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Operational tolerance after kidney transplantation is defined as stable graft acceptance
without the need for immunosuppression therapy. However, it is not clear which cellular
and molecular pathways are driving tolerance in these patients. We performed genome-
wide analysis of DNA methylation in peripheral blood mononuclear cells from kidney
transplant recipients with chronic rejection and operational tolerance from the Genetic
Analysis of Molecular Biomarkers of Immunological Tolerance (GAMBIT) study. Our results
showed that both clinical stages diverge in 2737 genes, indicating that each one has a
specific methylation signature associated with transplant outcome. We also observed that
tolerance is associated with demethylation in genes involved in immune function, including
B and T cell activation and Th17 differentiation, while in chronic rejection it is associated
with intracellular signaling and ubiquitination pathways. Using co-expression network
analysis, we selected 12 genomic regions that are specifically hypomethylated or
hypermethylated in tolerant patients. Analysis of these genes in transplanted patients
with low dose of steroids showed that these have a similar methylation signature to that of
tolerant recipients. Overall, these results demonstrate that methylation analysis can mirror
the immune status associated with transplant outcome and provides a starting point for
understanding the epigenetic mechanisms associated with tolerance.
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INTRODUCTION

The Kidney transplantation is the most suitable treatment for
end-stage renal disease. Unfortunately, most of these patients
require long-term immunosuppression (IS), which is associated
with a higher risk of infection, malignancies and metabolic
diseases that ultimately reduce graft survival (1, 2). A small
fraction of these patients spontaneously develop operational
tolerance, i.e., stable graft acceptance without IS and with
apparently normal immune competence (3). In general, kidney
transplant recipients (KTR) with operational tolerance have been
identified accidentally through noncompliance, post-transplant
development of cancer, or due to pregnancy. The estimated
prevalence of spontaneous operational tolerance is very low.
Moreover, there is no efficient tolerance-inducing protocol,
because of the high risk of rejection associated with IS
withdrawal and the difficulty of predicting transplantation
outcome. In this context, it is essential to develop reliable non-
invasive biomarkers to identify potentially tolerant patients and
to minimize IS drugs. With this aim, gene expression studies
using microarray technology have generated transcriptional
signatures associated with operational tolerance (4–6).
Nonetheless, the omic field has undergone great advances that
have allowed much more complex data to be generated that
cover not only gene transcription but also the epigenetic
mechanisms that drive these transcriptional programs. In
recent years, epigenetic mechanisms, such as DNA methylation
and histone marking, have been shown to be essential during the
differentiation and activation of immune cells (7–10).
Consequently, identifying the epigenetic networks in peripheral
blood of KTR could yield new insights into the immune
mechanisms associated with operational tolerance.

In this study, we set out to analyze DNAmethylation patterns
in KTR with chronic rejection and operational tolerance from
the Genetic Analysis of Molecular Biomarkers of Immunological
Tolerance (GAMBIT) study. By using high-density microarray
technology, we were able to analyze DNAmethylation in 850,000
genomic regions. Our results indicate that DNA methylation
changes are associated with transplant outcome, and that
operational tolerance is associated with the acquisition of
different methylation profiles in genes related to B and T cell
signatures, which could condition the immune response
mediated by these cell types.
MATERIALS AND METHODS

