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Pregnancy is an immunological paradox whereby maternal immunity accepts a genetically
unique fetus (or fetuses), while maintaining protective innate and adaptive responses to
infectious pathogens. This close contact between the genetically diverse mother and fetus
requires numerous mechanisms of immune tolerance initiated by trophoblast cell signals.
However, in a placental condition known as villitis of unknown etiology (VUE), there
appears to be a breakdown in this tolerance allowing maternal cytotoxic T-cells to traffic
into the placenta to destroy fetal villi. VUE is associated with several gestational
complications and an increased risk of recurrence in a subsequent pregnancy, making
it a significant obstetrical diagnosis. The cause of VUE remains unclear, but dysfunctional
signaling through immune checkpoint pathways, which have a critical role in blunting
immune responses, may play an important role. Therefore, using placental tissue from
normal pregnancy (n=8), VUE (n=8) and cytomegalovirus (CMV) infected placentae (n=4),
we aimed to identify differences in programmed cell death 1 (PD-1), programmed death
ligand-1 (PD-L1), LAG3 and CTLA4 expression between these etiologies by
immunohistochemistry (IHC). Results demonstrated significantly lower expression of
PD-L1 on trophoblast cells from VUE placentae compared to control and CMV
infection. Additionally, we observed significantly higher counts of PD-1+ (>100 cells/
image) and LAG3+ (0-120 cells/image) cells infiltrating into the villi during VUE compared
to infection and control. Minimal CTLA4 staining was observed in all placentae, with only a
few Hofbauer cells staining positive. Together, this suggests that a loss of tolerance
through immune checkpoint signaling may be an important mechanism leading to the
activation and trafficking of maternal cells into fetal villi during VUE. Further mechanistic
studies are warranted to understand possible allograft rejection more clearly and in
developing effective strategies to prevent this condition from occurring in utero.
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INTRODUCTION

Chronic villitis is a placental condition characterized by
inflammation and lymphohistiocytic infiltration into the
chorionic villi with or without necrosis, and is categorized into
either infectious villitis or non-infectious villitis, also known as
villitis of unknown etiology (VUE) (1). While villitis due to
infectious etiologies are rare (1-4/1000 pregnancies), 6.6-33.8%
of pregnancies are diagnosed with VUE following a term delivery
(2–4). Infectious villitis is secondary to transplacental
dissemination of microorganisms such as cytomegalovirus
(CMV), Treponema pallidum, Toxoplasma gondii and Herpes
simplex viruses (HSV) (5). On the other hand, the diagnosis of
VUE requires exclusion of infectious etiologies and is therefore
hypothesized to be an anti-fetal allograft response (6, 7). The
cellular composition of VUE predominantly includes T-cells
and macrophages with minor B-cell involvement (8, 9).
Immunohistochemical staining and in situ hybridization
demonstrate maternal origin of T-cells and both maternal and
fetal origin of macrophages, further supporting a breakdown in
maternal-fetal tolerance (10, 11).

Pregnancy can be likened to an allograft transplant where the
fetus contains a mixture of maternal and paternal genetic
material; yet maternal immune responses to the haploidentical
fetus during gestation are well-regulated to support the growth
and development of offspring. Therefore, the diagnosis of VUE
may represent a failure of tolerance and a resulting allograft
rejection response to the genetically unique fetus. This
hypothesis is supported clinically in that VUE is increased in
patients with autoimmune diseases such as systematic lupus
erythematosus and thyroid-related disease (12, 13). Neonatal
alloimmune thrombocytopenia is also associated with a VUE
diagnosis (14). In addition, a higher rate of VUE has been
observed in donor oocyte in vitro fertilization (IVF)
pregnancies, compared to native oocyte IVF, suggesting a
higher propensity of immunologic adverse effects in an entirely
foreign embryo (15, 16). More recently, pregnancies resulting
from IVF had a higher prevalence of VUE diagnoses compared
to spontaneously conceived pregnancies (16.2% vs. 8.3%) (17).
Lastly, VUE recurrence in a subsequent pregnancy is between
10-37%, which suggests that this etiology may lead to the
development of a maternal anamnestic memory response,
reactivated when re-exposed to the same fetal antigens (5, 18).

