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Ewing’s sarcoma (EWS) is a malignant and aggressive tumor type that predominantly
occurs in children and adolescents. Traditional treatments such as surgery, radiotherapy
and chemotherapy, while successful in the early disease stages, are ineffective in patients
with metastases and relapses who often have poor prognosis. Therefore, new treatments
for EWS are needed to improve patient’s outcomes. Chimeric antigen receptor (CAR)-T
cells therapy, a novel adoptive immunotherapy, has been developing over the past few
decades, and is increasingly popular in researches and treatments of various cancers.
CAR-T cell therapy has been approved by the Food and Drug Administration (FDA) for the
treatment of leukemia and lymphoma. Recently, this therapeutic approach has been
employed for solid tumors including EWS. In this review, we summarize the safety,
specificity and clinical transformation of the treatment targets of EWS, and point out the
directions for further research.
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INTRODUCTION

Ewing’s sarcoma (EWS), a malignant cancer of bones or soft tissues, occurs predominantly in
children and young adults and is the second most frequent primary bone tumor after osteosarcoma.
Traditional treatments, including aggressive neoadjuvant and adjuvant chemotherapy in
combination with surgery and/or radiotherapy, have greatly improved the long-term survival of
patients suffering from localized disease, with a 5-year survival rate of more than 70% (1–3).
However, once the tumor cells have metastasized or recurred, patients often show poor outcomes
(4), indicating the need for new treatments for EWS. To improve the efficacy and eliminate adverse
side effects, such new therapies need to the following characteristics: 1) High specificity to the tumor
lesions, often referred to as targeted therapy, which can reduce damage to normal tissues. 2) Efficacy
for metastatic and recurrent tumor lesions. In the past decades, new immunotherapies have
emerged, such as immune checkpoint blockers, therapeutic cancer vaccines, and so on (5, 6).
Among them, immune checkpoint blockers and chimeric antigen receptor (CAR)-T cells meet the
above requirements and have been widely used in researches and treatments of various cancers in
recent years (7, 8). CAR-T therapy is a form of treatment that combines tumor specific antibody
receptors with cytotolytic T cell activity (9). Excitingly, CAR-T therapy has been used to treat
hematologic tumors with encouraging results (10, 11). Recently, CAR-T therapy has also been used
for solid tumors (12, 13). Furthermore, research has focused on the application of CAR-T cells for
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primary bone tumors (14). Therefore, we attempted to
summarize the recent knowledge accumulated on CAR-T cell
therapy for EWS, so that researchers can have a comprehensive
understanding of all aspects of this kind of therapy.
OVERVIEW OF CAR-T CELL THERAPY

Adoptive cell therapy (ACT) is a treatment strategy where
immune cells with antitumor activity are introduced into a
cancer patient (15). CAR-T cell therapy, a novel type of
adoptive immunotherapy, has developed rapidly in recent years.
CARs are engineered receptors composed of an extracellular
single-chain variable fragment (scFv) derived from a
monoclonal antibody, a transmembrane domain and an
intracellular domain. The intracellular domains of CAR-T cells
are usually derived from the T cell receptor CD3-z chain, which
can bind to costimulatory molecules such as CD28 or 41BB (16).
The first-generation CARs usually contain only the CD3-z chain
signal transduction domain. The addition of one costimulatory
molecule to the first-generation CARs resulted in the so-called
second-generation CARs, while the third-generation CARs
include the addition of two costimulatory molecules to first-
generation CARs (17). This approach not only makes the
immune cells have the targeting property but can also overcome
the immune tolerance dilemma, such that the modified immune
cells will have strong antitumor activity. In addition, CAR-based
Frontiers in Immunology | www.frontiersin.org 2
T cells therapies show potent antitumor activity without the
limitation of traditional major histocompatibility complexes
(MHC). After transplantation, CAR-T cells can proliferate in
large numbers and exhibit long-lasting antitumor activity (11).
The effective application of CAR-T cells in the treatment of tumors
requires that the engineered CAR-T cells be specific to the tumor
cells and equally lethal to metastases (18). Therefore, the pursuit of
finding tumor-specific antigens is a highly important task.
Currently, targets identified in EWS include the vascular
endothelial growth factor receptor 2 (VEGFR2), type I insulin-
like growth factor receptor (IGF1R), receptor tyrosine kinase-like
orphan receptor 1 (ROR1), ganglioside2 (GD2), B7-H3 (CD276),
hepatocellular receptor tyrosine kinase class A2 (EphA2), and
natural-killer group 2D ligands (NKG2D ligands) (19–24)
(Figure 1, Table 1). These receptors may serve as effective
therapeutic targets for CAR-T cells to treat EWS and
inhibit metastases.
RESEARCH ON CAR-T CELLS
TARGETING EWS ANTIGENS

