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Macrophages are dynamic cells that play critical roles in the induction and resolution of
sterile inflammation. In this review, we will compile and interpret recent findings on the
plasticity of macrophages and how these cells contribute to the development of non-
infectious inflammatory diseases, with a particular focus on allergic and autoimmune
disorders. The critical roles of macrophages in the resolution of inflammation will then be
examined, emphasizing the ability of macrophages to clear apoptotic immune cells.
Rheumatoid arthritis (RA) is a chronic autoimmune-driven spectrum of diseases where
persistent inflammation results in synovial hyperplasia and excessive immune cell
accumulation, leading to remodeling and reduced function in affected joints.
Macrophages are central to the pathophysiology of RA, driving episodic cycles of
chronic inflammation and tissue destruction. RA patients have increased numbers of
active M1 polarized pro-inflammatory macrophages and few or inactive M2 type cells. This
imbalance in macrophage homeostasis is a main contributor to pro-inflammatory
mediators in RA, resulting in continual activation of immune and stromal populations
and accelerated tissue remodeling. Modulation of macrophage phenotype and function
remains a key therapeutic goal for the treatment of this disease. Intriguingly, therapeutic
intervention with glucocorticoids or other DMARDs promotes the re-polarization of M1
macrophages to an anti-inflammatory M2 phenotype; this reprogramming is dependent
on metabolic changes to promote phenotypic switching. Allergic asthma is associated
with Th2-polarised airway inflammation, structural remodeling of the large airways, and
airway hyperresponsiveness. Macrophage polarization has a profound impact on asthma
pathogenesis, as the response to allergen exposure is regulated by an intricate interplay
between local immune factors including cytokines, chemokines and danger signals from
neighboring cells. In the Th2-polarized environment characteristic of allergic asthma, high
levels of IL-4 produced by locally infiltrating innate lymphoid cells and helper T cells
promote the acquisition of an alternatively activated M2a phenotype in macrophages, with
myriad effects on the local immune response and airway structure. Targeting regulators of
macrophage plasticity is currently being pursued in the treatment of allergic asthma and
other allergic diseases. Macrophages promote the re-balancing of pro-inflammatory
responses towards pro-resolution responses and are thus central to the success of an
inflammatory response. It has long been established that apoptosis supports monocyte
and macrophage recruitment to sites of inflammation, facilitating subsequent corpse
clearance. This drives resolution responses and mediates a phenotypic switch in the
polarity of macrophages. However, the role of apoptotic cell-derived extracellular vesicles
org August 2021 | Volume 12 | Article 7081861
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(ACdEV) in the recruitment and control of macrophage phenotype has received remarkably
little attention. ACdEV are powerful mediators of intercellular communication, carrying a
wealth of lipid and protein mediators that may modulate macrophage phenotype, including
a cargo of active immune-modulating enzymes. The impact of such interactions may result
in repair or disease in different contexts. In this review, we will discuss the origin,
characterization, and activity of macrophages in sterile inflammatory diseases and the
underlying mechanisms of macrophage polarization via ACdEV and apoptotic cell
clearance, in order to provide new insights into therapeutic strategies that could exploit
the capabilities of these agile and responsive cells.
Keywords: macrophage, inflammation, arthritis (including rheumatoid arthritis), asthma, apoptosis
MACROPHAGES IN STERILE
INFLAMMATION

Macrophages were first described by Élie Metchnikoff in 1883,
following microscopic observations of mobile cells responding to
injury in a starfish larva induced by the insertion of a thorn (1).
These cells were subsequently classified according to their size,
designated as macrophages (“big eaters”) and microphages
(“small eaters”, now known as neutrophils) (2). Early studies
postulated that macrophages are tissue-derived cells closely
associated with the vascular endothelium, but experiments in
the late 1960s demonstrated that at least some macrophages
differentiate from monocytes in the blood circulation (3).
Eventually, these theories coalesced into the notion of a dual
origin of tissue macrophages, in that tissues are seeded during
development with primitive macrophages from the fetal liver and
yolk sac, representing the tissue-resident macrophage
population, while in adulthood, macrophages also develop
from bone marrow-resident hematopoietic stem cells, with
monocytes in the blood as an intermediate cell type (4).

Macrophages exhibit a considerable degree of plasticity
depending on signals from the extracellular environment,
defined by the M1 vs. M2 continuum of macrophage
polarization. Macrophages on the M1 end of the spectrum are
considered a pro-inflammatory phenotype, with robust
phagocytic and cytotoxic capacity; these cells are defined by
their expression of major histocompatibility complex (MHC)
Class II, cluster of differentiation (CD)14, CD80/CD86, and
CD38, as well as inducible nitric oxide synthase (iNOS). M1
macrophages robustly express pro-inflammatory cytokines (e.g.,
IL-6, IL-12, IL-1b, and TNF-a) and chemokines (e.g., CCL2,
CCL5), reflective of their ability to recruit other immune cells (T
cells, B cells) to the site of infection and maintain their activation
(4). Conversely, M2 macrophages function in the resolution of
inflammation and tissue repair pathways, and express the cell
surface markers CD36, CD206, and CD163 (5). Compared to M1
macrophages, M2 macrophages are more functionally diverse,
with several subtypes (M2a, M2b, M2c, M2d) expressing
different combinations of cytokines, chemokines, and growth
factors (4, 6). M2a macrophages, closely associated with Th2
polarized allergic inflammation in the lung, are induced by IL-4
and/or IL-13 and express high levels of IL-10, TGF-b, and
org 2
inflammatory chemokines such as CCL17, CCL18, CCL22, and
CCL24. Conversely, M2b macrophages are promoted by
immune complexes and have been shown to play important
roles in Th2 immune responses via their expression of TNF-a,
IL-1b, IL-6, IL-10, and CCL1. Subsequently, a microenvironment
rich in IL-10 and prostaglandin E2 leads to the induction of M2c
macrophages, which continue to express IL-10 as well as TGF-b,
and thereby are key regulators of the resolution of inflammation
and tissue repair. Finally, M2d macrophage arise in response to
TLR and adenosine A2A receptor ligands, as well as IL-6, and
have been shown to participate in angiogenesis via the expression
of vascular endothelial growth factor (VEGF) and IL-10 (7–9).
However, it is important to note that the polarization state of
macrophages is in fact a continuum, as these cells are able to
adopt intermediate phenotypes, with heterogeneous
subpopulations taking on a variety of physiological roles. A
major challenge in the field, however, is the mechanism by
which, especially in humans, macrophage phenotypes are
defined. The simple approach to define M1 and M2 as poles of
a continuum presents challenges for the comparison of different
studies, particularly in studies assessing macrophages generated
and/or matured in vitro; in fact, it has been suggested by some
authors that researchers describe stimulation parameters as an
aspect of macrophage nomenclature, i.e. M(IL-4) rather than M2,
in an effort to provide additional clarity with regard to
experimental conditions and to allow more transparent
comparisons between studies (10). It is also understood that so-
called “markers” of M1 and M2 (e.g. CD163, TNF-a, CD209 and
TGF-b) can be co-expressed by individual cells, highlighting the
complexity of polarization states (11).

It is currently well-understood that macrophages are dynamic
cells with critical roles in the induction and resolution of sterile
inflammation (Figure 1). In this review, we will compile and
interpret recent findings on the plasticity of macrophages in two
non-infectious, chronic inflammatory diseases with contrasting
immunological profiles: rheumatoid arthritis as a representative
Th1-associated disease and allergic asthma as a classic Th2-
skewed pathology. Furthermore, the critical roles of
macrophages in the resolution of tissue inflammation will also
be examined, emphasizing the ability of macrophages to clear
apoptotic immune cells and contribute to the resolution of
sterile inflammation.
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THE ROLE OF MACROPHAGES IN
THE INDUCTION AND MAINTENANCE
OF INFLAMMATION:
RHEUMATOID ARTHRITIS

The Immune Response in
Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic systemic autoimmune
condition which primarily affects the articular joints (12). This
chronic inflammatory disease is one of the most common
autoimmune conditions, affecting 0.5-1% of the world’s
Frontiers in Immunology | www.frontiersin.org 3
population, with a higher incidence in women compared to
men that increases in the elderly population (13). It is
characterized by swollen and painful joints at presentation,
which are a result of thickening of the synovial lining layer,
loss of articular cartilage and bone remodeling leading to lack of
function or deformation. Due to the high levels of systemic
inflammation, comorbidities often perturb the function of other
organs such as blood vessels, kidneys, heart and lungs. To date,
no one specific trigger has been identified to induce RA; however,
multiple risk factors have been identified, including genetic
predisposition (over 100 associated polymorphisms have been
identified contributing to approximately 30-60% of the overall
FIGURE 1 | The roles and regulatory capacity of macrophages in chronic sterile inflammation. Rheumatoid arthritis (left) is characterized as a Th1-polarized immune
pathology in the articular joints which can be driven by autoimmune factors such as citrullinated/carbamylated autoantibodies, whereas allergic asthma (right) is a
Th2-polarized inflammatory response to inhaled allergen in the lung. These distinct inflammatory environments have profound effects on the activation and function of
tissue-resident macrophages, which in turn play key roles in maintenance of the diseased state. Clearance of inflammatory cells from the tissue by phagocytic
macrophages (efferocytosis), supported by extracellular vesicles produced by apoptotic cells, has the potential to support the resolution of inflammation.
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risk), epigenetic changes and environmental factors (12). RA
occurs through the loss of tolerance to self-antigens and the
generation of autoantibodies to post-translationally modified
proteins via processes such as citrullination or carbamylation
(13). Critically, these autoantibodies can be detected in patients
prior to the development of joint inflammation (14). Indeed,
there is no detectable infiltration or inflammation of the
synovium in seropositive patients with anti-citrullinated
antibodies who subsequently go on to develop RA at a later
stage (15).

