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Autoimmune diseases (ADs) could occur due to infectious diseases and vaccination
programs. Since millions of people are expected to be infected with SARS-CoV-2 and
vaccinated against it, autoimmune consequences seem inevitable. Therefore, we have
investigated the whole proteome of the SARS-CoV-2 for its ability to trigger ADs. In this
regard, the entire proteome of the SARS-CoV-2 was chopped into more than 48000
peptides. The produced peptides were searched against the entire human proteome to
find shared peptides with similar experimentally confirmed T-cell and B-cell epitopes. The
obtained peptides were checked for their ability to bind to HLA molecules. The possible
population coverage was calculated for the most potent peptides. The obtained results
indicated that the SARS-CoV-2 and human proteomes share 23 peptides originated from
ORF1ab polyprotein, nonstructural protein NS7a, Surface glycoprotein, and Envelope
protein of SARS-CoV-2. Among these peptides, 21 peptides had experimentally
confirmed equivalent epitopes. Amongst, only nine peptides were predicted to bind to
HLAs with known global allele frequency data, and three peptides were able to bind to
experimentally confirmed HLAs of equivalent epitopes. Given the HLAs which have
already been reported to be associated with ADs, the ESGLKTIL, RYPANSIV,
NVAITRAK, and RRARSVAS were determined to be the most harmful peptides of the
SARS-CoV-2 proteome. It would be expected that the COVID-19 pandemic and the
vaccination against this pathogen could significantly increase the ADs incidences,
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especially in populations harboring HLA-B*08:01, HLA-A*024:02, HLA-A*11:01 and HLA-
B*27:05. The Southeast Asia, East Asia, and Oceania are at higher risk of
AD development.
Keywords: autoimmune disease, SARS-CoV-2, vaccination, peptide, HLA, population coverage
INTRODUCTION

In 2019, the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) caused a disease called coronavirus disease 2019
(COVID-19). It rapidly turned into a threat to global health and
a progressive pandemic disease in many countries worldwide (1,
2). SARS-CoV-2 genome encodes for 14 open reading frames
(Orfs). The Orf1a/Orf1ab encodes pp1a and pp1ab polyproteins
which are further cleaved by virus-encoded proteases into 16
non-structural proteins (Nsps) (3, 4). The remaining Orfs encode
structural proteins such as spike glycoprotein (S), the small
envelope glycoprotein (E), the membrane glycoprotein (M),
and a nucleocapsid protein (N) (3, 5). SARS-CoV-2 inters into
the host cells via the interaction between the S glycoprotein of the
virus and the angiotensin-converting enzyme 2 (ACE2) and the
type II transmembrane serine protease (TMPRSS2) of the host
cells. The S glycoprotein binds to the ACE2 receptor through its
receptor-binding domain (RBD), which spans the 331 to 524
residues (4–7).

Autoimmune disease occurs when the body loses its
immunological tolerance to its antigens (the failure of self-
tolerance). ADs can appear anywhere in the body and three
factors that induce and perpetuate autoimmune disease are
hampered immune regulation, environmental factors, and
genetic predisposition (8–11). Recent data have shown that
environmental factors such as infectious agents (including
viruses, bacteria, parasites, and fungi), dietary ingredients, and
toxic Chemicals contribute more than 70% to loss of self-
tolerance and, as result, autoimmunity (12–14). Autoimmune
diseases could be induced by viruses (15). There are also some
bacteria-induced autoimmune diseases (16). Moreover, immune
responses to Candida albicans in peripheral blood lymphocytes
and synovial fluids suggested that fungi may also lead to
autoimmunity (17). Three major mechanisms of the infectious
agents to trigger autoimmune diseases include bystander
activation, epitope spreading, and molecular mimicry (12, 18).
In the bystandermechanism, infected cells can activate uninfected-
cells through intercellular communication (gap junctions), co-
receptor expression [natural Killer group 2D (NKG2D), CD122,
TLR (toll-like receptor)], and soluble signals (cytokines).
Nonspecific activation of B and T cells is called bystander
activation and is known by the activation of lymphocytes
detached from the BCR/TCR specificity (18). Release of self-
antigens during inflammatory or chronic autoimmune responses,
can lead to autoimmune reactions against endogenous epitopes in a
phenomenon known as epitope spreading (ES) (19). The ES can be
induced by changes in protein structure, such as the conversion of
arginine to citrulline. This change triggers an immune response to
the original protein and its citrullinated form. Moreover, similar
org 2
responses could be elicited against other citrullinated proteins; this
mechanism is a characteristic of rheumatoid arthritis (RA).
Pemphigus bullous, Systemic lupus erythematosus (SLE),
pemphigoid, multiple sclerosis, and some other autoimmune
diseases are all affected by intramolecular and intermolecular B
cell epitope spreading. Somatic hyper-mutation, antigen
presentation, and endocytic processing are the molecular
mechanisms that support epitope spreading. They also enhance
the immune response in ADs (20). Molecular mimicry is another
mechanism of developing autoimmunity. This mechanism could
lead to the activation of cross reactive T and, or B cells. It occurs
when infectious agents contain foreign antigens similar in structure
and sequence to the human self-antigens (21–23). Thismechanism
is implicated in the pathogenesis of many autoimmune diseases
such as Graves’ disease, MS, spondyloarthropathies, and diabetes
mellitus (24–26).