Patients and Samples
Blood samples were acquired from KTR recruited as part of the
Genetic Analysis & Monitoring of Biomarker of Immunological
Tolerance study (GAMBIT, Research Ethics Reference 09/
H0713/12, UK) and healthy donors (HC; n = 7) from the
Asturias Transfusion Centre, Spain. All individuals gave their
written informed consent in accordance with the Declaration of
Helsinki. The study included KTR from different clinical groups:
tolerant (TOL; n = 9), chronic rejection (CR; n = 6), clinically
stable patients with only low doses of prednisone (MO; n = 7) or
Frontiers in Immunology | www.frontiersin.org 2
on standard triple therapy (TT; n = 7). Tolerant patients were
defined as having a functionally stable transplanted kidney
without IS for more than 1 year and serum creatinine (SCr)
levels less than 10% rise in the last twelve months. Chronic
rejection was defined as patients with graft dysfunction despite
adequate IS, and proved by a recent biopsy showing signs of
immunologically rejection (TCMR, ABMR or mixed) in
according to BANFF criteria. KTR were considered stable
when its SCr levels were lower than 1.8 mg/dl and less than
10% rise in the last twelve months. In MO group, the withdrawal
of immunosuppression, except prednisone, was conducted due
to clinical reasons and took place more than 1 year before take
sample. In TT group, all KTR were treated with prednisolone,
calcineurin inhibitor (CNI, cyclosporine or tacrolimus) and the
anti-proliferative agent mycophenolate-mofetil. HC donors were
age- and sex-matched to transplanted patients. Patient
characteristics and immunosuppressant regimens are shown in
Table 1. Any patients showed malignances in the last 5 years
neither active infections at the moment that samples were taken.
Peripheral blood mononuclear cells (PBMCs) were isolated by
Ficoll-PaqueTM density gradient centrifugation and
cryopreserved with 10% of DMSO in liquid nitrogen until
their analysis.

DNA Extraction and Whole-Genome
Methylation Profiling
DNA was extracted using an ATP Genomic DNAMini Kit (ATP
Biotech, Taipei, Taiwan) following the manufacturer’s
instructions, then quantified with a Qubit 2.0 Fluorometer
(Life Technologies, Carlsbad, CA, USA). Starting with 500 ng
of high-quality genomic DNA, unmethylated cytosines were
converted to uracils using an EZ DNA MethylationTM Kit
(Zymo Research Corp. Irvine, CA, USA). Subsequently, whole-
genome methylation profiles were characterized by amplification
of converted DNA and their hybridization on Infinium
MethylationEPIC_v1.0 BeadChips Kits (Illumina Inc. San
Diego, CA, USA) following Illumina’s Infinium HD Assay
Methylation Protocol. Fluorescence intensities were measured
with a HiScan apparatus (Illumina Inc. San Diego, CA, USA).

Bisulfite Pyrosequencing
First, bisulfite modification was performed with 500 ng of total
DNA using an EZ DNA methylation kit (Zymo Research).
Modified DNA was amplified using pyrosequencing primers
(Supplementary Table 1). DNA methylation levels were
analyzed with the PyroMark kit (Qiagen, Hilden, Germany)
and the PyroMark Q24 system (Biotage, Uppsala, Sweden),
following the manufacturer’s protocol.

DNA Methylation Analysis
Raw data for the analysis were extracted with Illumina’s Genome
Studio data analysis software, in the form of a Genome Studio
Final Report (sample probe profile). These data were analyzed
within the R/Bioconductor statistical computing environment
(www.r-project.org, www.bioconductor.org). Using the lumi
Bioconductor package (https://bioconductor.org/packages/
release/bioc/html/lumi.html), raw methylation data were
August 2021 | Volume 12 | Article 709164
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background-corrected, log2-transformed, quantile-adjusted for
color balance, and normalized. Probes not detected in at least one
sample (p > 0.01) and sex chromosomes were excluded from
subsequent analyses. Homogeneity of each defined sample-group
was analyzed by principal component analysis (PCA). To detect
differentially methylated probes, a linear model was fitted to the
data and empirical Bayes-moderated t-statistics were calculated
using the limma package from Bioconductor. Probabilities were
adjusted by determining the false-discovery rates (FDR) using
the Benjamin–Hochberg procedure. Probe sets with a differential
M-value (log2 ratio of intensities of methylated probe versus
unmethylated probe) of > 1.5 and an adjusted FDR p < 0.05 were
considered to be differentially methylated. Gene ontology
analysis of those genes associated with differentially methylated
probes was performed with the DAVID web-based tool (https://
david.ncifcrf.gov).

