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PI3K signalling is required for activation, differentiation, and trafficking of T cells. PI3Kd, the
dominant PI3K isoform in T cells, has been extensively characterised using PI3Kd mutant
mouse models and PI3K inhibitors. Furthermore, characterisation of patients with
Activated PI3K Delta Syndrome (APDS) and mouse models with hyperactive PI3Kd
have shed light on how increased PI3Kd activity affects T cell functions. An important
function of PI3Kd is that it acts downstream of TCR stimulation to activate the major T cell
integrin, LFA-1, which controls transendothelial migration of T cells as well as their
interaction with antigen-presenting cells. PI3Kd also suppresses the cell surface
expression of CD62L and CCR7 which controls the migration of T cells across high
endothelial venules in the lymph nodes and S1PR1 which controls lymph node egress.
Therefore, PI3Kd can control both entry and exit of T cells from lymph nodes as well as the
recruitment to and retention of T cells within inflamed tissues. This review will focus on the
regulation of adhesion receptors by PI3Kd and how this contributes to T cell trafficking and
localisation. These findings are relevant for our understanding of how PI3Kd inhibitors may
affect T cell redistribution and function.
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INTRODUCTION

PI3K signalling controls numerous pathways that are involved in regulating trafficking and
localisation of T cells between lymphoid system and organs, and tissues through the circulatory
and lymphatic systems. During the process of T cell migration, integrins are crucial mediators of
adhesion and are extended to an open high-affinity conformation following stimulation of
chemokine receptors and/or T cell receptor stimulation. The major integrin expressed on T cells
is Leukocyte Function-associated Antigen 1 (LFA-1), which is expressed on all subsets of T cells as
well as other leukocytes, including B cells and neutrophils. LFA-1 mediates T cell transendothelial
migration as well as formation of a stable immunological synapse with antigen presenting cells
(APC). The mechanistic regulation of LFA-1 affinity has been extensively studied since its discovery
in 1981 as a target for monoclonal antibodies inhibiting cytotoxic T cell-mediated killing (1–3), yet
many questions remain about its precise regulation and function. Besides LFA-1, several other
adhesion molecules are involved in T cell migration, including L-selectin (CD62L) found on naïve T
cell subsets and on central memory T (TCM) cells. CD62L binds ligands such as GlyCAM-1 and
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CD34 expressed on endothelial cells and is required for efficient
naïve T cell homing to LNs through high endothelial venules
(HEV) [reviewed in (4)].

In this article we will review how PI3K signalling regulates T
cell adhesion, migration and localisation by regulating CD62L
and LFA-1 affinity, as well as how this can be targeted by PI3K
inhibition. Cytokines and chemokines are also essential for
coordinating the trafficking of lymphocytes. Of these, the
expression of CCR7 and IL7Ra (CD127) are negatively
controlled by PI3Kd signalling in a FOXO1-dependent manner
and will also be considered.
PI3K SIGNALLING IN T CELLS

Class I PI3Ks phosphorylate the D3-position of the inositol ring
of PtdIns (4,5)P2 (PIP2) to generate PtdIns (3,4,5) P3 (PIP3). PIP3
is bound by a subset of pleckstrin homology (PH) and other
PIP3-binding domains. Proteins with PIP3-binding properties
are hence recruited to the membrane resulting in initiation of
downstream signal transduction. The class I PI3K subfamily is
comprised of class IA PI3Ks (PI3Ka, PI3Kb, and PI3Kd) and
class the IB PI3K (PI3Kg). The class I PI3Ks are heterodimeric
proteins consisting of a regulatory domain (class IA PI3Ks; p85,
class IB PI3K; p101) and a catalytic domain [p110a (PI3Ka),
p110b (PI3Kb), or p110d (PI3Kd), or p110g (PI3Kg)] (5). Class II
and class III PI3Ks use PtdIns or PtdIns (4)P as a substrate and
are involved in intracellular membrane trafficking, these will not
be considered here [reviewed in (6)].
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In T cells PI3Kd is the dominant class I PI3K isoform. PI3Kd
is activated downstream of the TCR as well by costimulatory and
cytokine receptors, that stimulate the phosphorylation of
tyrosines within YXXM motifs that bind to the SH2 domains
of the p85 subunit (7) (Figure 1). Indeed, LFA-1 can also activate
PI3Kd via so called outside-in signalling (8). PI3Kg is also
expressed in T cells and predominantly mediates signals
downstream of G protein-coupled receptors such as chemokine
receptors (5) (Figure 1).

PI3K in T Cell Development
Signalling through class I PI3K plays important roles at multiple
stages of T cell development. Loss of both p110d and p110g
results in near complete ablation of thymocyte b-selection, while
individual loss of p110d and p110g individually only causes
minor perturbations of T cell development (9–11). These
findings revealed an unexpected redundancy between p110d
and p110g in developing T cells and was explained by
cooperative signalling from the chemokine receptor CXCR4
via p110g and pre-TCR signalling via p110d, either of which is
sufficient to generate PIP3 required during thymocyte b-selection
(12). Consistent with this, deleting the PIP3 phosphatase PTEN
bypasses the requirement for pre-TCR stimulation during
thymic b-selection, presumably by enabling sustained CXCR4-
dependent PIP3 levels (13). Beyond thymocyte b-selection, mice
lacking PTEN show impaired thymocyte negative selection and
evidence of autoimmunity, suggesting a role for PI3K activity in
maintaining central tolerance (14). In addition, mice expressing a
kinase-dead p110d show increased numbers of Treg within the
FIGURE 1 | PI3K activation in T cells. Simplified schematic of the differential regulation of PI3Kd and PI3Kg in T cells. Figure made in BioRender.
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thymus, highlighting a role for p110d in thymic Treg selection
(15). Together these findings underpin an important role for
PI3K signalling in the development of T cells.