Recently, the association of various diseases with SARS-CoV-
2 has been investigated, one of the most well-known of which are
ADs. During the studies on ADs, the impact of SARS-CoV-2 in
the progression of autoimmunity has been proven. Studies on the
correlation of SARS-CoV-2 infection with diseases such as
immune thrombocytopenic purpura (ITP), Miller Fisher
syndrome (MFS), Kawasaki (KD), RA, Guillain-Barre
syndrome (GBS), and SLE suggested that there is a connection
between SARS-CoV-2 and autoimmune disorders. Infection with
SARS-CoV-2 acts as a turning point for the progression of
autoimmune disease. COVID-19 could reduce the threshold of
immunological tolerance through molecular mimicry and
epitope spreading (27, 28). The study for the feasibility of
autoimmune responses against protein targets in SARS-CoV-2
infection demonstrates that different organs could be affected by
anti-SARS-CoV-2 immune responses, and cytopathic effects
could be directly induced. Moreover, the role of self-reactive
antibodies in the infectious process of the viruses should not be
overlooked (29). Another correlation study has been conducted
on the lupus erythematosus. According to the results of this
study, a significant increase in the levels of anti-SARS-CoV-2
antibody is visible in autoantibody-positive patients (50% of 21
ICU China patients & 92% of 11 ICU German patients) (30). A
case report on a young woman with recurrent immune‐mediated
lymphocytic fulminant myocarditis (FM) has also brought some
evidence in to light. The outcome of this study points out that the
autoimmune disease can activate or reactivate in patients with an
immunogenic background via significant infections such as
COVID-19. This means that predisposition to such genetic
history can act as a powerful trigger for the immune system to
respond beyond normal (31). It has also been revealed that the
risk of COVID-19 is higher in the patients suffering from
autoimmune diseases (32).
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In the present study, we aimed to analyze the whole proteome
of the SARS-CoV-2 for potential antigenic regions capable of
triggering autoimmune responses. In silico studies have already
been widely used to solve biological challenges (33–41). Various
in silico tools have been harnessed to analyze the MHC2 binding
epitopes of the SARS-CoV-2 proteome and assess their possible
involvement in ADs. Moreover, the global HLA susceptibility
map of SARS-CoV-2 for ADs was attained.
METHODS

Study Flowchart
The study includes the analyses of more than 48000 peptides
using various in silico tools to find out the most potent ADs
inducing SARS-CoV-2 peptides. The designed procedure
includes mutiple steps to gather reliable data about the ability
of the SARS-CoV-2 proteome to trigger ADs following the
COVID-19 or possible vaccination programs. The following
diagram shows the study steps to get a better grasp of the
analyses which would be conducted (Figure 1).

Generation of Peptide Library for
SARS-Cov-2 Proteome
The sequence for full polyprotein 1ab (ORF1ab), spike (S) protein,
envelope (E) protein, nucleocapsid (N) protein, and membrane (M)
protein, nonstructural protein NS3, nonstructural protein NS6,
nonstructural protein NS7a, nonstructural protein NS7b, and
nonstructural protein NS8 were obtained from the National Center
of Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.
gov/). The obtained sequences were confirmed with the sequences
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stored in the UniProtKB (https://www.uniprot.org/). The peptide
generator server (https://www.peptide2.com/peptide_generator.
php) was employed to dissect the viral proteome into 8mer, 9mer,
10mer, 11mer, and 12mer overlapping peptide libraries, while the
overlapping amino acid count was set to be 7, 8, 9, 10, and
11, respectively.

Peptide Similarity Search
The generated peptides for the SARS-CoV-2 proteome were
checked against the human proteome to quickly retrieve all
occurrences for a given query peptide from the UniProtKB
protein sequences. The PIR Peptide Match tool was used to
find the peptide matches. Employing the multiple peptide match
interface of the PIR (https://research.bioinformatics.udel.edu/
peptidematch/batchpeptidematch.jsp), the generated peptide
libraries were checked against the human proteome [Homo
sapiens [9606] (210556 seq.)] of the UniProtKB release
2020_05 plus isoforms (195,707,930 sequences). The search
was set to include the isoforms to encompass all possibilities.
In the case of the existing peptide match, the corresponding
protein from the Human proteome was searched in UniProtKB.
The information about the gene name, cellular functions, and
protein-protein interaction network from the String server
(https://string-db.org/) were extracted to analyze their possible
correlation with autoimmune diseases.

Prediction of Peptide-MHC Class I
Binding Affinity
The Immune Epitope Database (IEDB) (http://www.iedb.org/)
was searched to find equivalent epitopes similar to SARS-CoV-2
peptides. The search was restricted to epitopes which are
FIGURE 1 | The study follow chart.
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experimentally tested for their ability to bind to adaptive
immune receptors [T cell receptor (TCR), antibody or B cell
receptor (BCR), or major histocompatibility complex (MHC)].
The search was also narrowed to include linear human epitopes
with 90% identity to SARS-CoV-2 peptides. All of the SARS-
CoV-2 peptides with a matching epitope in human proteome
were assessed in IEDB search. The corresponding proteins for
experimental IEDB epitopes were analyzed in the UniProt
database. Moreover, the experimentally confirmed HLAs for
equivalent IEDB epitopes and the involved disease were
extracted from the IEDB epitope search results. The SARS-
CoV-2 peptides with equivalent experimental IEDB epitopes
were evaluated for their MHC class I-peptide binding affinity.
These predictions were carried out against 145 different HLA
alleles. These alleles were selected due to the availability of their
global allele frequency data. The NetCTLpan 1.1 Server (http://
www.cbs.dtu.dk/services/NetCTLpan/) was used to predict the
CTL epitopes in the sequences of the selected peptides. The
NetMHCpan 4.1 server (http://www.cbs.dtu.dk/services/
NetMHCpan/) was used to predict the peptide-MHC class I
binding using artificial neural networks (ANNs). Octamer
peptides and the selected 145 HLA alleles were set to conduct
the analyses. Moreover, the exact prediction was made for the
selected SARS-CoV-2 peptides against the experimentally
confirmed HLAs of equivalent IEDB epitopes.