Weighted Gene Co-Expression Network
Analysis (WGCNA)
Co-methylation networks were constructed using the WGCNA
package (11). Differential methylation analysis was performed as
described above. For this analysis we selected probes with > 20%
Frontiers in Immunology | www.frontiersin.org 3
of variation in their average methylation value (b) and an
adjusted-FDR p < 0.05 between any of the three clinical groups
(HC, TOL and CR). Differential methylated regions with high
absolute correlations within the network, and with a high
topological overlap measure were clustered into modules. We
then established a cut height of 1.1 to generate 18 correlated
modules. Module eigengenes were defined as the first principal
component of each gene module. Non-parametric Mann–
Whitney tests were used to determine significant differences
between the three groups. Functional interaction networks for
each module were derived using STRING v10 (12). The resulting
network was exported to Gephi (https://gephi.org) in which the
Fruchterman–Reingold clustering algorithm was used to
generate the final network.

Cell-Type Deconvolution Analyses
MethylResolver was used to deconvolute bulk DNA methylation
data into different cellular fractions (13). Specifically, the R
package MethylResolver was used to deconvolute normalized
beta values using the default leukocyte signature. The leukocyte
signature comprises 419 optimal CpGs to deconvolute 11
leucocyte cell-types (Monocytes, Dendritic cells, Macrophages,
TABLE 1 | Clinical data of KTR groups and healthy controls.

HC TOL CR MO TT

Number of patients 7 9 6 7 7
Donor (Living/deceased); n – 5:4 1:5 4:3 2:5
Recipient age at enrolled; mean (range), y 51.2 (37-64) 50.7 (36-63) 48 (28-62) 50.4 (39-81) 40.5 (24-61)
Recipient age at transplant; mean (range), y – 32.8 (21-58) 31.3 (7-48) 28.7 (14-48) 34.7 (18-55)
Recipient gender; n (M:F) 5:2 8:1 2:4 6:1 6:1
IS free; mean (range), y – – – –

Years IS free; mean (range),y – 5.8 (1-9) – – –

HLA mismatches (mm); n
No mm – 4 0 0 1
HLA (A or B) mm – 0 1 0 0
HLA (A + B) mm – 1 2 2 1
HLA (A + DR) mm – 1 2 1 1
HLA (B + DR) mm – 0 0 1 0
HLA (A, B, DR) mm – 2 1 1 4
HLA (DR) mm – 0 0 1 0
Missing data – 1 0 1 0

Donor-specific antibodies; n
No DSA – 7 5 5 5
DSA class I – 1 1 0 0
DSA class II – 1 0 0 1
DSA class I + II – 0 0 0 0
Missing data – 0 0 2 1

IS regimen; n
MMF – – 1 – –

CNI + Steroids – – 1 – –

MMF + Steroids – – 1 – –

CNI + MMF – – 2 – –

CNI + Aza + Steroids – – 1 – –

Steroids – – – 7 –

CNI + MMF + Steroids – – – – 7
Renal function parameters; (mean ± SD)
Creatinine; nmols/L – 98.5 ± 17.1 222.5 ± 133.6 91.4 ± 17.1 152.7± 55.3
eGFR; mL/min/1.73m2) – 75.25 ± 19 33.6 ± 15.5 80.4 ± 12.4 51.4 ± 18.3

Cell counts; (mean ± SD)
White blood cells x 109 6.53 ± 1.5 6.75 ± 0.9 6.68 ± 1.7 6.58 ± 1.5 7.4 ± 0.9
Lymphocytes x 109 2.2 ± 0.7 2.15 ± 0.5 0.95 ± 0.3 1.42 ± 0.3 1.78 ± 0.7
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Neutrophils, Eosinophils, Regulatory T cells, Naive T cells,
Memory T cells, CD8 T cells, Natural Killer cells, and B cells).
We also performed deconvolution using MethylCIBERSORT as
implemented in MethylCIBERSORT R package (14). We used
normalized beta values and Stromal_v2 signature. All
deconvolutions showed highly significant values (P<0.01 and
correlation > 0.9).