Following thymic development, class I PI3K signalling is also
crucial for the peripheral development of multiple subsets of T
cells; T follicular helper cells (TFH cells) require ICOS signalling
during development, and ICOS mutant mice that do not activate
downstream PI3Kd, as well as mice lacking p110d in T cells, lack
TFH cells (16, 17). The loss of TFH cells is the main reason
underpinning the lack of germinal centres and immunoglobulin
class switching after immunisation of PI3Kd-deficient mice (16).
PI3Kd also regulates the differentiation of other TH subsets,
including TH1, TH2, TH17, and Treg, as well as production of
cytokines and granzymes in both CD4+ and CD8+ T cells (15,
18–26). Human patients with loss of function mutations in
PI3Kd have also been identified (27–30). These have a more
profound defect in B cell development than observed in mice. By
contrast, profound defects in T cell development have not been
observed so far in patients lacking the p85a or p110d subunits of
PI3Kd; but this has been difficult to evaluate systematically in
such immune-deficient patients who also suffer from
inflammatory disease.
Activated PI3Kd Syndrome
More recently, gain-of-function mutations that lead to increased
PI3Kd activity have also shown to be the cause of a novel
immunodeficiency syndrome called Activated PI3K delta
Syndrome (APDS) (31–35). APDS patients show increased
susceptibility to airway infections (e.g. with Streptococcus
Pneumoniae), chronic virus infections (CMV and EBV) and
pertinent to this review, have enlarged LNs and spleens as well as
signs of autoimmunity, mainly manifested as cytopenia (34).
Remarkably after a 12-week trial of the PI3Kd inhibitor
Leniolisib, the LNs and spleens of these patients reduced in
size by up to 50% (36). This may reflect in part the potential of
PI3Kd inhibitors to cause redistribution of lymphocytes in
addition to the inhibitory effect on lymphocyte proliferation.
Several groups have generated mouse models of APDS which
recapitulate many of the features of the patients, including
increased susceptibility to airway infections, enlarged LNs and
spleen and production of autoantibodies (37–41). Altogether,
these studies shine light on the paradox that both loss-of-function
and gain-of-function of PI3Kd leads to immunodeficiency, and
highlight how this pathway needs to be dynamically regulated for
optimal lymphocyte development and function (42, 43). This, as
we will see, is also key for the control of lymphocyte trafficking.

Currently four different PI3Kd inhibitors are approved for the
treatment of B cell malignancies (44). A detailed description of
these is beyond the remit of this review, however two concepts
learned from the treatment of these patients are worth noting.
Chronic lymphocytic leukaemia (CLL) patients treated with
PI3Kd inhibitors such as Idelalisib initially experience a
dramatic redistribution of the malignant B cells from the LNs
(45). This phenomenon is referred to as lymphocytosis and is
now recognised as a beneficial clinical feature of this class of
Frontiers in Immunology | www.frontiersin.org 3
drugs. Lymphocytosis is thought to be secondary to the
interference with BCR-dependent integrin activation and
chemokine responsiveness (46). CLL cells that are purged from
their protective LN environment are more susceptible to undergo
apoptotic cell death which can be accelerated with chemotherapy
or drugs such as rituximab (anti-CD20) (45). Immune-mediated
colitis and hepatitis are common adverse effects of PI3Kd
inhibitors, but skin inflammation is also seen in some studies
(47). These are thought to be caused by the selective depletion or
inactivation of Tregs, especially from tissues with high exposure
to microbial antigens, such as the gut, liver and skin (44, 48). In
this context, by targeting Treg, PI3Kd inhibitors can unleash
potent antitumour immune responses (49). Recent evidence
suggests that PI3Kd inhibitors can purge Treg from the
tumour microenvironment and into the circulation (50).
Hence the capacity of PI3Kd inhibitors to not only affect
lymphocyte function, but also to cause redistribution out of
lymphoid tissues may underpin the therapeutic effects of
PI3Kd inhibitors.
INTEGRINS IN T CELL LOCALISATION,
MIGRATION, AND ADHESION

Integrins are transmembrane, heterodimeric proteins that are
involved in cell-cell and cell-extracellular matrix interactions as
well as binding of soluble ligands. In mammals the heterodimeric
transmembrane structure of integrins is composed of one of 18 a
subunits and one of eight b subunits, that can form up 24
combinations. Integrins are involved in T cell migration and
localisation within tissues, where conformational priming
(activation) of the integrins by intracellular signalling events
(“Inside-out” signalling) results in high affinity binding of their
ligands. Further, integrins mediate signal transduction, where
binding of their ligands stimulates intracellular signalling
pathways (“outside-in” signalling).

T cells are known to express at least 15 of the 24 known
integrins depending on their differentiation and activation state
(51, 52) (Figure 2A). LFA-1 (aLb2) is expressed by all T cell
subsets and specifically binds Intercellular Adhesion Molecules
(ICAMs) and Junctional Adhesion Molecules (JAMs) (53, 54).
Under steady state, LFA-1 is found in a closed conformation
which has low affinity for its ligands. However, following inside-
out mediated activation by chemokines, cytokines, or TCR-
stimulation, LFA-1 rapidly changes conformation from its low
affinity closed/bent conformation to an intermediate affinity
extended conformation, where the extracellular domain is
partly open, but the cytosolic domain remains closed. This
intermediate affinity extended conformation allows for binding
to ICAM-1, which can further increase affinity through outside-
in signalling resulting in the high affinity open-extended
conformation (Figure 2B) reviewed in (51, 55). Multiple other
integrins are expressed in subsets of T cells, including Very Late
Antigen 4 (VLA-4) (a4b1) which binds VCAM-1, however in
this review we will focus on the roles of LFA-1.
August 2021 | Volume 12 | Article 708908
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Integrins in T Cell Migration
T cells recirculate between LNs through the blood, probing
antigen-presenting cells for their cognate antigen. To exit
blood vessels, selectins, integrins, and chemokines are required
to halt the T cells at the right place and resist the shear stress in
the blood (1-70 dyn/cm2) (56). This is a tightly regulated process.
Selectin-mediated binding of their ligands facilitates rolling along
the endothelial membrane which slows down the T cells. This
allows the T cells to respond to chemokines secreted from the
endothelia and immobilised on glycosaminoglycans (GAGs) on
the surface of the endothelial cells Reviewed in (57). As a result,
integrins (such as LFA-1 and VLA-4) are activated. LFA-1-
mediated binding of endothelial ICAMs (ICAM-1 and -2)
leads to firm adhesion to the endothelial barrier. This allows
the T cells to crawl against the flow towards chemotactic
gradients until the cell will undergo transendothelial migration
(TEM, also termed diapedesis) through the endothelial barrier
into the underlying tissue.