HLA Structures
The protein data bank (RCSB PDB) (https://www.rcsb.org/) and
the PDBflex database (www.pdbflex.org) were used to find the
3D structures of the HLA molecules. The structure of the
predicted HLAs for SARS-CoV-2 peptides and the structures
of the experimentally determined HLAs for IEDB epitopes were
obtained from the RCSB PDB. The structures resolved by the x-
ray diffraction method, accompanied by a peptide, and had the
highest resolution were selected for further evaluations. The
Chimera 1.10.2 software was used to remove the redundant
(peptide chains and the unwanted non-protein molecules) chains
from the HLA structures. This would prepare them for the
following docking analyses.
Peptide Modeling
The structures of: (a) SARS-CoV-2 peptides with existing HLA
predictions, and (b) the SARS-CoV-2 peptides predicted to bind
to experimentally confirmed HLA molecules of the equivalent
IEDB epitopes, were required to confirm their ability to bind to
corresponding HLAs. Therefore, peptide modeling software was
harnessed to determine the 3D structure of these peptides. The
PEPSTRMOD server (http://osddlinux.osdd.net/raghava/
pepstrmod/nat_ss.php) and PEP-FOLD 3.5 server (https://
mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#forms::PEP-
FOLD3) were employed to model the peptides. These servers are
capable of modeling the peptides with natural amino acids. The
quality of the modeled peptides was assessed using the QMEAN
server (https://swissmodel.expasy.org/qmean/). The Protein
Data Bank File Editor software was used to assign chain IDs
for modeled epitopes.
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Molecular Docking
Molecular docking analysis was done for the modeled peptides
with existing resolved HLA structures. The structures of the HLA
molecules and the modeled peptides were used to perform the
molecular docking study. The CABS-dock (http://biocomp.
chem.uw.edu.pl/CABSdock), HPEPDOCK (http://huanglab.
phys.hust.edu.cn/hpepdock/), and HADDOCK (https://wenmr.
science.uu.nl/haddock2.4/) servers were used to perform the
analyses. Both chains of the HLA molecule and the modeled
peptides were set as the input molecules. Chimera software was
used for visual inspection of the docked complexes to ensure
their correct interaction orientation. FireDock (http://bioinfo3d.
cs.tau.ac.il/FireDock/) refinement server utilizes a coarse
refinement method to optimize the interaction in molecular
docking studies. The software was used to refine the docked
complexes. The results of the FireDock software were fed to
rigid-body orientation and side-chain conformations
optimization by the RosettaDock server (http://rosettadock.
graylab.jhu.edu/).

Binding Energy Calculation
Aside from the correct interaction orientation, the docked
protein-peptide complexes should have strong binding energy
to keep them together to properly present on the surface of
immune cells. The PRODIGY (PROtein binDIng enerGY
prediction) server (https://wenmr.science.uu.nl/prodigy/) was
invoked to predict binding affinity in docked complexes. All of
the docked complexes were subjected to this analysis. Moreover,
the originally selected HLA complexes were checked for their
binding affinity against their accompanying peptides as a positive
control in comparison with the docked complexes.

Data Validation and Disease
Association Search
All identical peptides with human proteome were searched in
IEDB to find similar experimentally validated epitopes. The
corresponding HLA class I of experimental epitopes was
evaluated via an integrated approach for the SARS-CoV-2
peptides. A literature review was conducted to invoke
experimental studies as supporting evidence for SARS-CoV-2
and autoimmune disease association. The miPepBase database
(http://proteininformatics.org/mkumar/mipepbase/index.html)
is a database of experimentally verified peptides involved in
molecular mimicry, which was used to find any Molecular
Mimicry of matching peptides. Cross reactivity between the
human “disease-related” epitopes and the matching peptides of
the pathogen could trigger autoimmunity in a process, which is
called molecular mimicry. On the other hand, the Gene and
Autoimmune Disease association Database (GAAD) (http://
gaad.medgenius.info/genes/) was employed to describe the
possible association between genes and autoimmune disease.
The gene IDs of the human proteins, which were obtained
from the peptide match search, were used to run the analyses.
The search would be carried out among the 4,186 genes which
are found to associate with autoimmune diseases. It was
important to know if the IEDB peptides were associated with
August 2021 | Volume 12 | Article 705772
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any autoimmune diseases. Therefore, the miPepBase database
was used to find epitopes with the ability to trigger Molecular
Mimicry for autoimmune diseases. All of the IEDB epitopes
found in the previous section were fed as input for these analyses.
The possible association between the genes of the IEDB proteins
and autoimmune disease were described by GAAD database. The
gene IDs of the proteins (corresponding to the IEDB epitopes)
were obtained from UniProt database. Moreover, a thorough
literature review was also performed to find existing incidence of
auto immune diseases following the COVID-19.

Population Coverage
The population coverage analyses were done using the IEDB
population coverage tool (http://tools.iedb.org/population/).
This tool is used to calculate the fraction of individuals
predicted to respond to a given epitope set based on HLA
genotypic frequencies and on the basis of MHC binding and,
or T cell restriction data. Two runs of population coverage
analyses were executed for the obtained HLA and peptide sets.
The first run was done for the SARS-CoV-2 peptides with
existing HLA predictions. The second run was done for the
SARS-CoV-2 peptides predicted to bind to experimentally
confirmed HLA molecules of the equivalent IEDB epitopes.
Moreover, to analyze the combined population coverage of all
peptides and their predicted HLA molecules, another run was
performed. The analyses were limited to the class one HLA
molecules, and the selected areas and populations were set to
include all of the possible areas and populations within
the server.
RESULTS

Peptide Library Generation
The genomic RNA sequences of full polyprotein 1ab (ORF1ab),
spike (S) protein, envelope (E) protein, nucleocapsid (N) protein,
membrane (M) protein, nonstructural protein NS3,
nonstructural protein NS6, nonstructural protein NS7a,
nonstructural protein NS7b, and nonstructural protein NS8
were found under the protein IDs of QHR63289.1,
QHR63290.2, QHR63292.1, QHR63298.1, QHR63293.1,
QHR63291.1, QHR63294.1, QHR63295.1, QHR63296.1, and
QHR63297.1, respectively. All possible 8- to 12-mer peptides
were generated from the SARS-CoV-2 proteome. 48530 peptides
were generated and organized in 8mer, 9mer, 10mer, 11mer, and
12mer overlapping peptide libraries. Since the sliding window of
peptide generation has one amino acid step size, each amino acid
differed by one amino acid from its previous peptide.

Matching Peptides in the Human
Proteome
Searching for matching peptides among the human proteome
sequences unveiled the existence of 23 SARS-CoV-2 peptides
with exact matches within the human protein. All of the
matching peptides were from the octamer library, and no other
peptide libraries with different lengths had any matching
Frontiers in Immunology | www.frontiersin.org 5
peptides. Some of the peptides were found in more than one
human protein. The list of SARS-CoV-2 octamer peptides and
some information about the matching human proteins are
presented in Table 1. The protein-protein interaction networks
of the found proteins are presented in Supplementary Figure 1.
Data regarding the tissue specificity of the found human proteins
are represented in Supplementary Table 1. The corresponding
proteins of Eight out of 23 SARS-CoV-2 peptides had been
shown to be expressed within heart tissue.