The instigator(s) of VUE still remain unknown. A unique
feature of the placenta is the expression of non-classical major
histocompatibility class I (MHCI) surface receptors, like human
leukocyte antigen (HLA)-G, which is uniquely expressed on
trophoblasts. These cells come in direct contact with maternal
blood, and yet do not elicit immune recognition as antibodies
directed at HLA-G are not detected in multigravid women (19,
20). Instead, high expression of HLA-G leads to short term
tolerance by binding ILT2 and KIR receptors on numerous
immune cells, and the release of soluble isoforms into the
plasma throughout pregnancy (21, 22). We note that MHC I/II
molecules are not expressed in normal term placentae (with the
exception of HLA-C), but can be detected at high levels in
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placentae diagnosed with VUE (23, 24). Upregulation of MHC
I/II on the trophoblast surface of placentae with VUE could
promote fetal antigen presentation facilitated by activated
macrophages and maternal T-cells (13). Cytokines and
chemokines also play a critical role in maternal-fetal tolerance
and could have an important role in maintenance of tolerance or
establishment of placental inflammation. Chemokines CXCL9,
CXCL10 and CXCL11 have been detected in maternal blood and
placentae of cases diagnosed with VUE (23, 25). Other
mechanisms to maintain tolerance include clonal deletion,
FAS/FAS L interactions, indoleamine2,3-dioxygenase (IDO)
expression and the presence of T-regulatory cells (26, 27).

Other mechanisms of immune tolerance, such as checkpoint
inhibitors, have not been investigated in the setting of VUE.
Immune checkpoint inhibitors on T-cells bind to their respective
ligands on antigen presenting cells and abrogate immune
responses, thereby preventing over-activation of immunity and
the development of autoimmune disease. In the past 10 years, the
critical role of the PD-1/PD-L1 interaction in tumor immune
tolerance has been established, and effective treatments targeted
at disrupting this interaction to reactivate an exhausted immune
system against the tumor have been developed. PD-1/PD-L1
promotes immune evasion by tumor cells and may be pivotal in
maternal-fetal tolerance (28, 29). PD-L1 is expressed by
trophoblast cells and circulates in maternal blood during
pregnancy (30, 31). Other immune checkpoint molecules
include the lymphocyte activation gene protein 3 (LAG3) and
cytotoxic T lymphocyte antigen-4 (CTLA4). LAG3 has been
described to synergistically act with PD-1/PD-L1 to dampen
immune responses by suppressing cytotoxic T-cell signaling (32).
Similarly, CTLA4 competes with immune stimulating CD28 on
T-cells to bind CD80 and CD86 on antigen presenting cells,
inhibiting the proliferation of T-cells and the release of pro-
inflammatory IL-2 (33). These semi-redundant pathways have
evolved to provide multiple levels of protection against
unwarranted immune responses and may have an important
role in the loss of fetal-maternal tolerance that likely occurs
during VUE.

Therefore, the goal of this study was to evaluate the
expression of PD-1, PD-L1, LAG3 and CTLA4 in placentae
diagnosed with VUE and compare it to expression in
infectious villitis and normal controls. We hypothesized that
the expression and abundance of these targets will significantly
differ from infectious villitis and controls because of
dysregulation of immune tolerance during VUE. To test this
hypothesis, tissues from paraffin blocks were cut and
immunohistochemistry completed to identity differences in
these immune checkpoint molecules.
METHODS