How the presence of these autoantibodies ultimately leads to
symptomatic disease and presentation of joint swelling is not
well-understood [recently reviewed in (16)]. The formation of
immune complexes containing these autoantibodies is an
important feature of the etiology of RA and drive many of the
pathogenic features including complement activation and direct
stimulation of immune cells (17–19). However, the disease
process shifts to the joint environment where the activation of
cells in the synovial lining layer are fundamental to establishing
the inflammatory environment. Firstly, synovial fibroblasts are
one of the main sources of IL-6 and MMPs, which degrade
cartilage. Secondly, synovial inflammatory macrophages are the
main source of pathogenic cytokines, including TNF-a (12).
Cell-cell interactions between macrophages and fibroblasts have
been demonstrated to be critical in amplifying and driving
disease progression (20, 21). Disease onset leads to the
recruitment of monocytes from the circulation where they
differentiate locally into pro-inflammatory macrophages; these
cells are the main source of chronicity factors such as TNF-a, IL-
1, IL-6 and GM-CSF (22). Over time, thickening of the synovium
occurs through the expansion of fibroblast and macrophage
populations, which alters the synovial environment. Excessive
production of soluble factors that recruit lymphocytes and
granulocytes to the inflamed joint, as well as inducing their
proliferation and retention, but blocking apoptosis, leads to a
self-perpetuating state of inflammation (23). The success of
therapies targeted to myeloid-derived soluble factors and the
use of models of disease have revealed that this loss of
homeostasis and the dysregulated synovial inflammatory
environment is maintained through the recruitment of pro-
inflammatory macrophages to the synovium (22, 24).

Macrophages In Healthy Joints
In healthy joints, the synovial membrane is a multifunctional
connective tissue structure found on the inner surface of the joint
capsule in contact with the lubricating synovial fluid. This
synovial layer is normally very thin (approximately 2 mm) and
can be clinically assessed using ultrasound measurements (24). It
is formed by two distinct cell layers whose main roles are to
maintain homeostasis within the joint, secrete lubricating fluids
as well as controlling access to the joint space for peripheral
blood cells. The synovial lining layer is composed of two main
cell types; synovial lining fibroblasts (SFibro) and resident
synovial lining macrophages (SMacs) (25). The second
supporting layer consists of sub-lining fibroblasts, connective
tissue, blood vessels, lymphatic drainage and nerves to support
Frontiers in Immunology | www.frontiersin.org 4
the functions of the lining layer. Monocytes are almost never
detected in healthy synovial fluid suggesting the SMacs are not
replenished by emigration of their precursors (26). This is
supported by observations from murine studies, where most
organs contain a prenatal macrophage population which are
required to maintain tissue homeostasis (27, 28). Indeed,
populations of resident macrophages have been described in
the synovium which are derived through seeding by similar
prenatal populations during development (29, 30). In mice,
SMacs can proliferate in situ and importantly differ from
infiltrating monocyte derived macrophages (MDM) from the
circulation. Tissue resident cells have a Krüppel-like factor 2
(KLF2)/KLF4 transcription program which both mediates
apoptotic cell uptake and inhibits pro-inflammatory TLR
signaling (31). However these resident macrophages are only
constitute a proportion of the total macrophage population
present in the joint and as such have been difficult to
distinguish from monocyte derived macrophages until recently.
For example, a recent elegant study from Culemann and
colleagues (30) revealed that these cells can be marked by the
surface expression of fractalkine receptor (CX3CR1+) and co-
stained for macrophage markers including CD68 and F4/80.
Importantly the authors demonstrated these cells expanded
during auto-antibody induced inflammatory arthritis and were
seeded during development using reporter models. This
CX3CR1+ population maintains tight junction formation in the
healthy synovium, preventing cell ingress (30). Redistribution of
these cells at the onset of inflammation results in weakening of
this protective barrier, allowing the infiltration of pro-
inflammatory MDM from the circulat ion into the
synovium (32).

Distinguishing between tissue resident and monocyte derived
macrophages is difficult and has been investigated in other tissue
sites, informing on markers or physiology that may be
informative to help define these rare synovial cells. Fate
mapping to determine the origin of these cells during
development has allowed the definition of these cells in
multiple tissues such as the gut, dermis and heart (28). For
example, expression of GATA-6 identifies tissue resident
macrophages which self-renew in models of peritonitis; co-
expression of combinations of CD11b, F4/80 and CD64
markers identify subsets of these resident cells from monocyte
derived macrophages (33). These tissue resident peritoneal cells
constantly assess their environment, monitoring for tissue
damage and promoting a pro-resolution state to maintain
homeostasis (34). Whilst these peritoneal cells have some
similar physiological functions to those described in resident
synovial macrophages, given the high degree of tissue-specific
transcriptional, physiological and epigenetic effects observed on
macrophages (28, 35), more detailed work on specific synovial
specific populations is still required to understand their
therapeutic potential. Currently, macrophage phenotypic
markers including TREM2, CD48, LYVE1 and CLEC10A have
been identified to begin to stratify distinct tissue resident subsets
in the synovium using combinations of lineage tracing and
transcriptomics (36–38).
August 2021 | Volume 12 | Article 708186
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SMacs are a heterogenous population consisting of several
distinct subsets; recent findings reveal that changes in the
population dynamics within the SMac population can be
observed at the onset of inflammation [recently reviewed in
(39)]. In human healthy joints, SMacs express the scavenger
receptor marker CD163 and are also strongly phagocytic (40,
41). SMacs engulf and remove apoptotic cells, and this has been
shown to reduce inflammation by reducing recruitment of
neutrophils to the synovium (42). Indeed, a specific
polymorphism in the scavenger receptor VSIG4 has recently
been described to be a strong risk factor correlate for severe
disease in RA (43). They also express the markers MHCII and
osteoprotegerin, but lack pro-inflammatory cytokines (TNF-a,
IL-1b) or RANKL, required to induce bone resorption (40, 41).
Recently resident SMacs have also been shown to express
myeloid-epithelial-reproductive tyrosine kinase (MerTK),
CD206 and triggering receptor expressed on myeloid cells
(TREM2) (36). These SMacs are postulated to play a similar
role to murine CX3CR1+ SMacs as they express several tight
junction-related genes. Thus, although human SMacs are still not
as well understood as murine counterparts, they appear to have a
similar protective phenotype required to maintain normal
homeostasis of the joint tissue.

Macrophages in Rheumatoid Arthritis
Macrophages are one of the principal drivers of both
inflammation and chronicity in the joint of RA patients where
they secrete many of the factors closely associated with this
disease; pro-inflammatory cytokines (TNF-a, IL-1 and IL-6),
chemoattractants (CCL2 and IL-8) as well as tissue remodeling
enzymes (MMP-3 and MMP-12) (44). In RA patients, a
hypertrophic synovial lining layer develops due to fibroblast
proliferation, increased vasculature and infiltration of MDM
from the circulation. The degree of synovitis is directly related
to recruitment of monocytes (44), causing an increase in the total
synovial macrophage population (45). This accumulation
correlates to disease activity and is used as part of a biomarker
assessment to assess the efficacy of therapeutic interventions (46,
47). These observations have been experimentally investigated
using various mouse models of RA (48). In humans, clinical
studies of radiolabeled CD14+ monocytes revealed their active
migration into an inflamed joint, where they polarize to an
inflammatory MDM within the inflamed synovium (49, 50).
Synovitis can be defined by histological analysis where distinct
disease activity subtypes are identified depending on the cellular
infiltrate present [reviewed in (39)].