Recirculation and homing of naïve T cells to secondary
lymphoid organs (SLOs), including LNs, requires expression of
the chemokine receptor CCR7 and CD62L, both which are
downregulated following PI3K activation as discussed later.
CD62L interacts with peripheral node addressins (PNAds)
expressed on high endothelial venules (HEVs) which are
formed by specialised endothelial cells lining post-capillary
venules associated with lymph nodes (LNs). The interaction
between CD62L and PNAd causes T cells to start rolling along
the HEVs. After slowing down, CCR7 on the T cells binds CCL21
presented by HEVs (58, 59), which rapidly induces LFA-1
activation, leading to arrest and transendothelial migration (60,
61). The process of LN entry is highly dependent on LFA1; LFA-
1-deficient mice have greatly reduced adhesion to HEVs,
particularly in peripheral LNs (pLNs) and therefore elicit
limited to no migration to the LNs (62, 63). Similarly, LFA-1-
blocking antibodies block adhesion to HEVs and prevent
repopulation of LNs (64). Together, HEVs thus function as a
Frontiers in Immunology | www.frontiersin.org 4
selective gateway to the LNs, attracting naïve and resting
memory T cells, but largely blocking entry of other leukocytes
such as neutrophils under steady state (65). Migration to gut-
associated lymphoid tissues, spleen and inflamed lymphoid
tissues are governed by other mechanisms and molecules, such
as a4b7/MAdCAM-1 interactions, and this integrin seems to be
regulated by different pathways than LFA-1 and VLA-4 (66).
After entering LNs, the role of LFA-1 is less clear; studies of LFA-
1-deficient T cells indicate that LFA-1 is required for retention of
T cells in the parenchyma (67). However, other studies using
LFA-1-deficient T cells (68) or dendritic cells lacking integrins
altogether (69), suggest that interstitial and intranodal motility of
T cells and DCs in the absence of antigen is much less dependent
on integrins than is the entry into and egress out of the LNs.

Following screening of antigen within the LNs, T cells will
egress through the efferent lymphatics in a process regulated by
LFA-1/ICAM-1-interactions (67). Egress is guided by the lipid
sphingosine-1-phosphate (S1P). S1P is found in low
concentrations inside the LNs, but high concentrations in
lymph and blood, creating a gradient which attracts the T cells
through binding of the GPCR S1P receptor 1 (S1PR1) expressed
by naïve T cells (70). Following egress through efferent
lymphatics, the lymphatics connect LNs in series, but
eventually merge with the thoracic duct allowing the T cells to
recirculate through the blood. Interestingly, S1P-mediated egress
from inflamed tissues is also partially dependent on interactions
between LFA-1/ICAM-1 and VLA-4/VCAM-1. Here LFA-1/
ICAM-1 are required for effective migration of memory T cells
through afferent lymphatics into LNs (71–73).

Antigen-stimulated T cells downregulate L-selectin and
glycosylate P-selectin glycoprotein ligand-1 (PSGL-1) resulting
in functional PSGL-1 ligand which allows for binding of L-, P-,
and E-selectins that are upregulated on inflamed endothelial
tissues reviewed in (4). Other integrins are also involved in
migration along, and adhesion to vascular endothelium as well
as transendothelial migration of antigen-stimulated T cells.
A B

FIGURE 2 | Integrins in T cells. (A) Schematic of integrin chains expressed in T cells with a integrin chains in blue, and b integrin chains in red. Lines indicate which
integrin chains form heterodimeric integrins, and names over lines are commonly used names of the resulting integrin. (B) LFA-1 (aLb2) integrin in a bent/closed
conformation with low affinity, extended/closed conformation with intermediate affinity, and extended open conformation with high affinity. Figure made in BioRender.
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Of particular importance are VLA-4/VCAM-1, a4b7/
MAdCAM-1, and aV integrin-mediated (74) interactions that
facilitate migration to distinct inflammatory sites reviewed in
(75, 76).

Integrins in the Immunological Synapse
Within the T cell follicles of the LNs, T cells recognise their cognate
antigen-MHC complex on the surface of antigen presenting cells
(APCs) or target cells. This induces TCR signalling and triggers the
formation of an immunological synapse (IS) at the contact area
between the T cell and the APC/target cell (77). The IS is a highly
specialised and dynamic cell-cell interface that allows for fine-tuning
of signalling events leading to T cell activation (78, 79). Integrins
and especially LFA-1 are key components in IS formation. In the
immature IS, PI3K-dependent chemokine-mediated LFA-1
activation initiates the adhesive contact between T cells and
APCs/target cells allowing the T cell to scan its interaction
partner for cognate antigens (80). Concomitantly, LFA-1 triggers
recruitment of organelles such as mitochondria to the IS thereby
preparing the T cell for optimal TCR-induced activation and Ca2+

signalling during later activation stages (80).
In the immature IS, LFA-1 is found at the centre of the

synapse with TCRs and downstream kinases clustered at the
periphery (81, 82). During maturation of the IS, the synapse is
reorganised into annular supramolecular clusters (SMACs)
allowing for spatiotemporal clustering of receptors, adhesion
molecules, and signalling effector proteins (Figure 3A) (83). In
the mature IS, centripetal movement relocates TCR/pMHC
complexes to the central SMAC (cSMAC) together with their
co-stimulatory molecules, intracellular kinases, and adaptor
proteins. Simultaneously, LFA-1/ICAM-1 complexes are
redistributed to the integrin-enriched peripheral SMAC
(pSMAC) surrounding the cSMAC (81). In the pSMAC, LFA-1
both stimulates T cell activation by increasing the accumulation
of TCR/pMHC complexes in the cSMAC, and recruiting
signalling molecules to the pSMAC; LFA-1 may also help
segregate the phosphatase CD45 to the distal SMAC (dSMAC)
Frontiers in Immunology | www.frontiersin.org 5
(84, 85). In addition to LFA-1, the a4b1 integrin, VLA-4, is also
enriched in the pSMAC and is involved in T cell activation by
regulating the mobility of SLP-76, an essential adaptor protein
functioning downstream the TCR (86). It is thought that VLA-4
can restrain SLP-76 in the pSMAC, so that SLP-76 both remains
in closer contact with its upstream activators and avoids the
cSMAC, where signalling complexes will eventually be
internalised and degraded to terminate TCR signalling (86, 87).
Collectively, an important function of integrins in the IS appears
to be regulating the localisation of both inhibitory and
stimulatory signalling molecules. The phosphatidylinositol
(PIP) composition of the IS might also contribute to this
spatial regulation of signalling proteins within the IS
(Figure 3B). Early studies confirmed the accumulation of PIP3
inside and outside the IS between APCs and T cells (88–90).
However, PIP3 seemed less concentrated at the cSMAC, and later
studies using transgenic CD8+ T cells have found that PI3K-
generated PIP3 seems specifically accumulated in the periphery
of the IS (91–93). Further, both PIP2 and PIP3 are cleared from
the cSMAC during conjugate formation, and sustained PI3K
activity is necessary for proper T cell activation possibly through
the regulation of PIP3 binding proteins (91–93). It has further
been suggested that PI3K-dependent actin remodelling in the
periphery of the IS can mediate synaptic force on the target cell
thereby potentiating target cell killing by CD8+ T cells (94).
Integrin Affinity Regulation in T Cells
Inside-out signalling in T cells is a complex process mediated by a
range of proteins that collectively result in increased LFA-1 affinity
and avidity. Following TCR stimulation, multiple proteins are
recruited to phosphorylated CD3 ITAMs, including the tyrosine
kinase ZAP-70. ZAP-70 consequently phosphorylates tyrosine
residues of the scaffolding protein LAT. These residues act as
anchors for a range of T cell signalling proteins, including SLP76,
which is also phosphorylated by ZAP-70. The pSLP76/LAT-
complex functions as a scaffold for downstream effector
A B