Case Selection
The Mayo Clinic Institutional Review Board approved this study
(#16-006099). The aim of the study was to compare differences in
July 2021 | Volume 12 | Article 705219
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checkpoint inhibitor expression in placentae with VUE,
cytomegalovirus (CMV) infection, and controls by
immunohistochemistry (IHC). Lymphocytes were identified by
H&E and hemotoxylin-counterstained IHC slides based on their
cytomorphologic features, including round small nuclei with
dense chromatin pattern, inconspicuous nucleoli, and small
amount of cytoplasm. Following histologic review by a
pathologist, residual formalin fixed paraffin embedded
placental tissues were identified. We chose 8 placentae with a
diagnosis of high grade VUE per definition by Khong et al. (34)
(presence of multiple foci of villitis, on more than one section, at
least one of which shows inflammation affecting more than 10
contiguous villi), 4 placentae diagnosed with placental infection
by cytomegalovirus (CMV) and 8 gestational age-matched
controls to the VUE cases. The control cases had no
identifiable pathology.

Immunohistochemistry (IHC)
Five-micron sections were cut, and tissues underwent
deparaffinization by xylene followed by antigen retrieval using
citrate buffer. Tissues were then stained with the following
primary antibodies overnight at 4°C: PD1 (clone NAT105,
1:200), PDL1 (clone SP142, 1:400), CTLA-4 (clone F-8, 1:50)
and LAG3 (clone 11-E3, 1:200). Following secondary antibody
incubation for 1 hour at room temp, slides were treated with 3,3′-
Diaminobenzidine (DAB, Sigma-Aldrich) for 15 minutes
followed by hemoxylin. Images were captured using a CellSens
Standard (Olympus Corporation Tokyo, Japan) on a BX51
Olympus microscope (Olympus Corporation Tokyo, Japan).

IHC Quantification
Measurements of PDL-1 membrane thickness and DAB intensity
were made using ImageJ Fiji, following the protocol described by
Crowe et al. (35). Ten representative images from each case were
gathered, blindly analyzed and compared. For PD-L1 thickness,
five separate measurements of villi from each representative
image were collected and averaged. Thus, for every case, the
mean membrane PDL-1 deposition was obtained by fifty distinct
measurements. To calculate DAB intensity, five images from
each case measured at a threshold set at 131 for each case. To
quantify PD-1, CTLA-4 and LAG3, the slides were reviewed by a
pathologist. In scanning power (10X), the hotspot areas were
identified and positive cells in 20 villi were counted in high power
(400X). If ≤20 villi in the entire section had positive cells, all the
positive cells in that sections were counted.
Frontiers in Immunology | www.frontiersin.org 3
Data Analysis
Patient demographics are reported as medians with ranges.
Results from our three groups were analyzed using Kruskal-
Wallis testing controlling for the false discovery rate (FDR) with
the method of Benjamini, Krieger and Yekutieli. Significance was
defined as a p-value ≤ 0.05. All statistical analyses and graphing
were performed using GraphPad Prism software version 9.1
(GraphPad Software, San Diego, CA).
RESULTS

Patient Characteristics
Twenty placental specimens were included in this study, 8 with a
VUE diagnosis, 4 with a CMV diagnosis and 8 identified to be
normal following pathological review. Demographics can be seen
in Table 1, displayed as medians and ranges. There were no
significant differences in our groups based on maternal age
(average maternal age of 31 years in our cohort). The number
of prior pregnancies was 2.5, which was similar between groups.
There was a significant difference in gestational age at birth, with
the CMV infected cohort having earlier births compared to
controls and VUE cases. The median gestational age at birth in
the VUE and control groups was also the similar. All mothers
had an uncomplicated postpartum course and the infant
APGARS at 1 and 5 minutes were equivalent (p=0.20 and
p=0.59, respectively).