The hypertrophic synovium reduces oxygen tension within
the joint to hypoxic levels, which can fall below 1% (51). This
environment alters macrophage respiration through
upregulation of HIF-1a, reducing oxidative phosphorylation
and promoting anaerobic glycolysis which supports their pro-
inflammatory activation in situ (52, 53). This environmental
effect has been demonstrated in a myeloid specific HIF-1a
deletion transgenic that results in reduced inflammation and
joint swelling in a murine model of arthritis (54). To date, two
distinct populations of blood-derived pro-inflammatory
Frontiers in Immunology | www.frontiersin.org 5
monocytes have been described to traffic into the inflamed
synovium in models of RA, driving expansion of macrophage
numbers. Classical Ly6C+ monocytes drive inflammation in
adjuvant and antigen-induced arthritis whilst recruitment of
non-classical Ly6C- cells occurs in sterile models of
autoantibody-induced arthritis (29, 55). Ly6C- cells will traffic
to the site of inflammation, and during the effector phase,
differentiate into an M1 type pro-inflammatory classically
activated macrophage which drives pathology without altering
the number of SMacs. Interestingly the same population of
activated macrophages can subsequently change their
polarization to a non-classical M2 anti-inflammatory
phenotype which are necessary for the resolution of the
inflammation (29). This plasticity in response suggests that
conversion of pro-inflammatory macrophages to a pro-
resolution phenotype may be a viable therapeutic strategy in
human disease.

Macrophage Subsets in
Rheumatoid Arthritis
Early histological studies of inflamed patient tissue identified
distinct subsets of macrophages in the synovium depending on
labeling by combinations of individual antibody clones (56). The
frequency of these distinct subsets was found to change
depending on levels of disease activity in the tissue examined.
In active disease, pro-inflammatory MDMs constitute the
majority of synovial macrophages (49), and when isolated from
inflamed tissues of RA patients with active disease release
proinflammatory mediators (such as TNF, IL-1, IL-6, CXCL8
and CCL2) (57–59) and were able to stimulate autologous T cells
(60). The pro-inflammatory nature of RA MDM is now well-
established, with secretion of CXCL4 and CXCL7 to attract
neutrophils and monocytes to the inflamed joint (61) and
release of cytokines such as TNF-a, IL-1, IL-6, GM-CSF and
TGF-b are well-documented (62–64). Infiltrating MDM in the
synovium can be identified with an antibody against an epitope
on the alarmins S100A8/9 (65), and are susceptible to anti-TNF
therapy, leading to their rapid removal (49, 66). In contrast,
SMacs are not affected by anti-TNF treatment (66),
demonstrating that specific targeting of MDMs may be
possible as a treatment strategy.

As technology has progressed, the complexity of this
heterogenous mixture of macrophages in the synovium during
disease is being revealed. Using refined ultrasound guided tissue
biopsy techniques of synovium in combination with single-cell
transcriptomics approaches have provided more consistent
tissue samples and given further insight into the heterogeneity
of this population (37, 38, 67). Recently, distinct clusters of
SMacs or MDMs with diverse homeostatic, inflammatory,
resolving or regulatory functions have been identified (36).
Importantly, protective or pro-repair macrophages (MerTK+/
CD206+) could be distinguished from those with pro-
inflammatory gene signatures (MerTK-/CD206-). This study
has further suggested that these two distinct functional subsets
can be further stratified into a total of nine distinct populations
based on gene expression patterns. Intriguingly, the frequency of
August 2021 | Volume 12 | Article 708186
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these populations changes depending on disease activity. For
example, a subset of CD163+/MerTK+/CD206+ macrophages
were greatly increased in RA patients in remission compared
to those with active disease. Understanding how these individual
subsets react and change between disease and remissive states
will be crucial for our understanding of which subsets to target
and influence in order to drive an anti-inflammatory, pro-
resolving therapy.

In RA, macrophages in the joint are constantly influenced by
the inflammatory environment to further sustain levels of pro-
inflammatory and cell recruitment factors, whilst also acting to
promote bone erosion and vascularization. As well as cytokines
and chemokines, synovial tissue and fluid macrophages have the
ability to respond to PAMPs and DAMPs. Activation of sMACs
or their physiological responses can be modulated through
ligation of activatory or inhibitory receptors such as Fc or
TLRs to further promote the pro-inflammatory phenotype and
sustain the chronic inflammatory environment (68, 69). Given
the sterile nature of the chronic phase of the disease, DAMPs
derived from endogenous or altered self-proteins have been
described to be associated with inflammation in RA (70).
DAMPs such as intracellular molecules, nucleic acids released
from damaged or necrotic cells, matrix fragments or oxidized
lipoproteins are found at increased levels at sites of inflammation
(71). Macrophages have a variety of pattern recognition
receptors (PRRs) on their surface which, when ligated with
DAMP molecules, promote phagocytosis, the release of
inflammatory mediators as well as antigen presentation and
thus can both drive and sustain an inflammatory response
(72). RA patients have detectable DAMPs including heat shock
proteins, S100 proteins, HMBG1 and citrullinated histones in
synovial fluid (73–75). In the RA synovium itself, DAMPs such
as heat shock proteins, fibronectin fragments and tenascin-C
have been identified, further potentially directly fueling
macrophage pro-inflammatory activity (76, 77). For example,
tenascin-C induces the secretion of IL-1b and TNFa in sMacs ex
vivo after ligating TLR4 (78, 79). Directly injecting tenascin-C
into a healthy joint drives inflammation and, conversely, animals
deficient in tenascin-C are protected from erosive arthritis (80).
RA sMacs have increased expression of TLR2 and TLR4 on their
cell surface and when stimulated with DAMP ligands ex vivo,
and secrete higher levels of pro-inflammatory factors (81, 82).
This correlates with a recent observation that synovial
macrophages from established RA have a transcriptome profile
similar to that observed in cells activated by pathogens (83).
Sensitivity to these ligands can be further enhanced through
exposure to oxidized oxysterols which are enriched in RA
synovial fluid, resulting in increased secretion of pro-
inflammatory factors (84). In addition, activation of TLR4 can
promote the survival and proliferation of RA macrophages
through activation of the nuclear factor of activated T cells 5
(NFAT5) signaling pathway (85). Therefore, DAMPs generated
during the inflammatory response through tissue damage or
cellular stress in RA provide a source of factors that can both
sustain and enhance sMac pro-inflammatory behavior.
Frontiers in Immunology | www.frontiersin.org 6
Macrophages in active RA joints also display dysregulated
expression of inhibitory and stimulatory Fc receptors, leading to
increased secretion of TNF-a ex vivo (86, 87). Fc receptors will
bind to autoantibodies to form immune complexes present in the
peripheral blood serum, synovial fluid and synovial tissue of
seropositive RA patients (19, 88, 89). Immune complexes
comprising autoimmune antibodies including anti-citrullinated
protein antibodies (ACPA) or rheumatoid factor (RF) have been
demonstrated to not only induce complement activation, leading
to increased cell recruitment to the joint (17, 18), but can also
directly activate macrophages to secrete pro-inflammatory
factors. Cross-linking of the FcgRIIa receptor with RA immune
complexes results in robust TNFa secretion and an amplification
of the pro-inflammatory profile of macrophages (90, 91).
Priming of macrophages with macrophage colony stimulating
factor (M-CSF) enhances this effect and the synovial fluid of RA
patients contains large amounts of this cytokine, further
increasing the pro-inflammatory potential of these cells (92,
93). Co-stimulation of macrophages through TLR and Fc
receptors with IgG-immune complexes containing citrullinated
matrix proteins can further enhance TNF-a secretion (90, 91,
94). M2 type RA macrophages, when co-stimulated via Fc and
TLR with these immune complexes, lose their ability to reduce
inflammation and instead secrete pro-inflammatory factors such
as IL-6, TNFa and IL-1b (69, 95). This co-stimulatory effect
demonstrates the ability of the dysregulated environment to alter
or amplify the sMac phenotype to further drive this chronic
inflammatory state. Given the dysregulated expression of these
receptors, targeting sMacs via Fc receptor expression has been
proposed as a potential therapeutic methodology to deplete
myeloid populations and thereby reduce inflammation in
RA (96).