VEGFR2 (Vascular Endothelial Growth
Factor Receptor 2)
The vascular endothelial growth factor (VEGF) is an endothelial
cell-specific mitogen that induces physiological and pathological
FIGURE 1 | The main targets of CAR-T cells for EWS treatment.
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angiogenesis. VEGF is a member of a larger family of growth
factors that include VEGF-A, VEGF-B, VEGF-C, VEGF-D, and
placental growth factors. The most frequently studied member of
this family is VEGF-A, commonly known as VEGF, which has
several distinct variants (VEGF121, VEGF145, VEGF148, VEGF165,
VEGF183, VEGF189 and VEGF206). VEGF receptors (VEGFRs)
include the three types of VEGFR1, VEGFR2 and VEGFR3,
among which VEGFR2 plays a major role in regulating VEGF
signaling in endothelial cells. The VEGF-mediated signaling
pathway has been demonstrated to occur in tumor cells, and it
plays a key role in tumorigenesis, including cancer stem cell
function and tumor initiation (42, 43). Recently, there has been
growing interest in the role of VEGF in EWS (44, 45). Surita
Dalal et al. demonstrated that EWS secretes VEGF, and that the
expression of VEGF is independently related to microvascular
density, suggesting that VEGF may be the most important
regulator of neovascularization in ESW. Moreover, Flk-1/KDR
receptor tyrosine kinase inhibitors and anti-VEGF agents
significantly inhibited EWS growth in the mouse model (46).
In one study, researchers generated CAR constructs against both
human and murine VEGFR2 to enable preclinical studies of the
xenograft model of EWS. This study showed that VEGFR2-
specific CAR-T cells effectively lysed VEGFR2-positive cells of
the respective species and responded with potent antigen-specific
degranulation responses, cytokine secretion, and proliferation
(20). Thus, VEGFR2 is likely to be a suitable target for CAR-T
cell therapy in EWS. VEGFR2-targeted CAR-T cells have been
used in early clinical trials of metastatic melanoma and epithelial
carcinoma (NCT01218867), but the respective clinical response
has been poor. Therefore, to enhance the efficiency of VEGFR2-
targeted CAR-T cells and translate them into clinical
applications, further research on targeting the VEGF signaling
pathway is essential to better serve EWS therapy. Several
studies have reported that VEGF165 plays a significant role
in EWS angiogenesis and tumor growth, and targeting
VEGF165 can inhibit EWS growth (47–50). In addition,
VEGF165 could promote osteolytic bone destruction in
Frontiers in Immunology | www.frontiersin.org 3
EWS (51). Therefore, it seems worthwhile to investigate
whether targeting VEGFR and VEGF simultaneously increases
the antitumor effect of EWS.

IGF1R (Type I Insulin-Like Growth
Factor Receptor)
IGF1R is a tetramer transmembrane receptor tyrosine kinase.
The binding of ligand to the IGF1Ra subunit leads to the
autophosphorylation of b subunit and the recruitment of
adaptor proteins, ultimately resulting in the activation of
signaling cascades that in turn contributes to proliferation,
survival, transformation, metastasis, and angiogenesis (19, 29,
30). As IGF1R is expressed in EWS, many experiments have used
it as an immune target for EWS treatment (52, 53). Various
monoclonal antibodies have also been developed to treat EWS
with a certain level of efficacy (54, 55). Thus, IGF1R-targeted
CAR-T cell therapy for EWS appears to be a viable approach.
According to a study by Xin Huang et al, IGF1R-targeted CAR-T
cells showed specific cytotoxicity in vitro and mainly released
IFN-g, TNF-a, and IL-13 cytokines against sarcomas. These cells
significantly inhibited sarcoma growth in both localized and
disseminated pre-established sarcoma xenograft models. In
addition, IGF1R-targeted CAR-T cells have also resulted in the
benefit of prolonged survival in a localized sarcoma model (19).
Although IGF1R-targeted CAR-T cells have a certain antitumor
activity, it is not clear whether they have any toxic side effects on
the body. Related studies have shown that IGF1R is also
expressed in normal tissues (30). In a phase II study of EWS,
researchers found that patients experienced adverse events such
as neutropenia and leukopenia after treatment with ganitumab(a
fully human anti-IGF1R antibody) (56). Xin Huang et al.
reported that both lymphocytes and monocytes had low
expression of cell-surface IGF1R, which made them not easily
recognizable to IGF1R-targeted CAR-T cells (19). Off-target
toxicity may be solved by the means of changing the affinity of
CAR-T cells to the target or by adjusting the therapeutic dose of
CAR-T cells. However, the systemic evaluation of off-target
TABLE 1 | Targets of CAR-T in EWS.