MHC-Binding Prediction
The IEBD search indicated that 21 (out of 24 SARS-CoV-2)
peptides have experimentally confirmed equivalent epitopes with
at least 90% of similarity. There was no exact match between the
selected SARS-CoV-2 peptides and the IEBD epitopes.
Moreover, there were no predicted posttranslational
modifications for SARS-CoV-2 peptides. Since IEDB epitopes
are tested for binding to an adaptive immune receptor, the SARS-
CoV-2 peptides with over 90% sequence similarity could be
expected to show similar immunological outcomes. The
corresponding proteins, experimental HLAs, and involved
diseases for equivalent IEDB epitopes are presented in
Supplementary Table 2. Selected SARS-CoV-2 peptides were
also checked against 145 HLAs with known global allele
frequency data. The obtained results indicated that some of the
selected SARS-CoV-2 peptides are capable of binding to these
HLA molecules. It has been predicted that the peptides including
the ESGLKTIL (binds to: HLA-B*08:01), EVLLAPLL (binds to:
HLA-B*51:07), NVAITRAK (binds to: HLA-A*34:02),
RYPANSIV (binds to: HLA-A*24:02, HLA-A*24:03, HLA-
A*24:07, HLA-C*14:02, and HLA-C*14:03), RRSFYVYA (binds
to: HLA-B*27:02, HLA-B*27:03, HLA-B*27:04, and HLA-
B*27:05), and RFNVAITR (binds to: HLA-A*33:03 and HLA-
A*74:01) are the only SARS-CoV-2 peptides predicted to bind to
some of the examined HLA alleles. The capability to bind to HLA
molecule indicates that these epitopes are potentially
immunogenic. The results of the similar prediction for selected
SARS-CoV-2 peptides against the experimentally confirmed
HLAs of equivalent IEDB epitopes indicated that the peptides
including the RRSFYVYA (binds to: HLA-B*27:05),
NVAITRAK (binds to: HLA-A*11:01), and RFNVAITR (binds
to: HLA-A*31:01) could bind to examined HLA molecules.

Preparation of HLA 3D Structures
It is vitally important to gather structural information about the
interactions between an epitope and its HLA molecule. The 3D
structures of some HLA molecules are already resolved and
stored in protein structure databases. The search within the
RCSB PDB indicated that four cases of the predicted HLAs for
SARS-CoV-2 peptides and 61 cases of experimentally
determined HLAs for IEDB epitopes have 3D structures. Some
of the HLA molecules had more than one resolved structure. The
structure with the highest resolution was selected for further
analyses. The structures of the accompanying epitopes were
removed from the chosen HLA structures. Supplementary
Table 3 listed the RCSB PDB IDs for the HLA molecules,
found with a resolved 3D structure. The accompanying
August 2021 | Volume 12 | Article 705772
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TABLE 1 | The results of peptide (octamers) similarity search between SARS-CoV-2 peptides and human proteome.

Protein Name Length String ID Match Range

488 ENSP00000362010 FSGYVESGLKTILQCALN 404-411
heparan sulfate N-deacetylase/N-sulfotransferase 1 882 ENSP00000261797 VTRPSEVEKGVLPGEDWT 214-221
s protein-like 1 515 ENSP00000282570 PDSETDEDEEEGDEQQRL 69-76
nd C2 domain-containing protein 1A 951 ENSP00000313601 LCMRDPDEDEEEGTDEDD 84-91
microtubule-associated protein-like 1 815 ENSP00000334314 QMQEDDIQLLKSALADVV 51-58
tion factor-like protein 6-interacting protein 4 276 ENSP00000306788 TAPGAEVLLAPLLPPRPP 237-244
e MCM8 840 ENSP00000368164 IHARVYNYEPLTQLKNVR 199-206
ane protein adipocyte-associated 1 373 ENSP00000347748 ISLPSRRSFYVYAGILAL 225-232
sophosphatidyl glycerol acyltransferase 1 370 ENSP00000355964 TSQAFAKKNNLPFLTNVT 199-206
r family 12 member 7 1083 ENSP00000264930 KYRSRDTSLSGFKDLFSM 995-1002
protein I 756 ENSP00000362018 CSVLQSLKELLQNWLLWL 496-503
ine alpha-amidating monooxygenase precursor 973 ENSP00000306100 KLIKEPGSGVPVVLITTL 860-867
I3 125 ENSP00000313601 SRTVTRYPANSIVVVGGC 66-73
tein sorting-associated protein 4B 444 ENSP00000297290 GILLFGPPGTGKSYLAKA 174-181
licase senataxin 2677 ENSP00000238497 ICLIHGPPGTGKSKTIVG 1963-1970
tein sorting-associated protein 4A 437 ENSP00000224140 GILLFGPPGTGKSYLAKA 167-174
ion ATP-dependent helicase/nuclease DNA2 1060 ENSP00000351185 DWRRLNVAITRAKHKLIL 1001-1008
nonsense transcripts 1 1129 ENSP00000470142 PLSLIQGPPGTGKTVTSA 502-509
zinc finger domain 2 2649 ENSP00000417401 PFTVIQGPPGTGKTIVGL 2173-2180

inc finger-containing protein 1 1918 ENSP00000379412 ELAIIQGPPGTGKTYVGL 618-625
e Mov10l1 1211 ENSP00000262794 LSNSKRFNVAITRPKALL 1131-1138
luconate dehydrogenase, decarboxylating 483 ENSP00000270776 EYGVPVTLIGEAVFARCL 278-285
ptamine receptor 1B 390 ENSP00000358963 LLVMLLALITLATTLSNA 56-63
nal myosin-XVI 1858 ENSP00000401633 AAPPGDEDDSEPVYIEML 1404-1411
nsitive sodium channel subunit alpha 669 ENSP00000353292 PPHGARRARSVASSLRDN 201-208
fucosyltransferase 10 520 ENSP00000332757 CVTATVFLLVTLALDTVE 20-27
protein 6 1105 ENSP00000259569 ILDETVNSVLLFLQDPHP 409-416
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Peptide Source UniProt ID Protein ID