Macrophages in the synovium predominantly secrete the
chemokines CXCL4 and CXCL7 in early stage of RA to recruit
neutrophils and monocytes (61), but will produce pro-
inflammatory mediators TNF-a (63), IL-1b (62), IL-6 (64) and
alarmins S100A8/9 (66) throughout active disease. Continued
secretion of these factors promotes the constant recruitment and
activation of leukocytes into the joint (97), and is maintained
through the transcription factors NF-kB, IRF5, STAT1/5 (98, 99)
as well as modifiers of gene expression such as microRNA-155
(100). Pro-inflammatory macrophages also secrete angiogenic
factors such as VEGF or TGF-a/b to increase new blood vessel
formation (101), as well as influencing fibroblasts to secrete
RANKL, leading to bone erosion (99). In this context,
macrophages may also be able to directly differentiate into
mature osteoclasts given the correct environmental cues such
as CCL25/CCR9 to further increase bone erosion (102, 103). This
concept is supported by the identification of an osteoclastogenic
macrophage subset in the synovial tissue of mice with collagen-
induced arthritis (104). Therefore, in this complex auto-immune
disease, macrophages can both direct and be influenced by the
inflammatory environment and cells around them leading to
maintaining a pro-inflammatory phenotype and sustaining
disease activity.
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Targeting Macrophages in
Rheumatoid Arthritis
In RA, preliminary therapeutic intervention is the use of
untargeted synthetic disease modifying anti-rheumatic drugs
(sDMARDs) such as an immunosuppressing corticosteroid
derivatives (e.g. methotrexate) (105). Patients with severe
disease who do not respond effectively to this therapy are
subsequently given biological disease modifying anti-rheumatic
drugs (bDMARDs), which now cover a range of effector
molecules in RA such as IL-1, IL-6, IL-17, TNF-a, T cell co-
stimulatory molecules, B cell activation and JAK/STAT signaling
(106). The use of anti-IL6R or anti-TNF antibodies are the most
widely used and have been demonstrated to reduce the level of
pro-inflammatory factors in the synovial fluid such as IL-8, IL-1
and MCP-1 (107). However, despite these improvements in the
disease, approximately 40% of patients treated with bDMARD
therapy show little or no efficacy (108), and as such other novel
therapeutic approaches are being considered. Disappointingly,
specific inhibitors of pro-inflammatory signaling pathways
which are known to drive the secretion of these factors in
macrophages, such as the p38 MAPK pathway have proved to
have little therapeutic effect in clinical trials (109).

As macrophages are one of the primary sources of many of
these pro-inflammatory factors (110), targeting macrophage
numbers or activity has been proposed to be a prime target to
reduce inflammation in this disease (111, 112). Ablating
strategies to reduce macrophage numbers in the joint has met
with variable success in RA as depletion has been linked to
immunosuppression, infection and impaired wound healing
(113). Several strategies such as clodronate liposomes (114),
photosensitizer-linked nanoparticles (115) or targeting folate
receptors (116) have been attempted, but as yet have not been
translated to clinical trials. However, these target both anti-
inflammatory SMacs and pro-inflammatory MDMs
indiscriminately. Therefore, future macrophage therapies will
benefit from a greater understanding of the distinct populations
within the synovium, their function and potentially identifying
markers that could be used to deplete or enhance the activity of
individual subsets.

One method would be to reprogram macrophages in situ to
switch their functional phenotype. We now have a greater
understanding of how metabolism in macrophages influences
their pro or anti-inflammatory properties, as well as how the RA
environment directs this programming (117). RA patients have
an increased M1 macrophage profile compared to other
arthritides (118) and inflammatory models demonstrate a
complex relationship between M1 and M2 subsets depending
on the stage of the disease and tissues studied (119, 120). In the
inflamed synovium, the predominant macrophage population is
characterized by M1-like inflammatory cells which in RA
synovium have higher levels of MMPs, pro-inflammatory
factors such as TNFa and have a reduced expression of the
M2 macrophage associated marker CD209 (121). This imbalance
in macrophage subsets is also apparent in the synovial fluid of
patients with active disease where there is a significant increase in
pro-inflammatory M1 cell numbers (122). M1 macrophages
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generally have high glycolytic activity whereas M2 type cells
have increased oxidative phosphorylation (123). The synovial
fluid of RA patients also contains higher levels of glycolytic
metabolites and hypoxic markers (124), which may promote the
skewing of macrophage physiology in disease. Modulating the
metabolic environment of the joint during disease is being
studied to assess the potential for therapy. For example,
inhibiting glycolysis in models of inflammatory arthritis has
been demonstrated to reduce the severity of disease (125). A
number of therapeutic strategies are available to modulate the
reprogramming of pro-inflammatory M1 to an anti-
inflammatory M2 phenotype through targeting metabolic
processes in various inflammatory diseases (126). However,
directly targeting macrophage metabolism will be challenging
in RA as other cell types including synovial fibroblasts have been
demonstrated to secrete factors which modulate SMAc
metabolism (127). Interestingly, treatment with anti-TNF
bDMARDs reduces both hypoxia and glycolysis in the
synovium (51).

Alternatively, blocking the influx of monocytes into the
inflamed joint has been proposed to restrict the local
expansion of the macrophage population (48). However, this
form of therapy would have to be localized to the joints affected
to prevent the loss of macrophage populations and subsequent
side effects in other tissues of the body. New specific effector
molecules could be targeted for a macrophage specific therapy
including IL-34 (promotes monocyte differentiation to
macrophages) or IL-35 (stimulates M2 polarization) (128, 129).
An alternative approach to modulating synovial macrophage
behavior has been the use of extracellular vesicles from
mesenchymal stem cells to induce an anti-inflammatory switch
in macrophage polarization in inflamed joints (130, 131).
THE ROLE OF MACROPHAGES IN THE
INDUCTION AND MAINTENANCE OF
INFLAMMATION: ALLERGIC ASTHMA

The Immune Response in Allergic Asthma
Asthma is a common and potentially life-threatening disease
that imposes a significant burden on patients, their families, the
greater community, and health care systems. It is estimated that
asthma currently affects about 339 million people worldwide,
with a prevalence of 1-18%, depending on the country (132).
Although the prevalence of asthma has dramatically increased
over the past few decades, there have also been improvements in
patient outcomes and reductions in hospitalizations for asthma
attacks due to advances in the pharmacological management of
this disease.

Allergic asthma is a chronic pulmonary disease characterized
by reversible airway obstruction, leading to limited airflow and
the manifestation of physiological symptoms, including wheeze
and cough. These symptoms are caused by changes to the
structure of the large airways (the bronchi and bronchioles),
known as airway remodeling, with excess production of mucus
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and extracellular matrix (ECM), along with hypertrophy,
hyperplasia, and hypersensitization of airway smooth muscle
(133). These structural changes are driven by persistent
inflammation around the airways in response to allergen
inhalation; the most common allergens affecting the asthmatic
population are derived from pollens, pet dander, cockroaches,
and house dust mites (132). The primary factor underlying
the development of allergic asthma is an exaggerated
hypersensitivity response to allergen (134). Sensitization to
allergens in genetically susceptible people results in an IgE-
mediated immune response; following exposure, allergen
crosslinking of IgE on the surface of mast cells results in the
release of mast cell granule contents (histamine, leukotrienes,
prostaglandins, and myriad other inflammatory mediators (135),
which triggers the infiltration of T helper cells, eosinophils, and
macrophages to the site of allergen exposure (134). Additionally,
some allergens directly cause damage to the airway epithelium
[e.g. Der p1, derived from mites (136, 137)], thereby inducing a
danger signal to initiate an adaptive immune response. The
establishment of a Th2-polarized inflammatory environment
around the airways is characterized by high levels of cytokines
(IL-4, IL-5, IL-13), chemokines (CCL5, CCL11, CXCL2,
CXCL12), and growth factors (TGF-b, bFGF, VEGF, PDGF-B)
(137–139). These soluble mediators, in addition to coordinating
and sustaining the immune response to allergen, have profound
effects on the structural cells of the airway and directly contribute
to the excess mucus production, fibrosis, and airway smooth
muscle changes that are directly responsible for the
manifestation of asthma symptoms (133).

Lung Macrophage Diversity and Immune
Regulation in Allergic Asthma
Macrophages play critical roles in maintaining the immune
response in respiratory inflammation. Macrophages are
abundant in the lung, comprising about 70% of the immune
cell population (4). Lung macrophages are a heterogenous
population of cells, as they may either develop from the
differentiation of lung-infiltrating bone marrow-derived
monocytes or from the proliferation of resident macrophages
of fetal origin (140, 141). Similar to other organs, heterogeneity
exists in terms of lung macrophage activation and polarization
status, with various populations of macrophages displaying
either pro-inflammatory or pro-resolution functions, or a
combination of both. As described in other tissues, the
extremes of the spectrum of macrophage polarization in the
lung have been designated as classically activated (M1) and
alternatively activated (M2) phenotypes, reflecting the Th1 and
Th2 polarization status of helper T cells (142). The M1
macrophage phenotype is promoted by exposure to the
cytokines TNF-a and IFN-g, as well as pathogen-derived
danger signals such as lipopolysaccharide (LPS), leading to the
upregulation of mediators associated with the clearance of
respiratory pathogens. Conversely, M2 macrophages are
induced by IL-4 and IL-13 and are associated with the
resolution of inflammation and the clearance of dead cells.
However, persistent activation of M2 macrophages in the lung
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is seen in cases of inflammation induced by helminths such as
Schistosoma mansoni (143), or by chronic aeroallergen exposure
(144). Under these conditions, M2 macrophages have been
associated with pathological tissue fibrosis (4, 145). Increased
M2 macrophage polarization and activation have been observed
in allergic asthma, both in human asthmatics and in mouse
models of asthma (146–148), although a better understanding of
the molecular mechanisms regulating macrophage polarization
is essential to clarify the relationship between allergen exposure,
macrophage activity, and the development of airway remodeling
and respiratory symptoms in allergic asthma.