Characteristics Expression in normal tissue CAR-T examples Possible ways to enhance efficacy References

VEGFR2 A tyrosine kinase receptor Expression in vascular endothelial cells Only preclinical Anti-B7-H3, Bispecific or polyspecific
CARs

(20, 25–28)

IGF1R A tetrameric
transmembrane receptor
tyrosine kinase

Widely distributed in normal tissues,
such as myocardium, brain, bone and
cartilage

Only preclinical Bispecific or polyspecific CARs (19, 26, 27,
29, 30)

ROR1 A tyrosine kinase receptor Expression in normal tissue, highly in
the gastric antrum and body

Only preclinical Bispecific or polyspecific CARs (26, 27, 31)

GD2 An N-acetyl neuraminic
acid-containing glycolipid
antigen

Low expression in normal tissue Two ongoing clinical trials
(NCT03356782,
NCT03635632)

HGF-targeted neutralizing antibodies,
EZH2 inhibitors, Bispecific or polyspecific
CARs

(21, 26, 27,
32–34)

B7-H3 A member of the B7 family
of immunoregulatory
proteins

Low expression in normal tissue Two ongoing clinical trials
(NCT04483778,
NCT04897321)

Anti-VEGF, Bispecific or polyspecific
CARs

(25–27, 35)

EphA2 A tyrosine kinase receptor Mainly confined to some epithelial cells Only preclinical Bispecific or polyspecific CARs (26, 27,
36–38)

NKG2D A powerful activating
receptor expressed by NK/
T cells

Expressed by NK cells and T cells Only preclinical Histone deacetylase inhibitors, Bispecific
or polyspecific CARs

(26, 27,
39–41)
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toxicity of IGF1R CAR-T cells should be performed before
realizing their clinical application.

ROR 1 (Receptor Tyrosine Kinase-Like
Orphan Receptor 1)
Receptor tyrosine kinase orphan receptors 1 (ROR1) is one of the
twenty different RTK families and is highly conserved in evolution.
It consists of three distinct extracellular domains, including the
immunoglobulin-like domain, cysteine-rich (CRD) and Kringle
(KNG) domains, and the intracellular TK domain. The cytoplasm
contains the TK domain with protein kinase activity, which is rich
in serine, threonine, and proline motifs further downstream.
ROR1 is not expressed in normal adult tissues, but is
overexpressed in several human malignancies and may act as a
survival factor for tumor cells (57). Experiments by Jenny
Potratz et al. have shown that ROR1 is expressed in EWS cell
lines and ROR1 silencing impairs EWS cell survival and migration
(58). Moreover, Xin Huang et al. further demonstrated
that ROR1 is highly expressed in sarcoma cell lines including
EWS, osteosarcoma, rhabdomyosarcoma, and fibrosarcoma.
Furthermore, the in vitro and in vivo anti-sarcoma activity of
ROR1-targeted CAR-T cells were indicated (19). The safety of
ROR1-targeted CAR-T cells was demonstrated in primates (59).
However, it was recently shown that ROR1 expression is not
specific to tumor tissue. Cell surface ROR1 has been observed in
several areas of the parathyroid gland, pancreatic islet, and
intestinal tract in humans, and it was particularly abundant in
the stomach antrum and gastric body, although experiments in the
macaque model have shown no significant adverse effects (31).
Shivani Srivastava et al. designed a Logic-Gated ROR1 CAR that
can save healthy tissues and target tumor cells, addressing the issue
of off-target toxicity (60). In the “AND” gate of the logic-gated
receptor, CAR-T cell activity only eliminates tumors that express
both antigens A and B. Because the synthetic Notch receptor is
specific for antigen A induced expression of CAR-specific antigen
B, the “AND” logic gate can integrate multiple signals to regulate T
cell function, thus allowing a more precise distinction between
tumor tissue and normal tissue (61). Although the above studies
have proved that ROR1-targeted CAR-T cells have a certain
efficacy in treating EWS, ROR1-targeted CAR-T cells have not
yet been subject to clinical trials, and the latest progress comes
from an ongoing recruitment study (NCT02706392), revealing
that it has great development potential.