1 ESGLKTIL ORF1ab polyprotein P20073 ANXA7 Annexin A7
2 EVEKGVLP ORF1ab polyprotein P52848 NDST1 Bifunctional
3 DEDEEEGD ORF1ab polyprotein Q96IK5 GMCL1 Germ cell-les
4 PDEDEEEG ORF1ab polyprotein Q6P1N0 C2D1A Coiled-coil a
5 DIQLLKSA ORF1ab polyprotein O00423 EMAL1 Echinoderm
6 EVLLAPLL ORF1ab polyprotein Q66PJ3-6 AR6P4 ADP-ribosyla
7 YNYEPLTQ ORF1ab polyprotein Q9UJA3 MCM8 DNA helicas
8 RRSFYVYA ORF1ab polyprotein Q86W33 TPRA1 Transmembr
9 AKKNNLPF ORF1ab polyprotein Q92604 LGAT1 Acyl-CoA: ly
10 DTSLSGFK ORF1ab polyprotein Q9Y666 S12A7 Solute carrie
11 SLKELLQN ORF1ab polyprotein Q92674 CENPI Centromere
12 PGSGVPVV ORF1ab polyprotein P19021 AMD Peptidyl-glyc
13 RYPANSIV ORF1ab polyprotein O95415 BRI3 Brain protein
14 GPPGTGKS ORF1ab polyprotein O75351 VPS4B Vacuolar pro

Q7Z333 SETX Probable he
Q9UN37 VPS4A Vacuolar pro

15 NVAITRAK ORF1ab polyprotein P51530 DNA2 DNA replicat
16 QGPPGTGK ORF1ab polyprotein Q92900 RENT1 Regulator of

Q9BYK8 HELZ2 Helicase with
Q9P2E3 ZNFX1 NFX1-type z

17 RFNVAITR ORF1ab polyprotein Q9BXT6 M10L1 RNA helicas
18 VTLIGEAV ORF1ab polyprotein P52209 6PGD 6-phosphog
19 LALITLAT nonstructural protein NS7a P28222 5HT1B 5-hydroxytry
20 DEDDSEPV Surface glycoprotein Q9Y6X6 MYO16 Unconventio
21 RRARSVAS Surface glycoprotein P37088 SCNNA Amiloride-se
22 VFLLVTLA Envelope protein Q6P4F1-2 FUT10 Alpha- (1,3)-
23 VNSVLLFL Envelope protein O60518 RNBP6 Ran-binding
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peptides of the HLA complexes were removed from the peptide-
binding groove for the following docking analyses.

Peptide Modeling
The structures of 4 peptides were modeled by the PEPSTRMOD
and FOLD 3.5 servers. All of the peptides were correctly folded.
The model quality assessment showed that the modeled peptides
are of high structural quality. The modeled peptides were
assigned with C or D chain IDs to be distinguished from the
HLA chain IDs upon the docking analyses.

Molecular Docking
The employed CABS-dock, HPEPDOCK, and HADDOCK
software could dock the HLA structures with the modeled
epitopes. All of the resulting complexes were visually inspected
for their correct interactions. The obtained results indicated that
the peptides were docked within the peptide-binding groove of
the HLA molecules. The FireDock and RosettaDock servers
opt imized the docking orientat ion and side-chain
conformations to have more reliable complexes of HLA and
peptide molecules (Supplementary Figure 2). The obtained
results demonstrated that the SARS-CoV-2 peptides could
interact with the experimentally confirmed HLA molecules.

Binding Energy Calculation
The results of binding energy calculation indicated that all of the
modeled peptides can bind to the HLA molecules with an affinity
equivalent to the binding affinity of resolves HLA-peptide
complexes (Table 2). The predicted HLA (HLA-B*08:01 under
the PDB ID of 3X13) showed the highest binding affinity (-13.7
kcal mol-1) against the corresponding SARS-CoV-2 peptide
(ESGLKTIL). This binding affinity was even higher than the
binding energy of the peptide and HLA molecule within the
original 3X13 complex and the binding energy between
the similar IEDB peptides and their HLA molecules. This high
binding energy could be construed as the high potency of these
peptides to invoke a robust immune response.

Disease Association Search
The SARS-CoV-2 octamer peptides with matching peptides in
human proteome were analyzed for their association with
autoimmune diseases. The results of the search within
miPepBase database showed that some of the peptides could
trigger the molecular mimicry mechanism and lead to
autoimmune diseases. The results of the miPepBase database are
Frontiers in Immunology | www.frontiersin.org 7
presented in Table 3. The possible association between the found
human protein matches and the autoimmune disease was
analyzed using the GAAD server. The gene names for all of the
matching proteins were extracted and used for the analyses. The
obtained results revealed that only the SARS-CoV-2 peptide,
which matches with the GMCL1 gene name, could be associated
with Multiple sclerosis and Rheumatoid arthritis. The rest of the
peptides had no associated diseases. The literature review results
showed that 21 autoimmune conditions could be triggered
following the COVID-19 (Table 4). The literature review results
encompasses the results of the miPepBase and GAAD databases.

Population Coverage Analyses
Performing the population coverage analyses, the possible world
coverage of each SARS-CoV-2 peptide for autoimmune
responses was evaluated (Table 5). The attained results
indicated that regarding the peptides with the highest
population coverages, the RYPANSIV (world coverage
25.74%), NVAITRAK (world coverage 15.53%), ESGLKTIL
(world coverage 10.55%), RRSFYVYA (world coverage 7.33%),
and RFNVAITR (world coverage 6.91%) are the top five
peptides. On the other hand, calculation of combined
population coverage for all peptides with predicted HLA
binding indicates over 57% world coverage (Supplementary
Table 4). Among different world regions the Southeast Asia
(coverage: 84.12%), East Asia (coverage: 83.78%), and Oceania
(coverage: 80.72%) have the highest population coverages.
Europe, North America, and South America have over 50 %
coverage, while Africa is below 50% coverage. On the contrary,
the regions like Lebanon, United Kingdom, and Rwanda have
been calculated to have the lowest population coverage for the
given peptide and HLA sets (Figure 2).
DISCUSSION

Infections could trigger host immune responses against their
immunogenic epitopes. Among these responses, some
immunological cross-reactions against the epitopes of host
proteins could occur (23). Epidemiological studies revealed
that infectious diseases could trigger autoimmunity via cross-
reactivity. Immunological mechanisms such as molecular
mimicry and significant homology between microbial and
human antigens could break off the self-tolerance and consequently
induce the post-infection ADs. However, these cross-reactions could
TABLE 2 | The binding energy between the modeled peptides and the HLA molecules.