The different sources of pulmonary macrophages are reflected
in the location and functions of two major lung macrophage
populations: alveolar macrophages and interstitial macrophages
(4). Alveolar macrophages reside on the epithelial surface of the
alveoli and are thus in direct contact with the environment and
foreign particles entering the lungs, e.g. bacteria, air pollution
particles, and allergens. Alveolar macrophages are for the most
part derived from fetal monocytes that colonize the lung shortly
after birth, but are replenished by blood-borne monocytes if they
are damaged or depleted (141, 149). In contrast, interstitial
macrophages reside in the tissue surrounding the airways and
have been less well-studied, partially due to difficulties in the
identification and isolation of these cells. Recent reports have
demonstrated that interstitial macrophages are a diverse cell
population than can be divided into three functional subtypes,
defined by shared expression of classical macrophage markers,
i.e. MerTK, CD64, CD68, and F4/80 as well as phagocytic
activity, but differential expression of proinflammatory
cytokines, chemokines, MHC Class II, and CD206 (150). The
location of these interstitial macrophages throughout the
respiratory tree, their ability to polarize toward M1 and M2
phenotypes, and their roles in the development and maintenance
of allergic airway disease remain incompletely understood.

Considering that the airway inflammatory microenvironment
is rich in Th2 cytokines such as IL-4 and IL-13, which are the
primary inducers of M2 macrophage polarization, it is currently
thought that M2 macrophages play major pathological roles in
allergic asthma. IL-33, which is known to be expressed as a
danger signal following allergen-mediated epithelial cell damage
(151), can polarize macrophages toward an M2 phenotype (152),
in addition to coordinating type 2 helper T cell responses. Other
cell types involved in the immune response in allergic asthma, in
particular eosinophils, innate lymphoid type 2 cells (ILC2),
CD4+CD25+ regulatory (Treg) cells, and mesenchymal stem
cells (MSCs) have also been demonstrated to modulate
macrophage polarization toward the M2 phenotype (153–156).
Certainly, M2 macrophages expressing high levels of CD206 and
MHC Class II are abundant in the airways of asthmatics, as these
cells have been found to be increased by 2.9-fold in the
bronchoalveolar lavage fluid of asthma patients in comparison
to the abundance of these cells in healthy control subjects (157).
Of the various M2 subsets, M2a macrophages are most relevant
to asthma pathology, as these cells are induced by IL-4 and IL-13
and express high levels of CD206 (6). However, it is important to
note that the impact of IL-4 on macrophages depends on a
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number of factors, i.e. the origin of the macrophage (158), the
inflammatory microenvironment (159), as well as prior
activation (160). Moreover, M2a macrophages express a
number of mediators associated with tissue fibrosis,
particularly TGF-b (6). Moreover, macrophage-derived
cytokines (IL-1b, IL-6, TSLP, IL-33) and chemokines (CCL2,
CCL17, CCL22) have been shown to promote Th2 cell
differentiation and recruitment (161–164), indicative of a
complex form of crosstalk between these immune cell types.

Recent studies on the mechanisms by which human lung
macrophages respond to allergen exposure and promote
inflammation have revealed that these cells can be directly
activated by allergen-derived proteins (165). Gordon et al.
demonstrated that house dust mite (HDM)-derived cysteine
and serine proteases induce the secretion of apolipoprotein E
(APOE) from airway-resident macrophages via protease-
activated receptor 2 signaling. APOE at these concentrations
(≥25 nmol/L) was found to activate the nucleotide-binding
oligomerization domain, leucine-rich repeat-containing protein
(NLRP) 3 inflammasome and induce IL-1b expression. This
study demonstrated that macrophages provide a critical danger
signal in response to allergen exposure, namely APOE, and
through this mechanism enhance the adaptive inflammatory
response to aeroallergens (165). Similar findings were also
reported by Tiotiu et al., based on an analysis of sputum
macrophages obtained from 104 asthmatics and 16 healthy
volunteers in the U-BIOPRED (Unbiased BIOmarkers in
PREDiction of respiratory disease outcomes) asthma cohort
(166). In this study, the gene signatures for differentially
stimulated macrophages, i.e. lung tissue-resident macrophages,
as well as classically and alternatively activated macrophages,
were assessed by gene set variation analysis. It was found that,
although macrophage numbers were significantly lower in severe
asthmatics compared to mild/moderate asthmatics and healthy
controls, the M2 signature was much higher in severely ill
patients. Interestingly, macrophages from severe asthmatics
were also enriched for eicosanoid biosynthesis and showed
evidence of increased mitochondrial ROS production,
implicating macrophages in the maintenance of inflammation
and the induction of oxidative stress in cases of severe disease
(166). Intriguingly, this study found significant changes in tissue-
resident macrophage signature enrichment according to asthma
severity. Most of the genes within this cell population signature
are involved in mitochondrial function, lipid metabolism, tissue
homeostasis, and apoptosis. It has been suggested that the
dynamic polarization of lung tissue-resident macrophages
during inflammation is highly dependent on mitochondrial
activity, i.e. increased levels of oxidative phosphorylation early
in the immune response facilitates cytokine expression and cell
migration, whereas during the resolution phase, macrophages
are considerably less active (166). The data from U-BIOPRED
indicate that, in both healthy subjects and mild/moderate
asthmatics, tissue-resident macrophages exist in a state of
readiness, which is not unexpected given their exposure to the
external environment. However, this homeostasis breaks down
in severe asthma, with evidence of increased expression of
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inflammatory mediators, in particular Th2 cytokines such as
IL-4 and IL-13 (166). Clearly, gaining a deeper understanding of
the functional diversity and plasticity of macrophages in allergic
asthma will be important for developing more effective
therapeutic strategies based on disease phenotype and allow for
a more personalized medicine approach to the treatment
of asthma.

Mechanistic Insights Into Macrophage
Function in Allergic Airway Disease
Using Mouse Models
As a corollary to these studies on macrophages in human
asthmatics, a number of recent, innovative studies have
exploited mouse models of asthma to provide mechanistic
insight into the modulation of disease pathways by pulmonary
macrophages. Branchett et al. (167) performed bulk RNA
sequencing on airway macrophages obtained using flow
cytometric sorting (CD11c+ SiglecF+ CD64+ CD45+ SSChi) to
determine that repeated exposure to the aeroallergen HDM
induced a macrophage phenotype characterized by increased
expression of genes associated with antigen presentation,
oxidative metabolism, inflammatory cell recruitment, and
tissue repair, and downregulation of genes associated with the
cell cycle, cytoskeletal function and antimicrobial immunity
(167). Of particular interest was in the increased expression of
chemokines by HDM-stimulated macrophages, with elevated
expression of chemoattractants for key cell types involved
allergic asthma, i.e. Th2 cells (CCL17 and CCL8) and
eosinophils (CCL24), indicating a primary role of tissue-
resident macrophages associated with the airways in regulating
the immune response to allergen (167). The results furthermore
infer a role for airway macrophages in stimulating incoming Th2
cells to sustain the inflammatory response, given their increased
expression of MHC Class II, likely driven by high levels of IL-4
and IFN-g under these inflammatory conditions (168).
Additional evidence for a direct impact of allergen exposure on
macrophages and the resulting alterations in immune mediator
expression has recently been provided by Henkel et al. (169).
Following either direct stimulation of monocyte-derived
macrophages with HDM or respiratory delivery of HDM to
mice, macrophages were found to undergo fundamental
reprogramming of lipid mediator metabolism, displaying
remarkable plasticity in terms of prostanoid (high expression
in vitro) and eicosanoid (high production in vivo) inflammatory
mediator production (169). Taken together, it is clear from
recent studies that allergen exposure induces a pathogenic
phenotype in macrophages, characterized by abundant
production of proinflammatory chemokines, cytokines, and
lipid mediators. Considering that these mediators are
implicated in treatment-resistant allergic asthma, investigating
methods to control the activity of pathogenic macrophages may
yield a significant clinical benefit in severe asthmatics.