Statistical Methods
Data in scatter dot plots are summarized as the median ±
interquartile range. Non-parametric Mann–Whitney U tests
were used to compare groups. Differences were considered to
be statistically significant for values of p < 0.05. Statistical
analyses were performed using Prism software, version 7
(Graph-Pad, La Jolla, CA) and IBM SPSS Sta-tistics for
Windows, Version 20.0 (IBM Corp., Armonk, NY).
RESULTS

Operational Tolerance and Chronic
Rejection Are Associated With Distinct
DNA Methylation Profiles
In order to study the methylation dynamics in peripheral blood
associated with operational tolerance, we performed whole-
genome DNA methylation analysis in PBMCs from KTR with
Frontiers in Immunology | www.frontiersin.org 4
operational tolerance (TOL; n = 9), chronic rejection (CR; n = 6),
and healthy controls (HC; n = 7) (Table 1). In this method, we
interrogated 850,000 genomic regions in each sample. Two-
dimensional PCA showed a differential methylation profiles for
all patient groups (Figure 1A), enabling us to identify 429
differentially methylated regions (DMRs) associated with 252
genes in the CR group and 524 DMRs (335 genes) in the TOL
patients in comparison with healthy controls (Supplementary
Table 2). Taking the transplantation event into account, the
greatest differences at the DNA methylation level were observed
between the CR and TOL groups, in which 6128 DMRs (2737
genes) were annotated, most which corresponded to
hypomethylated CpG sites in CR (5662 DMRs), indicating that
CR is associated with a hypomethylated profile in peripheral
blood that it is not observed in healthy controls or operationally
tolerant patients (Supplementary Table 2).

In spite of the low number of patients, two subgroups were
clearly differentiated in TOL patients. PCA analysis revealed a set
of three TOL patients (TOL-R) with the most DMRs (18,158)
compared with CR patients (Supplementary Figure 1). By
contrast, the other TOL patients (TOL-L; n=6) were closer to
the CR group, with 2905 DMRs. Nonetheless, we did not
observed methylation differences associated with time from
transplantation and the clinical data available at this time gives
us little clues of where the methylation differences between
tolerant patients could be originated. In any case, gene
ontology analysis showed that TOL-R was much more
A B

C

FIGURE 1 | DNA methylation dynamics associated with transplant outcome. (A) PCA analysis of DNA methylation data from healthy controls (HC), chronic rejection
(CR) and operational tolerance (TOL) kidney-transplanted recipients. (B) Weighted gene co-methylation network analysis in kidney transplant recipients. The analysis
included all differentially methylated regions between HC, CR and TOL patients (b > 0.2, FDR <0.05). (C) Box plot of eigengene values in each gene cluster. These
values are those of the first principal component of the DNA methylation data in each module. The significance of group differences was determined by the Kruskal-
Wallis test, followed by a post-hoc test.
August 2021 | Volume 12 | Article 709164
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enriched in immune categories (Supplementary Figure 1),
suggesting functional differences between both patient groups.