GD2 (Ganglioside2)
GD2, a cell surface molecule with a heavily restricted expression
pattern, is highly expressed in EWS (62, 63). Due to the limited
distribution of GD2 in normal tissues, it is safe for
immunotargeting (32). S Kailayangiri et al. demonstrated that
GD2 is expressed on the surface of EWS cell lines and primary
EWS cells, and they proved that GD2-targeted CAR-T cells exert
potent cytolytic responses against EWS cells (64). A different
study also confirmed the antitumor activity of GD2-targeted
CAR-T cells against EWS (65). However, other researches have
shown that GD2-targeted CAR-T cells alone do not eliminate
metastatic or orthotopically injected EWS cells. In fact, GD2-
targeted CAR-T cells can prevent primary tumor growth and
Frontiers in Immunology | www.frontiersin.org 4
metastasis in EWS when combined with HGF-targeted
neutralizing antibodies (21). In addition, Sareetha Kailayangiri
et al. reported that the inhibition of enhancer of zeste homolog 2
(EZH2) enhanced the killing effect of GD2-targeted CAR-T cells
against EWS (33). In a phase I study, researchers treated patients
with neuroblastoma with GD2-targeted CAR-T cells and found
no objective clinical response to treatment with GD2-targeted
CAR-T cells alone (66). Therefore, the means to enhance the
antitumor effect of GD2-targeted CAR-T cells is crucial to its
successful clinical application. One strategy is to combine GD2
with other viable targets to construct T cells expressing multiple
CARs. Another approach can combine GD2-targeted CAR-T
cells with immune checkpoint inhibitors to improve efficacy.

B7-H3 (CD276)
B7-H3 (CD276), a member of the B7 family of immunoregulatory
proteins, is frequently overexpressed at high levels by solid tumor
cells. B7 proteins bind to members of the CD28/CTLA-4 family
which act as costimulatory signals in T cell activation (67).
Moreover, B7-H3 is overexpressed during pathological
angiogenesis, which may make it an attractive target for the
selective destruction of tumor vasculature (68). Another study
showed that B7-H3 may be a receptor expressed by cytotoxic
lymphocytes inhibiting the activation thereof, and its deficiency
or lack of inhibitive effect results in increased cytotoxic
lymphocyte function in tumor-bearing mice (69). Taken
together, the B7-H3 checkpoint may serve as a novel target for
immunotherapy against cancer. In recent years, the use of B7-H3-
targeted CAR-T cells for the treatment of solid tumors have
received significant attention. In in vitro orthotopic and
metastatic xenografts in mouse models of pancreatic ductal
adenocarcinoma, ovarian cancer, and neuroblastoma, B7-H3-
targeted CAR-T cells showed promising efficacy with no
significant adverse effects (70). One study used indirect
immunofluorescence to detect 8H9 (a monoclonal antibody
targeting tumor-associated B7-H3) immunoreactivity in Ewing/
primitive neuroectodermal tumor cell lines, in which two-third of
samples were strongly positive and the rest were weakly positive,
strongly supporting the presence of B7-H3 expression in EWS
(71). The use of B7-H3 targets to produce CAR-T cells or
antibodies for EWS treatment has also been attempted (72).
Robbie GM et al. tried to use B7-H3-targeted CAR-T cells
against pediatric solid tumors. They found that greater than
90% of the tested pediatric sarcomas expressed B7-H3 with
high expression of EWS. Further experiments showed that B7-
H3-targeted CAR-T cells can eradicate EWS xenografts in vivo,
leading to a significant survival advantage compared to treatment
control in mice (22). Therefore, B7-H3-targeted CAR-T cell
therapy may be a viable option to treat EWS. Similar studies
have shown that the inhibition or suppression of B7-H3
expression can increase the response of tumor cells to
alkylation agents, drugs targeting DNA replication, PI3K/Akt/
mTOR, and Ras/Rraf/MEK signaling inhibitors (73–76).
Accordingly, the combination of B7-H3-targeted CAR-T cells
with immune checkpoint inhibitors or traditional chemotherapy
agents seems to be a feasible alternative. Chao Xie et al. reported
that VEGF expression in tumor cells may be mediated by soluble
September 2021 | Volume 12 | Article 707211
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B7-H3 (25), suggesting that the combination of anti-VEGFR and
anti-B7-H3 or the construction of bispecific CAR-T cells
embedded with VEGFR and B7-H3 may constitute a sound
approach. The knowledge of the specific mechanism of B7-H3
in tumors will enable us to better treat B7-H3-positive tumors.