The role of hypoxia in driving critical changes to macrophage
phenotype has recently been investigated by Sokulsky et al. (144).
Also using an HDM-driven model of allergic airway disease, this
study demonstrated the role of glutathione S-transferase omega
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class 1 (GSTO1-1) in the regulation of macrophage redox state
and the LPS/TLR4/NLRP3 signaling pathway. Intriguingly,
GSTO1-1-deficient mice exposed to HDM had greater
numbers of eosinophils and macrophages and elevated levels of
eotaxins in comparison with similarly exposed wild type mice, as
well as significantly higher expression of M2-related genes such
as Ym1. This elevation in the expression of markers of type 2
immunity were found to be regulated via HIF-1a, indicating a
previously unrecognized role for the induction of hypoxia in
mediating the severity of allergic airway inflammation (144). As a
similar role for hypoxia in driving a macrophage phenotype
capable of exacerbating glioma progression has recently been
revealed (170), it is clear that further studies on the interplay
between hypoxia and the induction of a pathological M2
phenotype may yield interesting and novel therapeutic targets.

Some recent studies have attempted to exploit the immune
regulatory role of alveolar macrophages to control allergen-
induced airway inflammation. In contrast to the pathological
nature of M2-polarised tissue-resident macrophages associated
with the large airways, alveolar macrophages have been shown to
provide a type of immune barrier function, with the capacity to
suppress type 2 immune responses and prevent airway
hyperresponsiveness in allergic airway disease mediated by
respiratory exposure to ovalbumin or house dust mite (171–
173). Recently, Li et al. employed an adoptive transfer strategy to
modulate inflammation in the lung in response to ovalbumin
inhalation (174). In this study, infusion of clodronate-
encapsulated liposomes to deplete alveolar macrophages led to
an aggravated inflammatory response to allergen exposure.
Moreover, adoptively transferred alveolar macrophages
acquired an M2-type phenotype and suppressed M1 responses,
but were found to play crucial roles in enhancing the
inflammatory response to allergen. Crucially, the acquisition of
M2 characteristics was found to be mediated via the ATP/P2X7r
axis, suggesting that pharmacological intervention to modulate
purinergic signaling pathway may be clinically beneficial (174).

Other recent studies have attempted to delineate the
mechanism of immune suppression by alveolar macrophages.
Miki et al. interrogated the downstream effects of apoptotic cell
engulfment by alveolar macrophages in the context of HDM-
driven allergic airway inflammation and found that enhancing
the phagocytic capacity of alveolar macrophages led to increased
expression of immunosuppressive mediators and the induction
of regulatory T cells in the lung (175). Intratracheal infusion of
apoptotic thymocytes in the context of HDM exposure had the
effect of suppressing Th2 cytokine expression and reducing
airway eosinophilia, thought to be mediated by induction of
the suppressor of cytokine signaling molecule SOCS3 and
adenosine receptors in alveolar macrophages (175). The
administration of apoptotic macrophages has also been
investigated as a means of inhibiting bleomycin-induced lung
inflammation and fibrosis, with the intriguing finding that the
additional delivery of simvastatin along with apoptotic
macrophages further enhanced efferocytosis in alveolar
macrophages and moreover increased PPARg activity, induced
hepatocyte growth factor and interleukin-10 expression, and
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decreased the expression of factors associated with epithelial to
mesenchymal transition (176). Additionally, a study by Woo
et al. recently revealed a critical role for GM-CSF signaling in
alveolar macrophages in the regulation of allergic inflammation
(177). Using an alveolar macrophage-specific conditional
knockout strategy and HDM exposure in mice, these authors
demonstrated that disrupted GM-CSF signaling in alveolar
macrophages led to reduced airway inflammation and lower
expression of type 2 cytokines following allergen exposure.
Mechanistically, these genetic alterations to GM-CSF signaling
in alveolar macrophages were found to induce metabolic
reprogramming and a loss of mitochondrial homeostasis via
PPAR-g, resulting in deficient TNF-a and MHC Class II
expression and reduced antigen uptake following allergen
exposure (177). Taken together, these studies demonstrate that
the manipulation of alveolar macrophages in allergic airway
disease may be an attractive therapeutic target.

Pharmacological Strategies Targeting
Macrophages in Allergic Asthma
A number of recent studies have evaluated the utility of currently
available therapies for modulating macrophage function in
allergic asthma. Maneechotesuwan et al. have conducted a
series of randomised, double-blind, placebo-controlled studies
in moderate/severe asthmatic patients treated with an inhaled
corticosteroid alone or in combination with oral statin therapy to
investigate the mechanism by which this drug combination
exerts a remarkable anti-inflammatory effect in allergic asthma,
resulting in robust IL-10 expression and the induction of
regulatory T cells (178, 179). In their most recent clinical trial
and supporting in vitro studies, Maneechotesuwan et al.
determined that corticosteroids and statins synergistically
suppress autophagy in airway macrophages via inhibition
of the PI3 K-Akt/mTOR signaling pathway, resulting
in greatly enhanced IL-10 production by macrophages
and improved asthma control (179). The consequences of
this elevation in IL-10 expression, especially regarding its
effects on eosinophil survival and the production of type
2 proinflammatory cytokines (IL-4, IL-5, IL-13) certainly
warrant further investigation.

Non-antibiotic macrolides have been under investigation for
some time as an alternative treatment modality for steroid-
resistant asthmatics, particularly during exacerbations (180),
although the mechanism of action of this intervention has not
been fully elucidated. Using the HDM exposure model of allergic
airway disease in mice, Sadamatsu et al. (181) recently showed
that the non-antibiotic macrolide EM900 reduced airway
inflammatory cell numbers and airway hyperreactivity when
delivered therapeutically. Mechanistically, EM900 was found to
significantly decrease the expression of asthma-associated
inflammatory mediators such as IL-5, IL-13, CCL5 and CXCL2
by lung interstitial macrophages, via the suppression of NF-kB
and p38 signaling (181). Additional pre-clinical and clinical
studies on EM900 and other drugs of this class are needed to
clarify the role of non-antibiotic macrolides in the treatment of
severe asthma.
August 2021 | Volume 12 | Article 708186

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ross et al. Macrophages in Sterile Inflammation
MACROPHAGES AND THE RESOLUTION
OF STERILE INFLAMMATION

Macrophages are important cells in the context of inflammation,
whether this be resident macrophages that may act to promote
inflammation in response to tissue challenge or recruited
macrophages that may be also important in the promotion of
repair responses. It is the dynamic and plastic nature of these
important myeloid cells that puts them at the heart of the
inflammatory process and, consequently, it is the control of
these cells that offers great opportunity for novel potential
interventions within inflammatory disease.

Whilst much is known about the signaling pathways that can
lead to the classic pro-inflammatory macrophage phenotype, an
important feature within a defense response, the switch of these
macrophages to alternatively-activated macrophages remains
relatively poorly understood (182). However, this switch is an
essential control point if inflammation is to achieve its desired
outcome of returning a challenged tissue to its pre-inflamed, fully
functional state. A failure in this control point leads to chronic
inflammation and ultimately tissue scarring and loss of
tissue function.

Within experimental models of inflammation, the kinetics of
the cellular inflammatory process are highly predictable and
coordinated, and in the case of granulocytic inflammatory
responses, cell death of inflammatory cells has an important
place within the control of macrophage phenotype and the
resolution of inflammation.

Efferocytosis: The Finding, Binding, and
Grinding of Cell Corpses
As inflammatory cells die by apoptosis, the dying cells
communicate their presence to surrounding cells and promote
the recruitment of macrophages to the sites of cell death where
they are then able to remove cell corpses in a process known as
efferocytosis (183). The mechanisms by which apoptotic cells
communicate their presence through the release of apoptotic
cell-derived factors is a relatively new area of study.

The blebbing of the plasma membrane (zeiosis) and release of
apoptotic cell fragments in the form of extracellular vesicles (EV)
is a defining feature of apoptosis (184). Recently these EV have
been defined as “find me” factors that recruit macrophages to
dying cells via ICAM-3 and the chemokine CX3CL1 (185–187).
EV are complex multi-molecular compartments that share
features with their parent cell and can modify immune
responses (188, 189). Furthermore, all EV have the potential to
be “active EV” through the carriage of enzymes; this can have
profound effects on the functional significance of EV through
modification of the extracellular matrix (190–192) and through
limitation of tissue damage (193). As EV can be of dramatically
varying sizes, consequently there is the potential for them to be
significant independent metabolic compartments (194); this is an
area that requires additional research, particularly for the
analysis of inflammation controlling enzymes (195). Soluble
“find me” factors are also released from dying cells and a range
of apoptotic cell-derived molecular mediators of macrophage
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recruitment have been identified including nucleotides
(ATP, UTP) (196), lipids (sphingosine-1-phosphate,
lysophosphatidylcholine) (197, 198), and chemokines
(CX3CL1) (187).