FIGURE 3 | Phospholipids in the immunological synapse. (A) shows the bulls eye of the synapse in the Z-plane. (B) Schematic of the immunological synapse
showing approximate location of critical receptors in the distal SMAC (dSMAC), peripheral SMAC (pSMAC), and central SMAC (cSMAC) as well as approximate
composition of the phosphoinositols PI (4)P, PI (4,5)P2 and PI (3,4,5)P3 in the inner leaflet of the T cell. Figure made in BioRender.
August 2021 | Volume 12 | Article 708908

http://BioRender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Johansen et al. PI3K in T Cell Trafficking
proteins, including PLCg (95). PLCs catalyse the hydrolysis of PIP2
to generate the second messenger signalling molecules
diacylglycerol (DAG) and inositol 3-phosphate (IP3). In turn,
IP3 stimulates the release of Ca2+ from the endoplasmic
reticulum (ER). Ca2+ and DAG stimulate activation of the RAP1
guanine exchange factor (GEF), CalDAG-GEFI (also known as
RASGRP2) which activates RAP proteins by exchanging GDP for
GTP (96). In T cells, RAP1 is a dominant isoform, with both
Rap1a and Rap1b being expressed. Of note however, CalDAG-
GEFI is not expressed in mouse lymphocytes, suggesting other
RAP GEFs are involved in the regulation. Another pathway
leading to RAP1 activation is recruitment of the CRKL-C3G
complex by the WAVE2-Arp2/3-Abl complex (97, 98). This
results in activation of the RAP-GEF, C3G (Also known as
RAPGEFI), thus further activating RAP1. Active GTP-bound
RAP1 is critical for the process of LFA-1 activation (99–103).

Chemokine receptors are GPCRs that following chemokine
binding induce a multitude of signals, some which converge in
activation of the small GTPase RAP1 via the activation of
phospholipase Cb (PLCb) which also hydrolyses PIP2 to DAG
and IP3 (104–106). Besides activating the PLC-dependent
signalling-cascade, chemokine receptors also induce activation
of PI3Kg resulting in initiation of PI3K-mediated signals
discussed further below.

GTP-bound RAP1 interacts with RIAM (107–109) and RAPL
(100). In turn, this complex mediates activation (109), and
plasma-membrane binding of TALIN1 (108). The FERM3 (F3)
domain of TALIN1 in turn binds the b chain of LFA-1 thereby
mediating conformational activation of LFA-1 from low to
intermediate affinity, as well as mediating downstream
cytoskeletal remodelling (110, 111). RIAM has a PH domain
that preferentially interacts with PIP2. By binding PIP2 RIAM is
thought to act as a proximity detector mediating binding of
activated RAP1 and TALIN1 to the membrane (112). Another
PH-domain containing protein involved in the process is SKAP1
(also known as SKAP55). SKAP1 is constitutively associated with
ADAP (also known as FYB) and has been shown to also mediate
binding of RAP1 to the plasma membrane through its PH
domain (113, 114). Together SKAP1/ADAP integrates with the
RIAM-RAPL-RAP1 complex during TCR-induced LFA-1
activation, and likely stabilises the complex (115). In parallel
during LFA-1 activation, KINDLIN-3 binds the cytoplasmic tail
of b integrins and is required for stabilisation of the high affinity
conformation of LFA-1 (116–118). TALIN1 thus mediates
conformational maturation to an intermediate affinity of LFA-
1, whereas binding of both KINDLIN-3 and TALIN1 to the b-
chain results in the high affinity conformation of LFA-1 (116).
BOX 1 | Affinity Contra Avidity of Integrins – Note of Caution.

When studying integrins such as LFA-1, regulation can either be modulated by direct ch
through surface clustering of the integrins, and lastly by levels of expression or presence
distinguish these mechanisms and it is often unclear whether particular mechanisms

In human T cells antibodies specific to the intermediate or high affinity conform
antibodies are not as well established for mouse T cells. Binding of ICAM-1 can be used
dependent on affinity changes and LFA-1 surface expression, whereas binding of ICA
both on changes to overall avidity as a result of increased affinity, surface expression
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Several negative regulators of LFA-1 activation exist. RhoH is
required to keep LFA-1 in a non-adhesive state (119). RhoH also
contributes to TCR signalling by interacting with ZAP70 and
LCK (120, 121). Interestingly, chemokine-induced LFA1
activation is suppressed by RhoH, whereas RhoH enhances
TCR-induced LFA-1 activation, suggesting that RhoH can
divert T cells from chemotactic towards antigen-dependent
response (122). CBL-B is an E3 is ubiquitinase that can
suppress LFA-1 activation by interfering with the capacity of
CRK-L to recruit and activate C3G (123).

Together these intricate regulatory mechanisms integrate
migratory signals, such as chemokines, and TCR engagement
with integrin activation. Consequently, LFA-1 affinity is turned
on and off in a highly regulated manner by multiple
microenvironmental cues.
PI3K-MEDIATED ACTIVATION OF
INTEGRINS – A GATEKEEPER OF
ANTIGEN-DEPENDENT ADHESION

Early studies of PI3Ks roles in CD4+ T cell activation found that
broad inhibition of PI3Ks with Wortmannin reduced antigen-
specific interactions between DO11.10 CD4+ T cells and OVA-
pulsed B cells, as well as T cell adhesion to immobilised ICAM-1
(ICAM-1-coated plastic) (124, 125). Further, Wortmannin was
found to inhibit CD28-induced activation (126), and
Wortmannin and LY294002 (class I PI3K inhibitor) inhibit
CD7-induced activation of b1-integrin-mediated adhesion
(VLA1-6) to immobilised fibronectin (127). In accordance,
overexpression of a hyperactive p110-CAAX mutant increased
ICAM-1-binding in response to PDBu/Ionomycin (95). These
early findings all supported a role for PI3K in activation of
integrins downstream of TCR-engagement, although caution
must be taken with some of these inhibitor studies, as that
Wortmannin can affect multiple kinases. Further, caution must
be taken when evaluating affinity vs avidity in these studies
(Box 1).