Co-Methylation Network Analysis Reveals
Distinct Epigenetic Profiles Associated
With Operational Tolerance
To identify the epigenetic signatures associated with tolerance
and chronic rejection we performed weighted gene co-expression
network analysis (WGCNA). This method infers gene
interconnections based on co-expression, which allows the
generation of clusters of genes associated with the same
pathways or functions, and correlates them with transplant
status. We used this method to analyze DNA methylation data,
so the resulting clusters represent epigenetic co-regulation, i.e.,
gene modules with similar methylation dynamics across all
samples. First, we selected all probes that were differentially
methylated (b > 0.2, FDR < 0.05) between any of the patients
groups, which made 8078 DMRs available for analysis. This
probe set generated 18 co-regulatory clusters after WGCNA,
although most probes (> 85%) were concentrated in just four of
these clusters (C10, C11, C12 and C13) (Figure 1B and
Supplementary Table 3). As shown in the heatmap, most of
the selected DMRs corresponded to hypomethylated CpG sites in
the CR group, which were concentrated in clusters C12 (5223
DMRs) and C13 (1804 DMRs). Moreover, the methylation
values across all samples showed that probes in C12 and C13
were hypomethylated in CR and hypermethylated in TOL
patients relative to healthy volunteers (p < 0.05 between all
sample groups) (Figure 1C). On the other hand, the C10 cluster
showed the opposite trend, comprising those probes specifically
hypomethylated in the TOL and hypermethylated in CR (p < 0.05)
(Figure 1C). The C11 cluster showed similar results although the
methylation differences between the CR patients and the healthy
controls were not significantly different. Finally, genomic
distribution of all the DMRs in the co-regulated network
showed that they were preferentially associated with gene body
regions rather than on promoters, and that they were mostly
absent on CpG islands (Supplementary Figure 2).

In order to evaluate whether these co-regulatory networks
truly represent functional interaction within these modules, we
generated protein–protein interaction networks from databases
of physical interaction and databases of curated biological
pathway knowledge using the STRING tool (Figure 2A). By
this method, we observed that the cluster C10 and C11 was
mostly comprised by protein interactions associated with
immune functions. Thus, the tumor necrosis factor (TNF), a
key factor of the lymphocyte differentiation and inflammation
programs, was the most central gene in the C10 clusters.
Similarly, the FYN proto-oncogene Src family tyrosine kinase
(FYN), which is highly expressed in T cells and associated with
TCR signaling, was the most interconnected gene within the
network. Gene ontology analysis of the genes within the network
showed high enrichment in immune functions, including T cell
activation, humoral and adaptive immune response and Th17
lineage commitment (Figure 2B and Supplementary Table 4).
We observed specific hypomethylation of some key genes in B
Frontiers in Immunology | www.frontiersin.org 5
cell development, including the ST6 beta-galactoside alpha-2,6-
sialyltransferase 1 (ST6GAL1), a glycan-modifying enzyme
involved in survival of transitional B cells, the membrane-
spanning 4-domains A1 gene (MS4A1), which is a surface
protein necessary for plasmatic cell differentiation, and the
myocyte enhancer factor 2C (MEF2C), a transcription
activator required for B cell activation and survival in response
to BCR stimulation. We also observed a low level of methylation
in some key genes of the Th17 differentiation program, such as
the basic leucine zipper ATF-like transcription factor (BATF)
and the interferon regulatory factor 4 (IRF4), both
transcriptional regulators of RORC. The B and T lymphocyte
attenuator (BTLA) and the programmed cell death protein 1
(PDCD1) inhibitory receptors, both CD28 family members, were
also demethylated in TOL patients.

On the other hand, the C12 and C13 clusters, which included
most genes hypomethylated in CR patients, showed very
different functional networks which were organized around
genes associated with ubiquitination pathways (UBR1,
ANAPC7, UBE3A, UB3C, etc.) (Figure 3A). In both clusters,
DMRs associated with the cullin 1 gene (CUL1) occupied the
most central position within the functional network. This gene is
a core component of the E3 ubiquitin-protein ligase complex,
mostly expressed by T and B lymphocytes in peripheral blood
and associated with cellular activation (15). These clusters also
showed a very different pattern of functional enrichment, mostly
associated with cellular processes such as endocytosis, signal
transduction, protein phosphorylation and cell adhesion
(Figure 3B). However, we did observe demethylation in some
genes associated with antigen presentation (CALR), B cell
functions (LYN) and other genes involved in B cell
development, such as PRKCB and NFAM1.