On arrival at a site of cell death, macrophages bind apoptotic
cells through receptor-ligand interactions; these have been
extensively reviewed elsewhere (199–201). The prime apoptotic
ce l l “eat me” l igand is the exposed phosphol ip id
phosphatidylserine (202, 203), which can be bound directly by
phosphatidylserine (PS) receptors (e.g. BAI1, TIM-4, stabilin-2)
(204–206) or indirectly through the use of soluble bridging
molecules Gas-6, protein S, and MFG-E8) (207–209), which in
turn bind to macrophage integrins and TAM receptors (210–
212). However, there are other, relatively ill-defined, changes that
function as clearance ligands (i.e. “eat me” signals) including
changes in glycosylation, exposure of calreticulin (213), and
functional changes in ICAM-3 (214). Notably, these “eat me”
signals are opposed by “don’t eat me” signals that provide
balance to this important process through inhibitory responses
(215). CD47 is a good example of such a negative signal that
ligates SIRP-a on macrophages. When this receptor-ligand
interaction is inhibited, efferocytosis is promoted (213, 216).

Many receptors for apoptotic cells have also been identified
(217). Some appear to function in individual stages of
efferocytosis (e.g. CD14 and binding) (218–220), while others
appear functionally redundant; this likely explains why not all
phagocytes carry the same panel of apoptotic cell uptake
molecules. Such diversity in apoptotic cell receptor carriage
leads to an extra dimension within the consideration of
phagocyte plasticity. Perhaps those receptors with the greatest
significance are those that promote the next ingestion stage in the
clearance process, i.e. phagocytosis as a result of cytoskeletal
organization. These include PS receptors: BAI1 (204), the TAM
(Tyro3, Axl, Mer) family of receptors (221), TIMs (222), and
integrins (223).

Following phagocytosis, the cell corpse can be digested and
the phagocyte can respond with the production of anti-
inflammatory mediators, which play an important role in the
resolution of inflammation.

Efferocytosis, the Avoidance of Disease,
and Modulation of Macrophage Phenotype
There is consensus that apoptotic cell clearance is a beneficial
process which, through its efficiency, avoids secondary necrosis
and unwanted inflammatory and autoimmune consequences.
The brief summary above belies the very significant amounts of
research that have sought to define the mechanisms by which
apoptotic cells and macrophages (and a wide range of other
professional and non-professional phagocytic cells) interact to
effect corpse removal and crucially realize the functional
significance of this process – immunomodulation. In achieving
this, efferocytosis results in a significant phenotypic shift
within macrophages towards an alternatively activated/anti-
inflammatory phenotype (182). These macrophages are then
active in promoting the necessary repair responses that drive
tissue homoeostasis.
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During efferocytosis, there is activation of a molecular switch
that drives the fine balance in inflammatory mediators away
from a pro-inflammatory response and towards a pro-repair
response; lipid mediators of inflammation (e.g. prostaglandin E2
and D2) are crucial in this switch (224–226). The benefit of this
switch towards resolution in the context of “classic” sites of
inflammation is clear, though it is noteworthy that the same
processes can drive pathology in other contexts where
inflammation is a driving force, e.g. cancer. For example, the
alternatively-activated M2 macrophage can help to promote
tumourigenesis (227); this helps to highlight the opposing faces
of an inflammatory response.

A failure in efferocytosis leads to disease with chronic
inflammatory conditions. Within the lung, this contributes to
asthma (228, 229), leading to exacerbated disease (230, 231). This
has been attributed at least in part to a reduction in galectin 3
which is involved in the control of efferocytosis (232).
Recognition of apoptotic eosinophils through MerTK has been
shown to be an important efferocytosis pathway to promote the
resolution of allergic airway inflammation (233). Failed
efferocytosis also contributes to chronic obstructive and
idiopathic pulmonary disease, cystic fibrosis, and airway
inflammation (231). Similar consequences are seen with any
failure of efferocytosis in most if not all tissues, with profound
disease consequences, including tissue and systemic autoimmune
conditions (234).

A number of mechanisms have been proposed for the way in
which apoptotic cell clearance by macrophages prevents
inflammation. An important process relies upon the
production of the anti-inflammatory cytokines IL-10 and TGF-
b1 and inhibition of pro-inflammatory cytokines (235, 236).
Efferocytosis induces IL-10 production in macrophages (237),
which in turn helps to support macrophages to clear apoptotic
cells efficiently (238). This positive control system drives
improved apoptotic cell clearance through the activation of
LXR, a nuclear receptor that promotes TAM receptor activity
(239), and promotes an effective M2 macrophage phenotype to
support resolution of inflammation. More recently, the type I
interferon IFN-b has been shown to be induced by both TGF-b1
and apoptotic cells, becoming intricately associated with the
resolution of acute inflammation through the control of
neutrophil apoptosis and efferocytosis, rather than neutrophil
recruitment (240). This work further highlights the complexity of
macrophage phenotype at sites of inflammation, noting the
concept of “satiety” in macrophages that had gorged on
apoptotic cells prior to becoming an established non-
phagocytic resolution phase macrophage producing high levels
of IFN-b which is involved in IL-10 expression. The full impact
of this IFN-b “circuit” requires further study. Recently, the cell
corpse “meal” has also been shown to provide the necessary fuel
for fatty acid oxidation to support macrophage polarization for
tissue repair (241).

Efferocytosis also drives an important switch in the
production of small lipid mediators of inflammation, termed
eicosanoids. They comprise a wide range of mediators, including
the prostanoids (e.g. prostaglandins, thromboxanes),
Frontiers in Immunology | www.frontiersin.org 12
leukotrienes, resolvins, and lipoxins. These mediators are the
focus of much research and are a family of signaling molecules
generated from the oxidation of polyunsaturated fatty acids.
They are a growing family of molecules that range in their
function from pro-inflammatory to anti-inflammatory, such
that the balance of these mediators can be crucial in
promoting resolution. The cardinal signs of inflammation
(redness, heat, swelling, and pain) are driven by these agents,
and prostaglandin E2 is particularly important. During
efferocytosis, a particular subclass of these eicosanoids is
produced, known as specialized pro-resolving mediators
(SPM), including members of the resolvin D and E series
(produced from the omega-3 fatty acids DHA and EPA,
respectively) (242). The production of SPM resolvins and
protectins occurs in line with a switch away from the
production of the pro-inflammatory prostaglandins and
leukotrienes (226), consequently shifting the fine inflammatory
balance towards resolution with M2 macrophages exhibiting
higher SPM levels (e.g. lipoxin A4) and lower inflammatory
eicosanoid levels.

There is much still to learn about the impact of cell death in
the control of innate immune responses. Whilst the use of
experimental models of inflammation are powerful systems for
the dissection of inflammatory signaling pathways, it is of great
value to also examine disease settings. A number of conditions
are associated with non-resolving inflammatory responses. For
example, atherosclerosis where efferocytosis is reduced due to
loss of macrophage TAM receptors (243–245), and this is further
associated by reduced SPM production collectively resulting in
failed resolution, larger lesions with necrotic cores (246). Cancer
also represents a powerful pathological opportunity for study of
inflammation, cell death and macrophage phenotype. Whilst it is
beyond the scope of this piece to review fully the breadth and
depth of work regarding tumor-associated macrophages, there
are some important points worthy of consideration. The
phenotype of macrophages associated with tumors can
dramatically change the outcome of the lesion, with
inflammatory, M1-like macrophages considered as tumor
suppressive and pro-repair, M2-like macrophages being
supportive of tumor growth. Of relevance here is the
observation that tumors, paradoxically, can have high levels of
cell death and this can be associated with particularly aggressive
tumors (247). This point of cross talk between these dying cells
and tumor associated macrophages, both directly and via
extracellular vesicles, can promote a “pro-repair” phenotype in
macrophages (i.e. M2-like or alternatively-activated) (248) and
the contribution of these macrophages to support of the tumor
has been proposed as an onco-regenerative niche (227, 249).

Extracellular Vesicles and the Control of
Innate Immune Responses
The molecular mechanisms upstream of corpse removal (the
“find me” phase) remain relatively poorly defined. Powerful
communicating agents known as extracellular vesicles (EV)
have become the focus of much research over recent years, and
their ability to modulate the innate immune response and repair
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of tissues has attracted much attention in recent times. These EV
are derived from all cells and can be produced from a variety of
cellular locations. They are membrane-enclosed compartments
that are released from viable cells and apoptotic cells and can be
derived from intracellular sources (i.e. multivesicular body) or
the plasma membrane by an increasing range of identified
processes [reviewed by (188)]. The impact of these EV on
immune responses has been the subject of much research,
highlighting roles in antigen presentation, inflammatory
responses, and infection processes (189, 250–252). EV from
apoptotic cells have also been proposed to have profound
immunomodulatory effects.