PD-L1 Is Decreased in Non-Infectious
Chronic Villitis
To address the potential role of PD-L1 expression during
infectious and non-infectious etiologies, we ran IHC and took
10 representative images from each case for analysis using
ImageJ. There were observable differences between the groups
by microscopy (Figure 1A). As others have reported (36), PD-L1
staining was mainly localized to syncytiotrophoblasts, with
moderate staining on intermediate trophoblasts and minimal
expression on cytotrophoblast cells. We therefore quantified the
DAB signal and found that the VUE cases had significantly lower
PD-L1 staining intensity compared to control (p=0.009) and
CMV placentae (p=0.0008; Figure 1B). Although we saw some
evidence of increased PD-L1 expression in the CMV group
compared to controls, differences between groups did not meet
statistical significance (p=0.052). We then measured the
TABLE 1 | Basic cohort demographics.

Control (n = 8) VUE (n = 8) CMV (n = 4) P-value

Maternal Age (y) 35 (27-39) 30 (22-38) 25 (24-32) 0.0651
Gravidity 2.5 (1-5) 2.5 (1-6) 2 (2-3) 0.8092
Gestational Age at Birth (weeks.days) 39.4 (37-40.3) 39.0 (34.4-40.3) 34 (31-36) 0.0082
Female Fetus (%) 50 63 60
APGAR 1 minute 7 (5-8) 6 (0-9) 3.5 (0-8) 0.2037
APGAR 5 minutes 9 (6-9) 8 (4-9) 7.5 (0-9) 0.5858
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thickness of staining across the membrane and note that CMV
infection led to the most profuse villous staining of PD-L1
compared to controls (p=0.034) while the thickness was
significantly decreased in placentae diagnosed with VUE
compared to both control (p=0.004) and CMV (p=0.0001;
Figure 1C). These data indicate that PD-L1 expression is
decreased in placentae with a VUE diagnosis and increased
during infection with CMV.

PD-1+ Cells Are Increased in Villous
Tissue During VUE and CMV Infection
We then quantified PD-1, the receptor to PD-L1, which is
expressed on immune cells. Following IHC staining, 10
representative images from each case were captured and
counted. Unsurprisingly, there were almost no PD-1+ cells that
could be identified in the control placentae (Figure 2A). We then
counted the number of PD-1+ cells in VUE and CMV. VUE
placentae showed the highest number of PD-1+ cells (average 93
cells/image) compared to CMV (73.5 cells/image), which was not
a significant difference (p=0.26; Figure 2B). Compared to
control, non-infectious chronic villitis (p=0.0004) and CMV
(p=0.005) had significantly more PD-1+ cells in each image.
Frontiers in Immunology | www.frontiersin.org 4
Thus, PD-1+ cells are most abundant in VUE and CMV
infection compared to in normal control tissue.

Variable Expression of Other Checkpoint
Receptors in Placentae
Lastly, we stained for LAG3 and CTLA4, other known
checkpoint molecules, in our three groups. Positive cells were
counted and averaged from a total of 10 images taken from each
case. Figure 3A staining demonstrated significant infiltration of
LAG3+ cells in VUE compared to controls (49 vs. 0.2 cells/image;
p=0.05). However, there was a high level of variability noted
across the VUE cases (0-116 cells/image; Figure 3B). We did not
see evidence of a difference in LAG3+ cells between VUE and
CMV infection (49 vs. 7 cells/image; p=0.399), and CMV
infection and control cases (7 vs. 0.2 cell/image; p=0.40). In
contrast, overall expression of CTLA4+ cells in the placental villi
was negative in all three groups, with only a few fetal
macrophages staining positive (Figure 4). Together, VUE
appears to be associated with greater infiltration of LAG3+
cells compared to infection and controls, but cells expressing
CTLA4 are generally absent in the placenta from our
three groups.
A B

C

FIGURE 1 | PD-L1 expression in placentae with infectious and non-infectious diagnoses. (A) Representative PD-L1 staining in all three groups (200X). (B) Average
intensity of DAB staining between control, VUE and CMV groups. (C) Mean PD-L1 membrane thickness between groups. Graphs show median with interquartile
ranges. Data was compared by Kruskal-Wallis testing with post hoc analysis using the false discovery rate method of Benjamini, Krieger and Yekutieli (n=4-8/group).
*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.0001.
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A B