In general, these results indicated that the genes in the major
clusters derived from our co-regulatory networks are mostly
associated with the epigenetic modulation of lymphocyte
differentiation and co-stimulation pathways in tolerance, and
with intracellular signaling and ubiquitination mechanisms in
chronic rejection. Nonetheless, is important to note that these
DNA methylation profiles are likely to be influenced by changes
in the cellular composition of the samples. In order to study this
possibility, we perform in-silico immune cell deconvolution of
methylation profiles in all samples using two different methods:
MethylResolver and MethylCIBERSORT (Figure 4). With both
methods, we observed that TOL patients showed higher levels of
monocytes, NK cells and B lymphocytes, suggesting that the
DNA methylation signature in tolerance is at least partially
associated with changes in these populations.

Stable Patients With Low Doses of
Prednisone Show Methylation Patterns
Close to Tolerance
Tolerant and CR patient groups represent opposite extremes of
kidney transplant outcomes, so we wanted to evaluate whether
these methylation signatures were correlated with the
intermediate outcomes observed in stable patients receiving
monotherapy (low doses of prednisone) or who were on
August 2021 | Volume 12 | Article 709164
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standard triple therapy. With this aim, we used weighted gene
co-methylation network analysis to select a set of representative
DMRs for each patient group. First, we identified in each co-
methylation cluster the hub DMRs that may orchestrate module
behavior, defined by high module membership (representing
connectivity within the co-methylation network) and strong
correlation with the clinical features (TOL and CR). These
parameters showed a linear correlation in the four major
clusters derived from the network (C10-C13) (Supplementary
Figure 3). Hub DMRs were identified as the top 10% of ranked
DMRs with the highest membership value and an FDR < 10-4.
From this list, we selected DMRs in the C10 and C13 clusters,
since these showed the greatest differences between the CR and
TOL groups. Using this criterion, we analyzed six candidates in
the C10 cluster (associated with the genes HIVEP2, HOMER1,
UTRN, PTPRO, SP100 and JAZF1), and in cluster C13
(associated with EMZ8, EZR-AS1, WDR20, NADSYN1, TBCD
Frontiers in Immunology | www.frontiersin.org 6
and MED17). In addition, these DMRs were selected because
their methylation values were very consistent across all samples.
First, DNAmethylation values in this set of DMRs were validated
by bisulfite pyrosequencing in the same sample patients as those
used for microarray analysis to confirm the results of the array
analysis by a different method. Results from pyrosequencing
analysis confirmed the significant differences between CR and
TOL groups for all genes (Supplementary Figure 4). DMRs
derived from the C10 cluster showed very low levels of
methylation in TOL compared with CR and healthy controls
and, conversely, C13 probes showed very high levels of
methylation in TOL patients relative to the other two groups.
Additionally, we evaluated the DNA methylation of these DMRs
in a new cohort of stable KTR under monotherapy with a low dose
of glucocorticoids (MO; n = 7), or standard triple-therapy based
(TT group; n = 7). DNA methylation in the MO group showed
very similar patterns to those of patients with TOL (Figure 5).
A

B

FIGURE 2 | Functional analysis of clusters C10 and C11. (A) Functional interaction networks derived from co-methylated clusters (C10 and C11) obtained from
WGCNA analysis, corresponding to DMRs hypomethylated in the TOL group. Network centrality is indicated by the color scale and node size. (B) Gene ontology
analysis of clusters C10 and C11.
August 2021 | Volume 12 | Article 709164
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However, the DNA methylation levels of stable patients from the
TT group were more diverse, some patients were close to the TOL
group, but others showed DNAmethylation patterns more similar
to those of the CR group, which may reflect a different
immunological status among those stable patients (Figure 5).
Despite the small number of samples, we can determine that
clinically stable patients with reduced IS (MO group) had a DNA
methylation pattern near to tolerance, whilst stable patients under
standard IS were more variable.
DISCUSSION

Transcriptomic studies and immunophenotyping analysis in
peripheral blood have been used to derive tolerance signatures
in KTR, although the epigenetic networks regulating these
transcriptional signatures have not yet been studied. Here, we
demonstrated that genome-wide DNA methylation analysis can
Frontiers in Immunology | www.frontiersin.org 7
provide reliable epigenetic signatures associated with chronic
rejection and operational tolerance in KTR. However, two
fundamental questions arising are how omic approaches
(transcriptomic and/or epigenomic) reflect the immune status
of the recipient and whether they can be used to develop
predictable signatures for operational tolerance that may help
to reduce immunosuppressive treatment.