EV have been given many names in research across different
disciplines, but within the field of cell death, they have been
termed “apoptotic bodies” and more recently apoptotic cell-
derived EV (ACdEV or ApoEV) to capture the probable
diversity in these EV and their routes of generation. Since the
seminal work in 1972 (184) where apoptotic cells and EV were
noted to be of varying size, to more recently within the field of
EV, the term apoptotic bodies has been used to describe only the
largest of the vesicles (>1 µm) released from dying cells. Within
the increasing number of studies of apoptotic cell-derived
extracellular vesicles, it is clear that these are complex, highly
functional, immune-modulating mediators.

A key part of resolving inflammation is to prevent new
inflammatory cell recruitment (e.g. to exhibit “keep out”
signals to exclude granulocytes); this has been shown to occur
in a number of ways. First, through apoptotic cells releasing
lactoferrin to act as a “keep out” signal (253) and also as a
mechanism to inhibit pro-inflammatory signaling (254). Indeed,
lactoferrin-derived fragments and peptides generated following
the uptake of apoptotic neutrophils by macrophages are a critical
immunomodulating component (255). Additionally, by the
sequestration of chemokines to destroy chemoattractive
gradients (256), but also through the release of anti-
inflammatory factors (e.g. cytokines and SPM), with TGF-b1
capable of inducing anti-inflammatory SPM whilst reducing pro-
inflammatory lipid mediators (257). These SPM are also capable
of preventing further inflammatory cell infiltration (258) whilst
stimulating recruitment of monocytes to promote efferocytosis
and resolution (259).

Apoptotic cell-derived EVs act to recruit phagocytes to sites of
cell death (185) viamechanisms that have been shown to include
intercellular adhesion molecule 3 (186) and the chemokine
CX3CL1 (187). The role of EV in SPM carriage and function is
becoming clear and is the focus of much research. EV have been
shown to shuttle these eicosanoids (260–263), and all EV will be
sources of the necessary esterified fatty acid substrates for
eicosanoid synthesis (264). The importance of this, especially
within apoptotic cell-derived EV, remains the focus of
ongoing research.

EV are complex macromolecular structures, and the full
functional significance of their composition remains to be
elucidated. The exposure of phosphatidylserine at the surface
of these vesicles is similar to that seen on apoptotic cells, where
this phospholipid is an important immune modulating factor
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driving macrophage phenotypic switch (202, 236, 265, 266). It is
therefore likely that EV are similarly capable of changing
macrophage phenotype via this mechanism, though there is
still a gap in our knowledge in relation to the precise
molecular mechanisms and the extent to which EV can affect
the switch alone, without the contribution of the apoptotic cell
corpse. A recent study has suggested that the induction of
TGF-b1 occurs in responses to ACdEV and drives
macrophages towards an anti-inflammatory phenotype in
experimental colitis (267). Furthermore, the known release of
IL-10 by macrophages in response to apoptotic cells may also
drive EV release from other cells (e.g. dendritic cells) that are also
capable of inhibiting inflammatory responses (268). This further
highlights the complexity in the system where EV effects may be
direct or indirect in the control of responses. EV from apoptotic
cells have been shown to induce apoptosis in macrophages,
thereby amplifying the ACdEV response and potentially
suppressing inflammatory responses (269). Again, the study of
pathology may shed further light on the precise molecular
mechanisms by which EV may exert their effects on
macrophages and the consideration of cancer as a non-
resolving inflammatory lesion will be of value. EV derived
from tumor cells, including endogenous apoptotic cells, have
been proposed as key regulators in tumor progression (227) and
detailed study of the composition-function relationships of these
EV with modulation of inflammatory responses would be of
value. For example, the SPMmicroenvironment (either free or in
EV) may be important in supporting a beneficially-suppressed
inflammatory environment that promotes anti-tumor activity
[recently extensively reviewed in (270)].

Extracellular vesicles carry a tantalizing array of different
molecular species, including proteins, lipids, and nucleic acids.
Interestingly, it is now established that EV can also carry
enzymes (190–193, 195); this has led to the possibility of active
EV that may change throughout their life cycle. The presence of
immune-modifying enzymes within EV is the focus of our
current research. It is however established that pro-fibrotic
enzymes such as transglutaminase 2 are released during
inflammatory responses and these drive a pro-fibrotic disease
process (271). The balance between repair responses and fibrotic
responses and the ability of extracellular vesicles to change this
balance remains a gap in our current knowledge. However, this is
precisely the point at which novel therapies are focused so as to
control macrophage phenotype for therapeutic gain.

It is notable that EV have been shown to promote
efferocytosis, thus supporting the resolution of inflammation.
Crucially, they also drive a change in the lipid mediator profile of
macrophages (272) by modulation of the expression of the
required enzymes for SPM production (273). It seems likely
that EV act as an appetizer for macrophages ahead of their main
“meal” of a cell corpse, and that they may be a key functional
mediator in promoting the necessary macrophage phenotypic
shift required to effect strong pro-resolution responses. EV also
represent a mechanism by which macrophages can be supplied
with SPM precursors and pre-formed mediators that may further
support their immune-modulating role (242). It remains unclear
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whether apoptotic cell-derived EV, like apoptotic corpses
themselves, drive robust inflammation-controlling responses or
whether they must act in concert with cell corpses to achieve the
full anti-inflammatory/pro-repair responses required for the
resolution of inflammation.

Whilst dying cells and their vesicles are capable of interacting
with the innate immune system to support pro-resolution
responses, EV from a range of other cells including
mesenchymal stem cells also appear to function in a similar
manner. MSC-derived extracellular vesicles are the focus of
much attention within the field of regenerative medicine, and
it is notable that the responses that they seek to induce within
local tissues and through modulation of macrophages are those
same responses that occur naturally in response to apoptosis,
responses that promote the resolution of inflammation and
repair responses. This raises the possibility that extracellular
vesicles from viable and dying cells function in a similar manner,
but that it is perhaps the larger dose of extracellular vesicles
produced during apoptosis that exerts the strongest inducer of a
macrophage phenotypic switch. In this context, it is likely that
apoptotic cell-derived extracellular vesicles have two functions:
one of macrophage recruitment and a second to induce
phenotypic change towards a pro-repair phenotype, the latter
supported by cell corpse clearance.

Efferocytosis and the Control of Adaptive
Immune Responses
Macrophages also play critical roles in the resolution of adaptive
immune responses, predominantly via the uptake of apoptotic
leukocytes, neutrophils and eosinophils. However, despite these
cells presumably acquiring an M2 phenotype under these
conditions, it is difficult to explain this “pro-resolution” activity
following efferocytosis in asthma, as M2 macrophages have been
intimately tied to the induction of tissue fibrosis. While recent
studies have found that encounters between apoptotic leukocytes
and macrophages contribute to the clearance of cell debris, while
at the same time inducing immune silencing in macrophages,
some aspects of M2 cell activity may further contribute to disease
pathology by exacerbating the inflammatory response and
generating factors that contribute to tissue fibrosis (274, 275).
Interestingly, a direct comparison of macrophage subsets during
the resolution of inflammation has shown that satiated
macrophages downregulate genes associated with fibrosis,
while non-phagocytic macrophages are associated with
processes such as migration, oxidative phosphorylation, and
mitochondrial fission. Notably, the conversion to a satiated
state has been found to induce a reduction in the expression of
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extracellular matrix constituents associated with tissue fibrosis
(276). Thus, macrophage satiation during the resolution of
inflammation seems to bring about a transcriptomic transition
that resists tissue fibrosis and oxidative damage while promoting
the restoration of tissue homeostasis to complete the resolution
of inflammation. Taken together, M2 macrophages appear to be
paradoxically involved in both the induction of fibrosis and its
resolution, suggesting the need for further research in this area to
clarify these mechanisms leading to an anti-fibrotic state of
macrophage satiety. Certainly, the resolution of inflammation
via efferocytosis, particularly relevant to the clearance of
neutrophils (277) and eosinophils (278), is a vibrant field of
research that has been thoroughly reviewed elsewhere (279).
CONCLUSIONS

It is evident that macrophages are essential for both homeostasis
and disease pathology. In this review, we have focused on the
origins, differentiation, and functions of tissue macrophages,
with a particular focus on the role of macrophages in chronic
sterile inflammatory diseases of the joint and lung. Additionally,
we have emphasized the crucial role of macrophages in the
control and resolution of tissue inflammation. Although many
questions remain unanswered regarding the precise molecular
and cellular mechanisms involved in macrophage-mediated
pathology, we have highlighted recent efforts to target
macrophage activity using small molecules, biologics, and
extracellular vesicles. With the increasing resolution of
phenotyping techniques, a deeper understanding of macrophage
subsets and their plasticity over time and space will certainly
contribute to the development of effective macrophage-targeting
therapies, with an expected improvement human health.
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