Further supporting a role for PI3K in integrin activation,
kinase-dead p110dD910A CD4+ T cells had reduced affinity
towards ICAM-1 after stimulation with anti-CD3, as measured
by binding of soluble recombinant ICAM-1 by flow cytometry.
As a consequence, OT-II transgenic p110dD910A CD4+ T cells did
not form conjugates with OVA323-339-pulsed B cells as well as
WTOT-II T cells. p110dD910A mutant T cells had reduced RAP1-
GTP, indicating a role for PI3Kd in RAP1-GTP activation.
anges to affinity by inside-out signalling and outside-in signalling, changes in avidity
at the surface. Studies investigating LFA-1-mediated adhesion often do not clearly
affect LFA-1 affinity or avidity.
ation of LFA-1 can be used to measure affinity, however similar affinity-specific
as a proxy for LFA-1 activity and here binding to single ICAM-1 molecules is more
M-1-coated surfaces (immobilised ICAM-1) or conjugate-formation is dependent
, and clustering.
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Interestingly, the activation of LFA-1 was less dependent on AKT
suggesting other PIP3-binding proteins were responsible for the
PI3K-mediated activation of LFA-1 (128).

Treatment of lymphocytes with Wortmannin or LY294002
decreases SDF1a, CCL19, and CCL21-mediated adhesion to
ICAM-1. However, this decrease seemed to rather be a
consequence of decreased avidity than affinity as a result of
decreased chemokine-induced LFA-1 mobility following PI3K
inhibition (60). Indeed, chemokine-dependent migration of T
cells was largely PI3Kg-independent and instead mediated by
DOCK2 (129). Similarly, interstitial migration and S1P-mediated
egress was independent of PI3Kg (130). PI3Kd signalling was also
not required for chemokine-induced LFA-1 activation (128).
Therefore, PI3Kd activity downstream of TCR-stimulation
increases LFA-1 affinity, whereas PI3Kg-signalling seems
dispensable for chemokine-induced LFA-1 affinity regulation.

Regulation of LFA-1 by PH-Domain
Containing Proteins
Multiple proteins involved in the process of LFA-1 activation,
including CYTOHESIN-1, SKAP1, and KINDLIN-3, have PH
domains that bind PIP3 and may hence regulate LFA-1 affinity in
a PI3K dependent manner (Figures 4A, B).

CYTOHESINs
The intracellular ARF-GEF protein, CYTOHESIN-1, was
described early on to bind b2 integrins (e.g. LFA-1, MAC-1)
Frontiers in Immunology | www.frontiersin.org 7
and activate LFA-1-mediated adhesion to immobilised ICAM-1.
The PI3K-mediated membrane recruitment of the PH domain of
CYTOHESIN-1 was found to partially facilitate the CYTOHESIN-
1-mediated activation of LFA-1 (132–134). CYTOHESIN-1 binds
directly to the cytoplasmic tail of b2 integrin, and this interaction
as well as the ARF-GEF functionality of its SEC7 homology
domain have been shown to regulate the activation of LFA-1 in
T cells and LFA-1 mediated transendothelial migration (135, 136).
Moreover, CYTOHESIN-1 further regulates activation of RhoA
and integrin activation in dendritic cells (137). Surprisingly,
CYTOHESIN-1 seems to have opposing roles in regulation of
MAC-1 (aMb2) integrin-mediated adhesion to fibrinogen by
neutrophils, suggesting a more complex involvement of
CYTOHESIN-1 in regulation of integrin activation (138). This
potentially hints a differential role of PI3K-signaling in regulating
integrins in different immune subsets depending on their integrin
expression. Other CYTOHESIN molecules have also been
implicated in integrin regulation, but rather seem to rather be
involved in the recycling of integrins from the surface. Whereas
CYTOHESIN-2 (ARNO) seems to increase b1 integrin-mediated
adhesion and recycling, CYTOHESIN-3 (GRP1) results in
decreased adhesion (139), and these opposing effects of
CYTOHESIN-2 and -3 were dependent on phosphoinositide
specificity (140). How the CYTOHESINs divergently regulate
integrins, and further, the mechanism by which PI3K regulates
CYTOHESIN-1-mediated LFA-1 activity is still unclear, but it is
likely due to dominant negative effects between the different
A B

FIGURE 4 | LFA-1 regulators downstream of PI3Kd. (A) Schematic of proteins that have been implicated in LFA-1 regulation, and the likelihood that they are regulated
by PI3K based on the literature. Green proteins have ample evidence that they are regulated by PI3K and have been implicated in LFA-1 regulation in multiple studies.
Orange proteins have some evidence suggesting that PI3K regulates their functions and are to some extent involved in LFA-1 regulation. Red proteins have PH
domains, but are unlikely to be regulated by PI3K due to low PIP3 affinity. It is important to note that PIP2 is up to 100X more abundant on the plasma membrane than
PIP3 (131). Therefore, a given protein needs to have high selectivity for PIP3 over PIP2 in order to be directly regulated by PI3Ks. (B) Simplified schematic of how the
proteins in (A) are involved in regulation of LFA-1, showing interaction partners and approximate location. Figure made in BioRender.
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homologs, and should highlight the importance of not treating all
integrin signalling pathways equally.

SKAP1
SKAP1 is recruited to SLP-76 via the adaptor protein ADAP.
ADAP/SKAP1 then binds the Rap1-interacting protein, RIAM
and contributes to TCR-induced inside-out LFA-1 activation and
clustering by supporting formation of RAP1/RAPL complexes as
well as membrane recruitment of these essential proteins
involved in LFA-1 activation (113, 115, 141, 142). The SKAP1
PH domain was found to be required for membrane recruitment,
and this in turn was necessary for the recruitment of RAPL to the
membrane (114). A SKAP1 mutant that was constitutively
associated with the membrane by addition of a myristoylation
site disrupted the requirement for PI3K signalling in binding
immobilised ICAM-1 suggesting that PI3K-mediated activation
of LFA-1 is dependent on ADAP/SKAP1/RIAM signalling.
Indeed, although RIAM contains a PH domain with high
affinity for PtdIns monophosphates in vitro, SKAP1 is required
for recruitment of Rap1/RIAM to the membrane during LFA-1
activation (142). In accordance, K152E mutation of SKAP1
eliminated PIP3-binding in vitro and as a result impaired
immobilised ICAM-1-binding (143). Unexpectedly, this
mutant did not abolish SKAP1/ADAP/RIAM/RAPL binding to
the membrane, suggesting redundancy in the pathways resulting
in membrane-recruitment of these proteins. Surprisingly, SKAP1
mutants lacking the PH domain do not significantly alter its role
in integrin-mediated adhesion, suggesting the mechanism by
which PI3K regulates SKAP1 is still incompletely understood
(113, 143, 144).