Previous transcriptomic analyses have shown that
transcriptional signatures in TOL patients are associated with
an enriched B cell profile (4–6). This result is clearly consistent
with those of some flow cytometry studies, which have shown
higher frequencies of circulating of B cells in those patients,
specifically of the naive and transitional populations (16). The
role of these cells in operational tolerance is not fully understood,
although it may be related to some regulatory functions that can
be exerted on effector T cells (17) or the ability of transitional B
cells to produce IL10 and to inhibit CD4 T cell responses (18, 19)
Consistent with these results, we observed DNA demethylation
A

B

FIGURE 3 | Functional analysis of clusters C12 and C13. (A) Functional interaction networks derived from co-methylated clusters (C12 and C3) obtained from
WGCNA analysis, corresponding to DMRs hypomethylated in the CR group. (B) Gene ontology analysis of clusters C12 and C13.
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in TOL patients of genes associated with the B cell program.
Some of these genes, such as ST6GAL1 and MS4A1 (encoding
CD20), have been specifically associated with the survival of
transitional B cells and B cell function (20, 21) and, consequently,
demethylation in peripheral blood of TOL patients suggests a
specific expansion of these populations.

A meta-analysis of 96 tolerant samples from five studies has
reported a common transcriptomic signature to be expressed in
peripheral blood that is centered on B and T cell proliferation
genes and the inhibition of CD14 monocyte-related functions
(22) We have confirmed that DNA methylation analysis also
reflects changes in B and T cell populations in blood although, in
general, we observed only a moderate correlation between
Frontiers in Immunology | www.frontiersin.org 8
epigenetic changes and the transcriptomic signature derived
from this meta-analysis. In fact, we only found five
differentially methylated genes associated with operational
tolerance (BLK, IRF4, ID3, HINT1 and PLB1) among the top-
20 genes reported in the transcription meta-signature. This result
indicates that epigenomic and transcriptomic signatures are not
necessarily equivalent and perhaps reflect the different molecular
and cellular traits associated with operational tolerance. On the
other hand, it is very important to emphasize that a recent study
has demonstrated that the transitional B cell signature associated
with tolerance may be partially induced by the immuno-
suppressive treatment (23). This led to a new transcriptional
signature without this treatment bias being derived. This new
A

B

FIGURE 4 | Deconvolution analysis of DNA methylation data in KTR. (A) Boxplots for cellular deconvolution by MethylResolver. (B) Boxplots for cellular
deconvolution by MethylCIBERSORT. P-values for Wilcoxon’s Rank Sum Tests are shown.
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signature initially identified 28 differentially expressed genes, and
only eight of them (RAB40C, TNFAIP3, IRF2, PDE4B, DNMT3A,
SEC24D, HP and ITGB1BP1) showed differential DNAmethylation
in our analysis, a result expected because we did not analyze the
epigenomeof patientswith different immunosuppressive treatments.

In addition to B cell function, poor Th17 response has been
associated with operational tolerance and prolonged graft
survival, whereas CR patients had a higher frequency of Th17
cells and greater TCR signaling (24, 25). We observed differential
methylation of genes associated with the activation and
costimulation of T-cells, and the Th17 differentiation program
between TOL and CR patients. It is interesting to highlight that
several transcriptional regulators of RORg (LY9, BATF and
IRF4), which is the master regulator of Th17 differentiation,
were hypomethylated in the tolerant state. Given that loss of
Frontiers in Immunology | www.frontiersin.org 9
methylation in gene promoter regions is usually associated with
greater transcriptional potential, our results do not suggest that
there is a smaller Th17 population in peripheral blood. In any
case, we cannot exclude that other molecular pathways
associated with Th17 functions may be altered in TOL
patients. In fact, we observe de-methylation of the BTLA and
PD1 costimulatory molecules and genes associated with the
negative regulation of ERK and NFkB pathways, whose
expression might damage the T-cell activation and Th17
response, as it has been previously reported (25, 26).