FIGURE 3 | Placental abundance of LAG3+ cells during CMV, VUE and in controls. (A) Representative LAG3 staining in all three groups (200X). (B) Average count
of LAG3+ cells image in each group. Median with interquartile ranges are represented in the graph. Significance was determined by Kruskal-Wallis with false
discovery rate correction by Benjamini, Krieger and Yekutieli (n=4-8/group). *p ≤ 0.05.
A B

FIGURE 2 | PD-1+ cells in placentae with CMV, VUE and controls. (A) Representative PD-1 staining in all three groups (200X). (B) Average count of PD-1+ cells per
20 villi in control, VUE and CMV placentae. Graphs show median with interquartile ranges and significance was determined by Kruskal-Wallis testing with false
discovery rate correction by Benjamini, Krieger and Yekutieli (n=4-8/group). ***p ≤ 0.0001.
Frontiers in Immunology | www.frontiersin.org July 2021 | Volume 12 | Article 7052195

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shahi et al. Checkpoint Molecules in Placental Villitis
DISCUSSION

VUE, a diagnosis characterized by the infiltration of maternal
CD8+ T-cells into villous tissue of the placenta without
infectious cause, is hypothesized to be the result of an immune
rejection response targeted against the haploidentical fetus
during pregnancy. While the cause remains unknown, we
hypothesized that this could be reflect dysregulation of
checkpoint molecules which play a critical role in maintaining
maternal-fetal tolerance. Our results demonstrate that VUE leads
to downregulation of PD-L1 and upregulation of receptors PD-1
and LAG3 on infiltrating cells. This expression pattern is unique
from placentae infected with CMV, and the changes in these
checkpoint interactions, which ultimately dampen immune
responses, may have a significant role in initiation of
VUE pathogenesis.

The discovery of proteins that turn off activated lymphocytes,
termed checkpoint receptors, has revolutionized the field of
tumor immunology through the development of therapeutic
strategies that block these interactions, thereby maintaining
immune cell activation and tumor cell killing. The first was
CTLA4, which binds CD80/CD86 to negatively regulate T-cell
activation and blockade leads to anti-tumor immune responses
(37, 38). Next, the interaction between PD-1 and PD-L1 was also
found to cause cell death in activated T-cells, which tumors
expressing high levels of PD-L1 use to evade the immune system
(39, 40). Recent focus has turned to disrupting LAG3 signaling
through MHC class II to promote immune activation against
tumors (41, 42). Like the tumor microenvironment, trophoblasts
interact with decidual immune cells at the maternal-fetal
interface through checkpoint receptors, which are critical for
pregnancy success. Guleria et al. reported increased allogeneic,
Frontiers in Immunology | www.frontiersin.org 6
but not syngeneic, fetal loss in murine models treated with PD-
L1 blockade, which also increased proinflammatory cytokine
signaling (28). However, other groups have shown that deletion
of PD-1 or PD-L1 has no impact on pregnancy outcomes (7).
T regulatory cells (T regs) in the normal decidua have been
observed to express high levels of CTLA4 and, in specimens from
spontaneous abortion cases, the proportion of CTLA4+ T reg
cells were found to be significantly lower (43, 44). More recently,
upregulation of PD-1 and LAG3 has been found on CD8+
maternal T-cells that recognize fetal antigen from a first
pregnancy and are subsequently exposed to the same fetal
antigens during a second pregnancy (45). This data proposes a
priming mechanism occurs between pregnancies which
promotes fetal antigen-specific immune tolerance responses in
the mother. Together, these studies indicate a critical role for
immune checkpoint receptors in mediating maternal immune
tolerance to the allogenic fetus.