KINDLIN3
Mutations of the crucial LFA-1 regulator, KINDLIN-3, are the
cause of leukocyte adhesion deficiency III (LAD-III), a rare
autosomal disorder, resulting in severe bleeding and life-
threatening infections as a result of defective b1- and b2-
integrin-mediated adhesion (145, 146). Studies by Hart et al.
suggest that KINDLIN-3 has higher affinity to PIP3 than PIP2
(147). They also found that the PIP3-binding was necessary for
the function of KINDLIN-3, as KINDLIN-3 mutants that
specifically did not bind PIP3 failed to rescue adhesion of
LAD-III cells to ICAM-1. KINDLIN-3 was also found in
structural studies to bind PIP3 with higher affinity than PIP2
(148) and the PH domain was found to regulate the translocation
of KINDLIN-3 to the surface membrane in neutrophils (149).
These studies therefore suggests that KINDLIN-3 is at least
partially regulated by PI3K, though this has yet to be
confirmed in lymphocytes.

Thus, several studies indicate a key role for PI3K effector
molecules in regulating integrin affinity/avidity, and multiple
other proteins have been implicated in PI3K mediated integrin
regulation indirectly (Figure 4B).

Regulation of the RHO Family of GTPases
The RHO family of GTPases, which include RAC, RhoA and
CDC42 are both positively and negatively regulated by PH
Frontiers in Immunology | www.frontiersin.org 8
domain-containing GEFs and GAPs that have affinity for PIP3
and have been implicated in regulation of LFA-1. RhoA and
RAC1 have been implicated in positively regulating LFA-1 avidity
by controlling the affinity and clustering of LFA-1 (150, 151). By
contrast, CDC42 and RhoH negatively regulate LFA-1 suggesting
a complex integrated role of these proteins in LFA-1 regulation
(119, 151). TEC kinases regulate cytoskeletal remodelling and
LFA-1-mediated adhesion through activation of RHO-family
proteins (152–154). In T cells the highest expressed TEC
kinases are ITK and RLK, and Itk KO cells have decreased
adhesion to ICAM-1 (154). RLK does not contain a PH
domain, whereas ITK contains a PH domain that binds
selectively to PIP3 (155), but the role of this in T cell
integrin-mediated adhesion is unclear. Similar results have
been described for the RHO GEF, VAV1 implicating it in
clustering of LFA-1, but it is not known if this effect is PI3K-
dependent although VAV1 can be regulated in part by PI3K
(156–158). Similarly the RAC-GEF, P-REX1, which also
contains a PIP3-binding PH domain, has been implicated in
LFA-1 affinity and avidity regulation (159). It is likely that TEC
kinases, VAV1, and P-REX1 are more important for LFA-1
clustering, and thereby increased avidity, than for affinity
regulation as RHO family proteins are known to be
important for cytoskeletal remodelling, and recruitment of
proteins to the synapse (154). PI3K activity is not sufficient to
activate all RHO family proteins (160) and has in some studies
been shown to inhibit RAC activity in T cells (128), suggesting a
complex interplay of this network of regulators in RHO
regulation and downstream regulation of LFA-1.

Intriguingly, DOCK proteins which do not contain PH
domains have been suggested to have affinity to PIP3 via so-
called Dock Homology Domains (DHR1) (161). However, the
extent of direct PIP3 affinity, and whether the affinity is a result of
DOCK-proteins interacting with the PH-domain-containing
ELMO proteins is still debated (91, 162). DOCK2 was
described earlier in the review in the context of chemokine-
stimulated LFA-1 activation but does not seem to affect TCR-
induced LFA-1 activation, as it seems to be involved in TCR-
induced RAC-dependent TCR clustering, without affecting
LFA-1 translocation to the IS (91, 163). However, it is possible
that this is context-specific, and some subsets thus might be more
or less dependent on DOCK2 for efficient LFA-1 activation.

Additional PH-Domain Containing Regulators of
LFA-1
DNM2 which is known for its role in regulating vesicular traffic,
has been suggested to also regulate integrin affinity directly via
FAK/PYK2- and C3G-mediated RAP1 activation (164). DNM2
has a PH domain, however it does not appear to have affinity for
PIP3 in screens of PIP3-binding (165, 166), and it is therefore
unlikely that it is regulated by PI3K.

Interestingly, some RAP GTPase activating proteins (GAPs)
have PH domains, including the GAP1-family members RASA3
and RASAL (167–169). In platelets, RASA3 inhibits the affinity
of the integrin aIIbb3 in a PIP3-dependent manner (169). How
the function of PIP3-dependent inhibitors of integrins is
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coordinated with PH-domain containing proteins that activate
integrins is an area of active investigation.

The fact that such a high proportion of LFA-1 regulators
contain PH domains suggests key roles for PI3K-mediated
signalling in regulating LFA-1, though these may be cell,
receptor, and context dependent. Multiple possible
mechanisms of PI3K-mediated regulation are plausible; firstly,
it is possible that PI3K activity directly activates the PIP3-binding
LFA-1 regulators by inducing a conformational change in the
proteins as is suggested for KINDLIN3 (147). Secondly, PIP3
could colocalise proteins that interact and activate each other (As
observed during activation of AKT by PDK1). Thirdly, it is
possible that microclusters of PIP3 colocalise with LFA-1
spatiotemporally during LFA-1 activation. Similarly, it is
possible that PIP3 inactivates negative regulators of LFA-1 as
has been suggested for RASA3-mediated regulation of platelet
integrins (169) by similar mechanisms, i.e. conformational
inactivation, colocalization of negative regulators with other
Frontiers in Immunology | www.frontiersin.org 9
proteins that inhibit them, or by sequestering the negative
regulators from LFA-1 during activation.
PI3K-MEDIATED REGULATION OF NAÏVE
T CELL MIGRATION AND HOMEOSTASIS