Peptide HLA PDB Code DG (kcal mol-1) Kd (M) at 25.0°C

ESGLKTIL HLA-B*08:01 3X13 -13.7 8.9E-11
CONTROL HLA-B*08:01 3X13 -10.9 9.9E-09
RYPANSIV HLA-A*24:02 3WLB -12.8 4.0E-10
CONTROL HLA-A*24:02 3WLB -11.4 4.5E-09
RRSFYVYA HLA-B*27:05 5IB2 -12.7 5.0E-10
CONTROL HLA-B*27:05 5IB2 -10.9 1.0E-08
NVAITRAK HLA-A*11:01 4N8V -12.4 7.8E-10
CONTROL HLA-A*11:01 4N8V -11.0 8.4E-09
August 2021 | Volume 1
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act as a double-edged sword in autoimmunity (23). Some reports
have already suggested that a correlation exists between the COVID-
19 and autoimmune diseases (77). Meanwhile, vaccines’ safety
regarding their potential to trigger autoimmune responses remains
a challenging issue (78). Molecular mimicry between the host
TABLE 3 | The results of the miPepBase. All of the peptides with matching human proteins are analyzed.

Peptide UniProt ID Protein name Mimicry Peptide
Sequence

Disease caused

1 EVEKGVLP P10809 HSP60 HRKPLVIIAEDVDGE Rheumatoid arthritis
2 DEDEEEGD P10809 HSP60 HRKPLVIIAEDVDGE Rheumatoid arthritis
3 EVLLAPLL Q14008 Colonic TOG GPSLR Corhns disease
4 YNYEPLTQ P14410 intestinal sucrose iso-

maltase
KLNRIPS Corhns disease

5 AKKNNLPF P12883 cardiac myosin LEDLKRQLEEEVKAKNA Rheumatic carditis
P14410/ intestinal sucrose

isomaltase
KLNRIPS Corhns disease

6 PGSGVPVV P30493 HLA antigens AQAQTDRESL Ankylosing
spondylitis

P30488 HLA antigens TNTQTYRESL Ankylosing
spondylitis

P03989 HLA antigens AKAQTDREDL Ankylosing
spondylitis

C5MK52 HLA antigens AKAQTDREDL Ankylosing
spondylitis

A0A0k0kRG3 HLA antigens AKAQTDRENL Ankylosing
spondylitis

P01892 HLA antigens AHSQTHRVDL Ankylosing
spondylitis

P01891 HLA antigens AQSQTDRVDL Ankylosing
spondylitis

7 GPPGTGKS P02686 MBP ENPVVHFFKNIVTPR Multiple sclerosis
F6RT34 MBP VVHFFKNIVTP Multiple sclerosis
C9J6H1 MBP VVHFFKNIVTP Multiple sclerosis

8 RFNVAITR P13533 cardiac myosin LEDLKRQLEEEVKAKNA Rheumatic carditis
P12883 cardiac myosin KLQTENGE Rheumatic carditis
Frontiers in Imm
unology | www.frontiers
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TABLE 4 | The literature review results for autoimmune conditions triggered
following the COVID-19.

Autoimmune Disease Reference

1 Antiphospholipid syndrome (42–44)
2 Guillain-Barr´e syndrome (45–47)
3 Miller Fisher syndrome (48, 49)
4 Polyneuritis cranialis (49)
5 Thyroid function (50, 51)
6 Graves’ disease (52)
7 Vasculitis (53)
8 Kawasaki disease (54)
9 Type 1 Diabetes (55–57)
10 Autoimmune hemolytic anemia (58–60)
11 Immune thrombocytopenic purpura (61, 62)
12 Systemic lupus erythematosus (63, 64)
13 Post orthostatic tachycardia syndrome (65)
14 Viral arthritis (66, 67)
15 Myasthenia gravis (68)
16 Autoimmune encephalitis (69)
17 Rheumatoid arthritis (70, 71)
18 Autoimmune limbic encephalitis (72)
19 Multiple sclerosis (73, 74)
20 Inflammatory Bowel Disease (Crohn’s disease and ulcerative

colitis)
(75)

21 Ankylosing spondylitis (76)
TABLE 5 | The population coverage calculation for peptides with predicted HLA
binding.

Peptide HLA allele World population
coverage

Selected SARS-CoV-2 peptides against 145 HLAs with known global
allele frequency
ESGLKTIL HLA-B*08:01 10.55%
EVLLAPLL HLA-B*51:07 0.12%
NVAITRAK HLA-A*34:02 0.5%
RYPANSIV HLA-A*24:02 21.38%
RYPANSIV HLA-A*24:03 0.49%
RYPANSIV HLA-A*24:07 1.04%
RYPANSIV HLA-C*14:02 3.04%
RYPANSIV HLA-C*14:03 0.87%
RRSFYVYA HLA-B*27:02 1.58%
RRSFYVYA HLA-B*27:03 0.24%
RRSFYVYA HLA-B*27:04 0.79%
RRSFYVYA HLA-B*27:05 4.78%
RFNVAITR HLA-A*33:03 4.78%
RFNVAITR HLA-A*74:01 2.18%
RYPANSIV HLA-A*24:02, HLA-A*24:03,

HLA-A*24:07, HLA-C*14:02, and
HLA-C*14:03

25.74%

RRSFYVYA HLA-B*27:02, HLA-B*27:03,
HLA-B*27:04, and HLA-B*27:05

7.33%

RFNVAITR HLA-A*33:03 and HLA-A*74:01 6.91%
Selected SARS-CoV-2 peptides against the experimentally confirmed
HLAs of equivalent IEDB epitopes
RRSFYVYA HLA-B*27:05 5.36%
NVAITRAK HLA-A*11:01 15.53%
RFNVAITR HLA-A*31:01 5.36%
All peptides against all predicted HLAs
All peptides all predicted HLAs 57.41%
e
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antigensand the infectiousagentorbetween thehost antigensand the
vaccine is a leading mechanism to induce autoimmunity (23, 78).