EphA2（Hepatocellular Receptor Tyrosine
Kinase Class A2）
Members of the Eph family are involved in cell transformation,
metastasis, and angiogenesis. There are two classes of Eph receptor
ligands: ephrin-A and ephrin-B. EphA2 is overexpressed in a
variety of cancers, including breast cancer, melanoma, and
prostate cancer (77). Associated studies have shown that EphA2
is upregulated in EWS cells, and participates in endothelial cell
migration toward tumors to assist with tumor angiogenesis.
Furthermore, EphA2 may be related to the aggressiveness of
EWS (78–80). Therefore, blocking its function may be a
promising method for EWS treatment. Kenneth Hsu et al.
showed that EphA2-targeted CAR-T cells effectively killed EWS
cells in mice, which was associated with prolonged survival.
However, only a small percentage of EWS cells expressed
EphA2 (23). It has been evidenced that EphA2 promotes EWS
angiogenesis, tumor growth, and metastasis (79, 80), and that
EphA2 CAR-T cells also exhibit antitumor activity in mice (23).
Therefore, it is speculated that EphA2 CAR-T cells mainly
influence EWS growth and metastasis by acting on tumor
angiogenesis, which hypothesis clearly requires further
experiments to test.

NKG2D (Natural-Killer Group 2D)
NKG2D is a powerful activating receptor expressed by natural
killer (NK) cells and T cells (39). In recent years, the role of
NKG2D and its ligands in EWS have been the focus of increased
attention (40, 81, 82). Moreover, interference with NKG2D
expression may affect the efficacy of NK cells against EWS;
activated NK cells have been shown to kill EWS cells with high
efficiency (81, 83). The restoration of NKG2D receptor
expression on immune effector cells may contribute to
therapeutic strategies for EWS. Manfred Lehner et al.
constructed NKG2D-specific CAR-T cells by lentiviral
transduction or mRNA transfection, and these CAR-T cells
effectively eliminated EWS cells in vitro (24). On the one hand,
to kill EWS cells more efficiently with NKG2D-specific CAR-T
cells, we can modify T cells through the CARs editing
technology. On the other hand, we can increase the efficiency
by adding NKG2D ligands on tumor cells. Histone deacetylase
inhibitors have been reported to upregulate the expression of
NKD2G ligands in EWS (40, 41). Therefore, the combination of
NKG2D-specific CAR-T cells and histone deacetylase inhibitors
is considered as a recommended treatment for EWS.

Other Potential Targets
Several additional targets have been found to be expressed in
EWS, such as EGFR, CD99, PAPP-A, STEAP1 and endosialin,
but these have not yet been used in CAR-T cell therapy for EWS
(84–88). Furthermore, EGFR has been employed in a phase I
clinical trial of metastatic pancreatic carcinoma (89). The above
Frontiers in Immunology | www.frontiersin.org 5
targets can all serve as potential targets for EWS treatment by
CAR-T therapy.
DISCUSSION

Ewing’s sarcoma, an aggressive form of childhood cancer, is the
second most common primary bone tumor. With the
introduction of dose-intensive multiagent chemotherapy, the 5-
year overall survival for the localized disease has improved to 70-
75%, while the 5-year overall survival for metastatic or relapsed
disease remains only at 20-30% (90, 91). Early hematogenous
metastasis of EWS seriously affects the prognosis of patients, and
the five-year survival rate of patients with metastasis is
significantly lower than that of patients without metastasis (91,
92), which comprises the difficulty of EWS treatment.
Traditional strategies including intensive chemotherapy fail to
kill tumor cells completely in the blood, which are the key factors
to EWS metastasis and recurrence (92). Targeted therapy and
immunotherapy have shown some progress in EWS. Georgia J B
McCaughan et al. reported an intensive pre-treated patient who
had recurrent metastatic EWS achieved a clinical and
radiological remission via PD-1 blockade (93), which is an
encouraging result for the treatment of EWS. It is a pity that,
there is little research in this field. For the treatment of EWS,
there is still an urgent need for novel and effective treatments.