Another interesting finding in our study was the clear
hypomethylation signature associated with the CR state. In
fact, we found 5662 DMRs that were specifically demethylated
in CR patients compared with tolerant patients, but only 466 that
were demethylated in TOL compared with CR patients. It is not
FIGURE 5 | DNA methylation analysis of kidney transplant recipients under different immunosuppressive treatment. Bisulfite pyrosequencing of selected DMRs in
operationally tolerant patients (TOL), patients with low-dose glucocorticoids as monotherapy (MO) and patients with standard triple-therapy (TT). Results are shown
for each patient; lines show the median ± interquartile range.
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clear what this obvious bias towards loss of methylation in CR
implies, but we and other researchers have demonstrated that
immune cell activation and differentiation are associated with a
genome-wide demethylation wave in many immune-related
genes (27–30). Some of the genes associated with immune
function were demethylated, although GO analysis showed
preferential enrichment in genes involved in cell signaling
pathways. Analysis of the functional interactions between the
annotated DMRs showed that the loss of methylation was closely
associated with ubiquitination pathways, which are involved in
protein degradation, antigen presentation, TCR and BCR
signaling, and innate immunity (31). Some E3 ubi-quitin
protein ligases have been associated with peripheral tolerance
(32–34) and inhibitors of the ubiquitin-proteasome system have
been tested in order to improve cold organ preservation,
especially for liver transplant (35). However, the role of these
pathways in transplant rejection remains to be determined.

On the other hand, we did select the DMRs that were most
representative of the operational tolerance state and analyzed
them in stable patients receiving treatment with a low dose of
glucocorticoids as their only therapy, or with standard triple-
therapy. Of the battery of tested genes, some were mechanistically
associated with immune response and tolerance although they
have not yet been specifically studied in organ transplantation.
Thus, JAZF1 is a negative regulator of IFN-g and IL-17 in
macrophages (36), SP110 modulates nuclear factor-kB (NF-kB)
activity (37), and the PTPRO encodes a receptor-type tyrosine
kinase essential for B cell receptor signaling and associated with
acute rejection in a genome-wide association study (38). Notably,
DNA methylation levels in the analyzed genes were nearly
identical in recipients under monotherapy and in TOL patients,
suggesting that the DNAmethylation pattern could reproduce the
observed good clinical outcome of the graft. We cannot rule out
the possibility that DNA methylation can be also be biased by a
cofounding effect due to immunosuppressive therapy. Further
studies with KTRs groups under various immunosuppressant
regimens will be necessary to dissect the specific contribution of
immunosuppression. Nonetheless, DNA methylation profiles
between healthy controls and “tolerant” patients, both free from
IS, are significantly different, suggesting that DNA methylation
changes reflect a favorable immune response in tolerant patients
rather than the beneficial effect of drug withdrawal. In any case,
this effect will have to be accounted for in future epigenetic
studies determining the methylation changes throughout
transplant evolution and in stable patients with different
immunosuppressant regimens.
CONCLUSIONS

Although only a limited number of patients have been included
in this study, our results demonstrate that epigenetic dynamics in
mononuclear cells from peripheral blood are associated with
kidney transplant outcome. Tolerant patients develop a specific
DNA methylation pattern, providing proof of concept for the
feasibility of using methylation analysis to monitor stable
Frontiers in Immunology | www.frontiersin.org 10
patients with good outcome. Further studies with larger
cohorts and patients receiving various immunosuppressive
regimens will allow us to develop reliable epigenetic
biomarkers that will help reduce the immunosuppressant
therapy, in combination with clinical criteria in patients with
methylation profiles closer to tolerance.
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