To find peptide matches within the human proteome, the
proteome of SARS-CoV-2 was chopped to peptides with different
lengths (8-12mer). Among the various lengths of HLA binders,
only the shortest lengths of HLA class I binders (8-meric
peptides) matched with peptides in the human proteome. This
length of the peptide could also be considered as a B-cell epitope.
Therefore, peptides with this length and their related HLAs
(HLA class I) were considered for further analyses. Following
the 2009 H1N1 pandemic in which tens of millions of vaccine
doses against H1N1 have been delivered, reports have revealed
an increased incidence of narcolepsy and Guillain-Barre
syndrome (GBS) (23). This increase was attributed to epitope
mimicry, and the genetic susceptibility of populations that
received the vaccines. Kanduc et al. have revealed that two
octapeptides of human proteome are shared with HPV16
proteome (79). HPV vaccination remains to be a challenging
issue regarding the induction of ADs (23). Since the number of
shared octapeptides between the human and SARS-CoV-2
proteome is more than 11-fold compared to the HPV16 and
human proteome, the risk of triggering ADs could be
significantly higher via SARS-CoV-2 infection and, or
vaccination. In this regard, the study by Venkatakrishnan et al.
has arrived at some epitopes with possible autoimmune
consequences (80). Hence, subunit vaccines lacking these
peptides would be safer concerning ADs development.

The SARS-CoV-2 proteome contains four proteins with
matching peptides identical to peptides from the human
proteome. Amongst, ORF1ab polyprotein encompasses the
highest number of these peptides (18 peptides). Thus, this
protein would outweigh other SARS-CoV-2 antigens regarding
Frontiers in Immunology | www.frontiersin.org 9
the risk of autoimmune responses. Aside from significant
homology between pathogen and human peptides, genetic
(e.g., some HLA alleles) and environmental factors (e.g.,
adjuvant administration) are involved in autoimmunity
etiology. Finding positive experimental assays for SARS-CoV-2
epitopes assures the elicitation of the immune system against
these peptides. Moreover, positive experimental assays for self-
epitopes and HLA-binders, sharing identity with 8-meric
peptides (identical to human proteome) increase the risk of
cross-reactivity. However, peptides with “perfect fit” and
identical homology are not necessarily more pathogenic than
peptides with “almost identical” homology (23). Various
counterexamples have already been reported for peptides of
“almost identical” homology with higher pathogenicity (81,
82). Apparently, identical/similar peptides of infectious agents
would be more harmful if they are assigned as binders of HLAs,
which have already been determined to be involved in
autoimmune diseases. It has been demonstrated that several
HLAs are highly associated with ADs (e.g., A*24, A*68, B*08,
B*15, B*27, B*42, B*51 and DRB1) (81, 83–86). Various
mechanisms such as alternate docking, altered peptide-binding
register, and hotspot molecular mimicry had been described for
autoreactive T cell activation via HLAs-mediated peptide
presentation (81). Therefore, the most deleterious epitopes
share sequence identity with experimentally validated self-
epitopes and bind to HLAs involved in autoimmune diseases.
All of the SARS-CoV-2, predicted to be HLA binders, could
potentially bind to HLAs involved in autoimmune diseases,
among which five peptides were derived from the
ORF1ab polyprotein.

The ESGLKTIL peptide was found within a 9-meric epitope
of Annexin 7. Based on experimental assays, this epitope could
FIGURE 2 | The population coverage prediction for most potent SARS-CoV-2 peptides (red: 100%-75%, orange: 75%-50%, yellow: 50%-25% and regions without
data, white: 25%-0% of coverage).
August 2021 | Volume 12 | Article 705772
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bind to HLA-B*40:01 and HLA-B*40:02. Moreover, ESGLKTIL
was also found within a 9-meric epitope of SARS-CoV-2, which
is known as an HLA-B*40:01 binder. Although HLA-B*40:01
and HLA-B*40:02 are protective for autoimmune hepatitis (87),
these alleles are associated with ankylosing spondylitis (AS) (88,
89). Ankylosing spondylitis is associated with SARS-CoV-2
(76).Besides, positive experimental assays revealed that
ESGLKTIL shares sequence identity (more than 90%) with 11-
meric and 16-meric peptides from phosphoglycolate
phosphatase. These two peptides are reported to respectively
bind to HLA-B*57:01 and HLA-F*01:03. It has been
demonstrated that HLA-B*57:01 could be susceptible to drug-
induced autoimmunity. Abacavir is a carbocyclic 2′-
deoxyguanosine nucleoside analog which is suggested to be
involved in loading novel self-peptides onto HLA-B*57:01 (90).
A non-classical HLA, the HLA-F*01:03, could be associated with
ankylosing spondylitis (91). The other autoimmune-related
HLAs predicted to bind the SARS-CoV-2 are the HLA-
B*08:01, HLA-A*24, and HLA-B*51. The HLA-B*08:01 is
involved in myasthenia gravis, while the HLA-A*24 and HLA-
B*51 are associated with Behçet disease (BD). Therefore,
populations harboring these alleles are highly at risk of ADs
following SARS-CoV-2 infection and/or vaccination.

The RYPANSIV peptide could bind to the HLA-A*024:02.
This allele is associated with type 1 diabetes (92), myasthenia
gravis (93), Sjogren’s syndrome (94), and systemic lupus
erythematosus (95). Evidences are available about association
of SARS-CoV-2 and systemic lupus erythematosus (63, 64).
Moreover, this peptide shares identity with human peptides
known as binders of autoimmune-associated HLAs.
NVAITRAK is a binder of HLA-A*11:01, which is associated
with autoimmune and inflammatory diseases such as type 1
diabetes (92), diffuse panbronchiolitis (96), and otosclerosis (97).
Various studies revealed that SARS-CoV-2 is associated with
type 1 diabetes (55–57). The RRARSVAS peptide is a binder for
HLA-B*27:05. This allele is a well-known HLA associated with
ankylosing spondylitis (98).