The expression of homing molecules CD62L and CCR7 on the
surface of naïve T cells is critical for orchestrating naïve T cell
trafficking to LNs, where these cells may become activated
following antigen encounter and differentiate into effector cells.
The maintenance of CD62L and CCR7 expression on naïve T
cells is regulated by PI3Kd signalling and transcription factors
of the Forkhead Box protein family, with FOXO1 being a
particularly important player. FOXO1 is inhibited by AKT
downstream of PI3K (Figure 5 ) (170–172) . Once
phosphorylated by AKT, FOXO1 is excluded from the nucleus
FIGURE 5 | PI3Kd-mediated regulation of CD62L, CCR7, and S1PR1. PI3K-mediated PIP3 production leads to recruitment of PDK1 and AKT, leading to AKT
activation. AKT phosphorylates FOXO1, which allows for binding of the 14-3-3 leading to cytosolic sequestration of FOXO1. FOXO1 promotes transcription of Klf2
(as well as Il7r, Ccr7, Fam65b). Decreased expression of the transcription factor KLF2 in turn results in decreased transcription of the CD62L encoding gene Sell and
S1pr1. Figure made in BioRender.
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and targeted for degradation (173). Transcriptional activity of
FOXO1 is high in naïve T cells and results in robust expression of
CD62L and CCR7 through control of KLF2 levels, a transcription
factor that drives expression of these key homing molecules
(174). In addition, FOXO1 activity is required to maintain
IL-7Ra expression, a cytokine receptor key to maintenance of
naïve T cell survival and homeostasis (175). Following T cell
activation PI3Kd-mediated signals result in the phosphorylation
and inactivation of FOXO1, resulting in a suppression of
important FOXO1 and KLF2 target genes involved in
regulating migration such as CD62L, CCR7, Fam65b, and
others (176–179) (Figure 5). As a result of this loss of homing
molecule expression, activated T cells are diverted away from
entering LNs and instead are biased towards migration into
peripheral tissues where they can perform their effector function.
In addition to CD62L and CCR7 downregulation, the KLF2
target S1PR1 is also downregulated downstream of PI3Kd-
mediated FOXO1 inhibition (178, 180). Downregulation of
S1PR1 expression results in a loss of T cell egress capacity and,
combined with negative regulation of CD62L and CCR7
expression, limits the recirculation of activated T cells
(Figure 5). In fact, suppression of S1PR1 expression is
particularly important for the establishment of tissue resident
memory T cells (TRM), which reside long term at barrier sites and
are potent inducers of cell-mediated immunity (181). Therefore,
PI3Kd signals are instrumental in coordinating the acquisition of
effector function with necessary changes in cell mobility that are
required to execute functional immune responses (Figure 5).

Further regulation of CD62L expression on the surface of T
cells is mediated through proteolytic cleavage of the ectodomain
of CD62L by a process known as CD62L shedding. Following
TCR activation, phosphorylation of TNF converting enzyme
(TACE)/disintegrin and metalloprotease 17 (ADAM17) drives
the trafficking of this protease to the cell surface, facilitating its
cleavage of the ectodomain of CD62L (182–184). T cells
expressing kinase dead p110dD910A show impaired shedding of
CD62L from the cell surface, suggesting that PI3Kd activity is
critical in this process (185). Mechanistically, it has been shown
that phosphorylation of TACE/ADAM17 by mitogen activated
protein kinase (MAPK) ERK1/2 is required for the ability of this
protease to cleave cell surface molecules like CD62L (186–188)
and ERK phosphorylation is impaired in PI3Kd-deficient T cells
(Figure 5) (185, 189).

CCR7 Expression, CD62L-Shedding and
LFA-1 Activation – Three Birds, One
Stone?
It is intriguing that PI3K signalling regulates multiple processes
involved in T cell migration. PI3K-mediated CD62L-shedding
and reduced CD62L, S1P1, and CCR7 expression results in
decreased LN entry and is an important step in T cell
differentiation to effector subsets. Concurrently, as PI3K-
signaling increases integrin affinity, PI3K signals can regulate
migration and adhesion, including transendothelial migration
into LNs. Consequently, inhibition of PI3K or disruption of PI3K
Frontiers in Immunology | www.frontiersin.org 10
signalling will affect all of these rheostats of migration, but
not always in predictable ways. Hence, PTEN-deficient T cells
with high PIP3 levels are excluded from LNs after adoptive
transfer (190). Nevertheless, APDS patients suffer from
lymphadenopathy and this is revered upon treatment with a
PI3Kd inhibitor (36).

Studies of migration of PI3K-deficient T cells as well as use of
inhibitors in mice provide some indication of how inhibition
affects T cell distribution in vivo. p110g-deficient T cells show
reduced migration towards chemokines, whereas p110d-
deficient T cells respond to chemokines similarly to WT cells
(191). Similarly, p110g selective inhibitors affect responses to
chemokines, whereas p110a/b/d selective inhibitors do not affect
responses to chemokines, except for at very high concentrations,
likely as a result of off-target effects (192). Following LN entry,
p110g-deficient T cells seem to migrate interstitially similarly to
WT T cells, and chemokine-induced interstitial migration seems
independent of PI3K signalling (193). However, treatment with
Wortmannin as well as disruption of regulatory p85 subunits of
class IA PI3K showed that these cells migrated at lower velocities
than WT cells, although T cell location within the LN did not
seem altered (194). PI3Kd under steady state does not contribute
to T cell migration or chemokine-dependent migration per se, as
p110dD910A T cells migrated like WT T cells in endothelial cell-
coated transwell assays as well as following adoptive transfer
(195). However, following antigenic challenge, p110d was
required for efficient migration to the site of inflammation and
presence of antigen, consistent with a key role for PI3Kd in
regulating integrin affinity (195). Disruption of p110d results in
increased track velocities of OT-II CD4+ T cells in LN slices with
OVA-pulsed DCs, as a result of decreased interaction times with
the peptide-presenting DCs in the slices (128). Similar results
have been observed for p110g-deficient T cells that are defective
for antigen-dependent and chemokine-dependent migration of
effector CD4+ and CD8+ T cells (196, 197). Interestingly, CD28
seems to also be important for homing of antigen-stimulated T
cells to non-lymphoid tissues, whereas CD28 (Y173F) that is
uncoupled from PI3Kd was defective. This suggests that CD28-
mediated activation of PI3K is involved in migration of activated
T cells to non-lymphoid sites (198). Consequently, when
inhibiting PI3Kd, homeostatic migration of naïve T cells (TN)
seems unperturbed (as these have low PI3K activity in the first
place), whereas activated T cells show decreased antigen-
dependent migration into non-lymphoid tissues.