CAR-T cell therapy is a promising immunotherapeutical
approach with encouraging results for tumors of the
hematologic and lymphatic system (94). In comparison to
traditional adoptive T cell therapy, editable CAR-T cells do not
require MHC antigen presentation and can directly bind to
target cell epitope for antitumor activity. Thus, CAR-T cells
can overcome tumor escape and immune tolerance (95).
Compared with checkpoint inhibitors, CAR-T cells can
recognize lower levels of antigens, secrete cytokines that kill
tumor cells, and self-proliferate to exert long-lasting antitumor
effects (11, 96–99). Therefore, CAR-T cell therapy is clearly
worthy of further studies. As EWS occurs more frequently in
children and adolescents carrying more naive cells, and reports
have suggested that adoptively transferred effector cells derived
from naive T cells mediate superior antitumor effects, CAR-T
therapy may exert superior antitumor effects in these EWS
patients (100, 101). However, the adverse effects of CAR-T
therapy on children and adolescents also should be focused.
Currently, the main side effects of CAR-T therapy in children
and adolescents remain the cytokine release syndrome and
neurotoxicity, which can be prevented and treated by
appropriate measures (102, 103). Furthermore, because the
physiology of children and adolescents during growth is
different from that of adults, it also should be discussed
whether CAR-T cells therapy may have unique adverse effects.
Therefore, more rigorous studies and clinical trials should be
performed to explore the unique adverse effects of this therapy
on children and adolescents. Excitingly, researches on CAR-T
cells in the treatment of EWS have been pursued with certain
encouraging developments. Currently, antigen epitopes used in
CAR-T cells mainly include VEGFR2, IGF1R, ROR1, GD2,
September 2021 | Volume 12 | Article 707211
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B7-H3, EphA2, and NKG2D. In most of the corresponding
studies, researchers found that engineered targeted CAR-T
cells exhibited antitumor activity in in vitro or in vivo
preclinical models that were associated with a certain extent of
extended survival. Nonetheless, these targets also have their
limitations, such as off-target toxicity, insufficient effect and
low expression, and they are still in their infancy, thus far from
clinical applications. Therefore, more research is needed to
address these issues before such targets can be translated into
clinical practice. Regardless, CAR-T cell therapy for EWS is still
worth undertaking. A considerable number of targets have been
subject to clinical trials in solid tumor CAR-T cell therapy; even
though their expression has not been established in EWS,
targeted studies to address this gap can provide more options
for EWS treatment by CAR-T, and are therefore worth
conducting (104) (Table 2).

On the whole, for CAR-T cells to be translated into clinical
applications, the following issues need to be effectively addressed:
1. Certain targets are not tumor-specific and are present in
normal tissue. For example, Balakrishnan A et al. reported that
ROR1 is not only expressed in EWS and cell surface, but has also
been detected in several areas of the parathyroid gland,
pancreatic islet, and intestinal tract in humans, and is
particularly abundant in the gastric antrum and body (31).
2.Although CAR-T cell therapy has shown encouraging results
in the treatment of hematological malignancies, formidable
obstacles limit its success in treating the vast majority of solid
tumors, which may include antigen selection, tumor trafficking
and the tumor microenvironment (TME) (105, 106). 3. The
extensive side effects of CAR-T cells also need to be addressed,
Frontiers in Immunology | www.frontiersin.org 6
such as Cytokine Release Syndrome, or Immune Effector Cell-
Associated Neurotoxicity Syndrome (6, 107).