Expression of checkpoint receptors in VUE have not been
examined, but as this etiology has been hypothesized to be an
allograft rejection response, presence or absence of these
suppressive regulatory signals are pertinent. In tissue transplant,
allograft rejection is a common complication, and occurs when
lymphocytes from the recipient infiltrate into donor tissue leading
to organ failure (46). Antibody-mediated organ failure, as
measured by C4d expression, is used clinically to assess
transplant rejection (47). Placentae diagnosed with VUE have
been found to have increased staining for C4d in the
syncytiotrophoblast layer (48). ICAM-1, a surface glycoprotein
that is upregulated upon cytokine stimulation resulting in the
migration of immune cells into tissue, is upregulated on
trophoblast cells and leukocytes in chronic villitis (49).
Interestingly, anti-ICAM-1 antibodies showed preclinical
promise for improving allograft survival, randomized clinical
trials demonstrated no benefit (50, 51). Demise of a fetus after
20 weeks gestation could be considered an extreme rejection
response. In a cohort of 40 fetal demise cases, placental
examination showed that approximately 58% had a chronic
inflammatory lesion defined as chorioamnionitis, VUE or
chronic deciduitis (52). Importantly, chronic inflammation did
not correlate with the detection of microorganisms.

Despite the recent advancements in our understanding of
VUE as a fetal rejection response, it is not yet possible to rule out
the presence of a subclinical infectious etiology. At least in a
subset of VUE cases, undiagnosed pathogens were later detected
(5, 53). While a bacterial etiology could not be confirmed by PCR
for universal bacterial 16S rRNA, at least one herpesvirus strain
has been detected in half of the VUE cases tested (54, 55).
However, differences in histological and clinical manifestations
of VUE from the known infectious etiologies suggest distinct
inflammatory processes. Morphologically, VUE tends to involve
the placental parenchyma in a patchy pattern with a higher rate
of distal villi distribution, whereas in infectious villitis, the
distribution is more diffuse with concurrent involvement of
umbilical cord, chorionic plate, and membranes (5). While the
presence of plasma cells does not exclude a VUE diagnosis,
marked plasmacytic infiltration is more often associated with an
infectious processes like CMV or other viruses (56).
FIGURE 4 | CTLA4 is weakly expressed in the placenta but is found on a
few Hofbauer cells. Representative CTLA4 staining in all three groups (200X).
July 2021 | Volume 12 | Article 705219
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The results of our study show increased expression of PD-L1
in CMV infectious villitis. CMV infected dendritic cells have
been reported to express higher levels of PDL-1 (57). Thus, PD-
L1 overexpression by CMV-infected cells could be a mechanism
to support viral replication. Having only studied CMV related
infectious villitis, we cannot infer that other agents induce similar
PD-L1 expression. While much of the focus is on T-cells,
immunologic activation in the Hofbauer cells during VUE has
also been observed, and studies have demonstrated that CMV
has a tropism for Hofbauer cells of the placenta (58, 59).
Therefore, Hofbauer cells have an important role in the
pathophysiology of both conditions, which requires further
characterization. In VUE, our results show increased PD-1
expression in infiltrating lymphocytes and decreased PD-L1
expression in trophoblasts, implying a possible loss suppressive
signals leading to the propagation of T-cell activation signals and
resulting inflammation. This has been observed in autoimmune
disease, where depleting PD-1+ autoreactive T cells in mice with
type I diabetes or autoimmune encephalomyelitis led to delayed
disease onset and improvement of symptoms (60). Though our
small sample size is small, the data demonstrates differences in
immune checkpoint receptor expression in infectious versus
non-infectious villitis which should be explored further.

To conclude, differential expression of PD-L1 and abundance
of PD-1 and LAG3 is seen in placentae diagnosed with VUE
compared to CMV infection. These data suggest that disruption
of maternal-fetal tolerance through checkpoint receptor
signaling may be an important mechanism in the development
of VUE. Further understanding of the precise etiology and
pathophysiology of VUE will require a multidisciplinary and
Frontiers in Immunology | www.frontiersin.org 7
systems biology approach to effectively address this sometimes-
devastating placental condition.
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