Central memory T cells (TCM) that are CD62L
+CCR7+LFA-1+

are consequently supported by PI3Kd inhibition, whereas effector T
cells (Teff) and effector memory T cells (TEM) (CD62L

-CCR7-LFA-
1+) are inhibited (Figure 6A). This is largely supported by the fact
that APDS patients have reduced TCM cells, and increased Teff cells
(32), whereas p110dD910A mice have normal memory T cells, but
reduced Teff cells (22) (Figure 6B). These PI3K-dependent
alterations of T cell memory responses are possibly affected by
altered expression of migratory receptors, however, differentiation
of p110dD910A T cells to Teff is largely defective, implicating PI3K
more broadly in differentiation and migration.
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PI3K INHIBITORS – A THERAPEUTIC
PERSPECTIVE

Because of the important role of PI3K signalling in antigen-
dependent migration, PI3Kd is a promising target for therapies,
where broad blockade of Teff and TEM migration is favourable.
There is a growing body of evidence that alloreactive memory
cells are responsible for allograft rejection Reviewed in (199).
Treatments have focused on blocking costimulatory pathways in
T cells, but some patients are resistant to these treatments. LFA-1
and/or VLA-4 blocking antibodies (i.e. Efalizumab or
Natalizumab) have been used in these patients with some
success as these antibodies reduce the migration and activation
of memory subsets. However, some anti-LFA-1 or anti-VLA-4-
treated patients developed EBV-induced lymphoproliferative
disease (200) or the fatal viral brain infection, progressive
multifocal leukoencephalopathy (PML) (201), and it has been
suggested that targeting TCR-induced inside-out signalling
instead of broadly targeting both chemokine, and TCR-
induced LFA-1 activation would restrict the blocking to
antigen-induced migration of T cells, and therefore potentially
limit the risk of PML or EBV-induced lymphoproliferation
(202). As PI3Kd inhibition reduces the antigen-dependent
migration of T cells by limiting CD62L and CCR7
downregulation, as well as LFA-1 activity, it is likely that
PI3Kd inhibition would show efficacy in some types of
allograft rejection. Indeed, PI3Kd inhibition decreased chronic
rejection of heart allografts in the absence of immunosuppressive
treatment by interfering with antigen-dependent migration to
the allograft (203). Other groups have also described data
supporting the use of PI3Kd inhibition in treatment of
allograft rejection; both in mice with dual PI3K/mTOR
inhibition (204) and with p110a/g (205) or p110d inhibition
alone (206). However, it has been suggested that p110g deletion
Frontiers in Immunology | www.frontiersin.org 11
is more effective than p110d deletion, and p110d deletion and
inhibition even seemed to increase allograft rejection (207). Rag
KO mice reconstituted with p110d-deficient CD25- T cells (non-
Tregs) prolonged allograft acceptance compared to WTs. This
suggests that the negative effect of PI3Kd inhibition is due to
blockade of the immunosuppressive properties of Tregs (207).
Further studies will have to evaluate and determine the
contribution of CD62L, CCR7 and LFA-1 affinity in allograft
rejection, and it will be of interest to systematically determine
under what conditions p110d or p110g inhibition show efficacy.

Another treatment where TCM cells are favourable to Teff cells,
is during adoptive T cell transfer. Studies from Restifo et al. have
indicated that adoptively transferred TCM cells are superior to
transferred Teff cells both in mice and primates (208–211). The
reason why TCM cells elicit a better anti-tumour response is
thought to be a result of their circulation to LNs where they
persist for longer than short-lived Teff cells (212). Thus, one of
the major hallmarks of adoptive cell transfer has been to find
ways of differentiating and expanding T cells without terminally
differentiating the cells to Teff cells. Multiple ways have been
described that support a favourable differentiation profile;
Expanding T cells in presence of IL-15, which supports a more
central memory-like phenotype, also promotes anti-tumour
immunity (213). Similarly, stimulation of WNT signalling
(214), inhibition of glycolytic metabolism (215), as well as
tethered IL-15 (216), promoted favourable central memory-like
phenotypes that augmented anti-tumour immunity. PI3K/AKT
inhibition has been shown to favour generation of cells with
increased anti-tumour efficacy. AKT inhibition post transfer was
shown to promote expansion of favourable TCM cells with
improved in vivo efficacy (217, 218). Further, PI3Kd inhibition
during expansion of TH17 cells followed by inhibition of b-
catenin resulted in generation of TH17 cells that persisted in vivo
and elicited heightened anti-tumour immunity (219). Similarly,
A B

FIGURE 6 | Involvement of PI3K signalling in T cell migration. (A) Diagram of relative surface levels of CD62L, CCR7, CXCR3, and avidity of LFA-1 in naïve T cells
(TN)/Central memory T cells (TCM) and effector T cells (Teff)/effector memory T cells (TEM). (B) Spectrum of PI3K activity in PI3K mutant mouse models, and how this
affects the levels of TN/TCM and Teff/TEM cells. Figure made in BioRender.
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PI3Kd inhibition with Idelalisib ex vivo before adoptive transfer
heightened the anti-tumour response to an even greater extent
than AKT inhibition (220). This suggests that PI3K-mediated
anti-tumour efficacy in adoptive transfers is partially
independent of AKT. Further, the transcription factor TCF7
was increased in the PI3K-inhibited ex vivo-expanded T cells,
whereas it was not increased to the same extent following AKT
inhibition (220). This is surprising as FOXO, which is inhibited
by AKT, regulates expression of TCF7. It is possible that
additional mechanisms downstream of PI3Kd are responsible
for the increased anti-tumour efficacy seen with PI3Kd
inhibition, and further studies should evaluate the role of other
mechanisms in this process, including decreased LFA-1
activation, or the role of other AKT-independent PI3K
functions and effectors.
SUMMARY

In summary we have described how migration is regulated by
PI3K signalling in T cells, with a focus on T cell integrin
activation. As PI3K activity increases LFA-1 affinity, whilst
decreasing CD62L surface levels and CCR7 expression,
Frontiers in Immunology | www.frontiersin.org 12
signalling via PI3K is critical in the process of T cell migration
following antigen stimulation. We further described how this
potentially could be targeted in situations where a naïve/central
memory-like phenotype is preferred to effector T cell subsets,
such as in allograft rejections and adoptive T cell transfer.
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