggest signals of clinical benefit (135), but wider trials
are needed across all chronic lung diseases.

Repurposing Statins
Statins, or 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG CoA)
Reductase Inhibitors are primarily used to treat dyslipidaemia.
However, their association with reductions in all-cause mortality
has led to further exploration of their anti-inflammatory and
immunomodulatory properties. Several randomised controlled
trials have demonstrated the reduction of systemic inflammation in
cohorts treatedwith statins; a reduction in inflammatory biomarkers,
namely high-sensitivity CRP (hsCRP) and IL-6, were observed in
those treated with atorvastatin (136). Similarly, a downregulation of
IL-8and immunecell activationwasseen inHIVpatients treatedwith
pitavastatin (137). Observational studies suggested that statins were
associated with a reduction in mortality from pneumonia and
influenza, despite patients taking these therapies being older and
having more co-morbidities (138). Clinical trials have explored this
further (139) and older patients with community acquired
pneumonia and sepsis receiving 80mg simvastatin demonstrated
improved neutrophil chemotaxis and reduced systemic neutrophil
proteinase burden, as well as improving hospitalisation-free survival
compared to placebo (140). Unfortunately, this benefit was not
replicated in trials of statins in Acute Respiratory Distress
Syndrome (ARDS) (for example (141),) leading to statins falling
out of favour as an adjunct treatment. However, when patients were
sub-stratified into those with the highest burden of inflammation,
those with the most inflammation gained most benefit from a
statin intervention (142), suggesting the need for careful
patient selection.

In COPD the burden of inflammation rarely meets that seen
in pneumonia or ARDS, however it was recently shown that
neutrophils isolated from COPD patients, when incubated with
simvastatin, improved their migratory dynamics towards CXCL8
and fMLP, to levels similar to aged matched healthy controls
(143), indicating a potential benefit of statins directly on
leukocyte migration. Meta-analyses have suggested that statins
reduce not only cardiovascular risk in COPD, but also acute
exacerbations and CRP (144) although this finding has not been
universally (145), suggesting further studies are needed.

Targeting Neutrophil Proteinases
Neutrophil proteinases represent a promising target in chronic
respiratory diseases, including COPD, AATD and IPF, as
proteinases have been shown to be important in trafficking
processes. There are a number of neutrophil elastase inhibitors
under development (146).

In AATD, the clear association between neutrophil proteinases
and lung disease has led to the use of augmentation therapy of
infused AAT. This therapy is already licensed for use in some
countries within Europe and the USA, but only for limited
Frontiers in Immunology | www.frontiersin.org 9
indications in the UK. Studies such as the RAPID trial (167
patients, placebo controlled) have demonstrated a reduction in
the decline of lung function (147) and smaller studies have
highlighted the positive impact of augmentation on neutrophilic
inflammation (148). However, not all patients respond, and there is
now interest in determining who gains themost benefit, for example
by identifying and focusing on those with the fastest decline in lung
function (149).

Alvestat (AZD9668) is a selective NE inhibitor with oral
availability. In randomised control trials of COPD patients, 12
weeks of treatment with AZD9668 showed no positive effect on
exacerbation frequency, symptoms, lung function or inflammatory
biomarkers, but with 300 participants on active treatment, the study
was likely underpowered for these heterogeneous outcome
measures (117). Alvestat has also been studied in bronchiectasis,
where 4 weeks of treatment improved FEV1, highlighting a potential
signal of benefit (118). More recently, a trial of Brensocatib (an oral
reversible inhibitor of dipeptidyl peptidase 1 (DPP-1), an enzyme
responsible for the activation of neutrophil serine proteases) showed
a reduction sputum neutrophil proteinases and improvements in
clinical outcomes in bronchiectasis (150). This has renewed interest
in anti-proteinase therapies, with many more trials in development
or actively recruiting.
THE CHALLENGES OF
TREATMENT EFFICACY

Despite a strong rationale for targeting recruited immune cells,
results of many trials have been negative. This might reflect the
heterogeneity of the disease or population under study, a lack of
stratification of the patient population, the wrong dose, modality
or timing of the intervention.

Inflammation is very heterogeneous both within individuals and
between individuals (95) and some studies may be underpowered to
see changes in the biomarker they are assessing. Disease
heterogeneity is also considerable. For example, COPD is an
umbrella term for multiple pathologies and the resulting patient
population can be very diverse. Attempting to treat all patients with
the same therapy may hide the positive impact the treatment is
having on some, due to a lack of effect in others. An example of both
of these processes is that studies have highlighted a proportion of
COPD patients with a polymorphism in the TNFa receptor, who
experience an increased decline in FEV1, low body weight and
altered sputum neutrophil recruitment which could be reduced with
TNFa antibody (151). Potentially a lack of efficacy of TNFa in
COPD trials might reflect a recruited population which has not
been enriched for patients with this polymorphism. Other patient
characteristics may also influence trial effectiveness. These include
smoking status (as smoking retains the pro-inflammatory insult that
triggered the disease initially), frequency of exacerbation, and the
rate of lung function decline. The biology behind these differences in
patient phenotype needs to be understood to allow new targets to be
developed or repurposed therapies to be focused.

There have also been inconsistencies in the drug, dose and
modality of therapies used in clinical trials. For example, the variable
July 2021 | Volume 12 | Article 704173

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Belchamber et al. Leukocytes and Lung Disease
results from clinical trials of statins in chronic and acute lung disease
might reflect differences in doses (with the greatest effects on cellular
function seen at high dose), the population chosen (with most
beneficial effects seen in older adults) and the timing of the
intervention (with trials focusing earlier in the inflammatory
journey having greater impact than those based within the
Intensive Care Unit) (152). A more developed understanding will
be needed across all these variables before the full impact of
immunomodulatory targets can be harnessed for patient benefit.
CONCLUSION

Leukocyte trafficking represents a promising target for the treatment
of acute and chronic respiratory disease. These novel treatments
could target the pathophysiology of disease, and so may provide
significant impact for patients. However, often the complexity of
immune cell trafficking and function and the heterogeneity of both
patients and the respiratory disease have been poorly considered,
with a “one size fits all” approach deployed in clinical trials.
Frontiers in Immunology | www.frontiersin.org 10
Our increased understanding of physiological and pathological
immune cell responses provides an opportunity to rethink clinical
trials in this space. Recent studies have shown more promise when
targeting trafficking cells, and the learning from these studies have
led to the expectation of a raft of new immunomodulatory therapies
for lung disease in the near future.
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