The following measures can be adopted to solve the above
problems: 1. Firstly, targets can be identified that are more specific
to tumors. For instance, EGFRvlll has been found to express almost
exclusively on tumor cells, but not in normal tissues, indicating that
EGFRvlll is tumor specific (108, 109). Secondly, when the target is
highly expressed in tumor cells and lowly expressed in normal cells,
the damage to normal tissue can be reduced by controlling the
therapeutic threshold. Thirdly, the affinity between CARs and
cognate antigens can be adjusted to achieve targeting (110–112).
Furthermore, an alternative approach is to design CARs targeting
tumor-associated abnormal glycosylated glycopeptide epitopes
(113–116). 2. The obstacles of CAR-T cell therapy, such as
tumor penetration, resistance to killing, antigen escape and
immunosuppression, can be addressed from the following
aspects. 1) CAR-T cells can be engineered to express chemokine
receptors to recognize upregulated chemokines in TME, thus
increasing the infiltration of CAR-T cells (117, 118). In addition,
T cell infiltration can be enhanced by designing CAR-T cells
capable of degrading the extracellular matrix proteins that
constitute the physical barrier to TME (119). 2) A combination
of CAR-T cells with conventional therapies or immune checkpoint
inhibitors may be worth exploring. For example, Christian Spurny
et al. showed that, when antibodies were used to block HLA-G
upregulation, it could help T cells to infiltrate EWS, thereby
enhancing the antitumor activity of T cells (120). 3) Constructing
immune cells expressing multiple CARs or combining multiple
CAR-T cells may provide a higher efficacy in tumor cell destruction
(26). Bispecific CARs have been designed for the treatment of
TABLE 2 | Targets in clinical trials in solid tumor CAR-T therapy.

Antigen Tumors ID

HER2 Central nervous system tumor, pediatric glioma NCT03500991
Nectin4/FAP Nectin4-positive advanced malignant solid tumor NCT03932565
EGFR806 Central nervous system tumor, pediatric glioma NCT03179012
Mesothelin Ovarian, cervical, pancreatic, lung NCT01583686
Lewis Y Advanced cancer NCT03851146
LMP1 Nasopharyngeal NCT02980315
FR-a Ovarian NCT00019136
EGFRIII Glioblastoma and brain tumor NCT01454596
Glypican-3 Liver NCT02932956
PSCA Lung NCT03198052
MUC1 Advanced solid tumors, lung NCT03179007, NCT03525782
IL-13Ra2 Glioblastoma NCT02208362
MAGE-A1/3/4 Lung NCT03356808, NCT03535246
gp100 Melanoma NCT03649529
Claudin 18.2 Advanced solid tumor NCT03874897
EpCAM Colon, pancreatic, prostate, gastric, liver NCT03013712
PSMA Prostate NCT01140373
AXL Renal NCT03393936
CD171 Neuroblastoma NCT02311621
CD20 Melanoma NCT03893019
MUC16 Ovarian NCT02311621
DR5 Hepatoma NCT03638206
c-MET Breast, hepatocellular NCT03060356, NCT03638206
CD80/86 Lung NCT03198052
DLL-3 Lung NCT03392064
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hematological tumors (27). However, this approach may also
increase toxicity to normal tissues and therefore requires rigorous
evaluation for practical applications. 4) More co-stimulatory
expression receptors can be introduced into CAR-T cells, and
CAR-T cells can be constructed that target tumor antigens and
immunosuppressive cytokines or immunosuppressive cells in TME
to resist the tumor immunosuppressive effects on T cells (121, 122).
5) Currently, certain drugs can upregulate the low expression of
antigen epitopes in tumors via epigenetics and increase the killing
effect of CAR-T cells on tumors (33, 41, 106). As a whole, the
treatment of solid tumors is not confined to the treatment of tumor
cells themselves, and the role of TME should not be ignored. Since
the TME can affect the infiltration of T cells towards the tumor, the
immune escape of tumor cells and T cell exhaustion may occur
(123). Therefore, the interaction between CAR-T cells and TME
may be the key to the transformation of CAR-T into clinical
applications, which prompts the need for urgent consideration. 3.
With regards to adverse effects such as cytokine storm, targeted
toxicity by CAR-T cells can be limited appropriately by the
introduction of operations such as co-expression of suicide genes
or inhibition of receptors (124). However, further and rigorous
scientific studies are needed on CAR-T cells to rule out
adverse effects.
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CONCLUSION

Therapies for EWS that involve CAR-T cells is a promising
avenue, however, practicality and safety issues require
further investigations.
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