The RRARSVAS peptide is found in a neutralizing B-cell
epitope of SARS-CoV-2 surface glycoprotein (99). Moreover,
RRARSVAS is located near to motif responsible for super-
antigenicity property of the spike protein. This epitope is
located close to the S1/S2 cleavage site of the spike protein and
resembles the super-antigen motif from Staphylococcal
enterotoxin B (SEB). This sequence could be the possible
explanation for cytokine storm in severe COVID-19 patients
and multisystem-inflammatory syndrome (MIS-C) observed in
children (100, 101). This sequence is also found in T-cell epitopes
of SARS-CoV-2 spike protein. These T-cell epitopes are known
to bind to various HLAs, including those associated with ADs
(HLA-B*08:01 and HLA-B*07:02) (102–104). Moreover, the
RARSVA sequence is found in an 11-meric epitope derived
from a human antigen. This 11-meric epitope is known to
bind to HLA-A*66:01 allele. The HLA-B*08:01 is associated
with myasthenia gravis (105), and the HLA-B*07:02 is
associated with neurological ADs (85). Reports are available
about myasthenia gravis associated with SARS-CoV-2 infection
Frontiers in Immunology | www.frontiersin.org 10
(68, 106–108). Surface glycoprotein is the leading antigen of
interest for vaccine development against SARS-CoV-2 (109).
DEDDSEPV peptide is conserved in B-cell epitopes of SARS-
CoV-2 and SARS-CoV-1 surface glycoproteins (110–113).
Moreover, this peptide has recently been found in a 10-meric
T-cell epitope of SARS-CoV-2 spike protein. This epitope is
reported to bind to HLA-B*40:01 allele (102). The DDSEPV
sequence has also been found in an epitope derived from a
human antigen. This epitope is known to bind to various HLAs,
including those associated with ADs (e.g., HLA-B*27:05 and
HLA-C*08:01) (114, 115). Hence, vaccine candidates harboring
either of these two peptides (DEDDSEPV and RRARSVAS)
could be harmful considering the ADs development. The
RRARSVAS peptide could be assigned as the most harmful
peptide, since it is found in a neutralizing B-cell epitope of
SARS-CoV-2. Therefore, this epitope could be of interest in
vaccine design and formulation.

The EVEKGVLP peptide shares > 66% identity with
GLVEVEKGV, which is a 9-meric epitope of SARS-CoV-2.
This epitope is known to bind to the HLA-A*02:01 allele. This
HLA allele is associated with vitiligo autoimmune disease (116).
The DIQLLK sequence of the DIQLLKSA peptide (from SARS-
CoV-2) was found in one SARS-CoV-1 (GEDIQLLKA) and two
human (KRDIQLLK and DIQLLKRTV) HLA binders. The
GEDIQLLKA peptide could bind to HLA-B*44:03, which is
associated with vitiligo (117). Another study has also shown its
association with autoimmune encephalitis (AE) as a neurological
autoimmune disease (118). Interestingly, HLA-B*44 has a
permissive role in SARS-CoV-2 infection (119). Association of
autoimmune encephalitis with COVID-19 was also reported
(69). The HLA-B*18:01 allele is associated with an
inflammatory thyroid disease known as subacute thyroiditis
(SAT) (120). Recently, it has been demonstrated that SARS-
CoV-2 could cause thyroid dysfunction (50, 51). As mentioned
above, HLA-B*40:02 is associated with ankylosing spondylitis.
The DIQLLKRTV peptide is an HLA-A*33:01 binder which is
associated with vitiligo (117) and drug-induced liver injury
(DILI) (121). Although no positive assays have confirmed the
EVLLAPLL peptide as an epitope or HLA binder from SARS-
CoV-2, LLAPLL sequence was found in human epitopes, which
acts as HLA binders associated with ADs.

Data validation study showed that our predicted autoimmune
concerns already have conforming clinical records. These data
instances are mostly accumulated since 2020. More than 21
autoimmune conditions are reported to be followed by COVID-
19. Although these are preliminary studies of possible role of
COVID-19 in triggering or exacerbating the autoimmune
conditions, this number shows the perturbing nature of
possible consequences. There is even a compatible tissue
specificity profile between the predicted epitopes and the
resulting autoimmune condition. For instance, myocardial
involvement is characteristic for children with MIS-C
associated with previous SARS-CoV-2 infection (101). The
Annexin 7 is reported to be expressed within the heart tissue.
The presence of the ESGLKTIL peptide within this antigen could
be related to this post COVID-19 observation. The Amiloride-
August 2021 | Volume 12 | Article 705772
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sensitive sodium channel subunit alpha is also reported to be
expressed within the heart tissue. The presence of the
RRARSVAS peptide within this antigen could also be related
to myocardial involvement in children with MIS-C. Future
studies about the exact mechanism of autoimmunity following
COVID-19 would shed light on the roles played by mimicking
peptides. We believe that getting a better grasp of autoimmune
consequences of these mimicking peptides could be drastically
important when the threat is global. This is more prominent
when the whole population of the world is the target for
vaccination programs and the disease would most likely
become a seasonal infection for the next decades.

In conclusion, it would be expected that pandemic COVID-
19 and the vaccination against this pathogen could significantly
increase ADs, particularly those associated with HLA-B*08:01,
HLA-A*024:02, HLA-A*11:01, and HLA-B*27:05. Populations
harboring these alleles are highly at risk for the associated ADs.
ESGLKTIL, RYPANSIV, NVAITRAK, and RRARSVAS are the
most harmful peptides of the SARS-CoV-2 proteome. These
peptides are binders for HLA-B*08:01, HLA-A*024:02, HLA-
A*11:01, and HLA-B*27:05, respectively which could cover a
high percentage of different populations throughout the world.
Given these peptides and corresponding HLAs, the populations
of Southeast Asia, East Asia, and Oceania are predicted to be at
higher risk of AD development following the SARS-CoV-2
infection or vaccination.
Frontiers in Immunology | www.frontiersin.org 11
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