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Predictive models could indicate the clinical outcome of patients with carcinoma. Cervical
cancer is one of the most frequently diagnosed female malignancies. Herein, we proposed
an immune infiltration-related gene signature that predicts prognosis of patients with
cervical cancer and depicts the immune landscape as well. We utilized the transcriptome
data of The Cancer Genome Atlas (TCGA) and estimated the infiltration level of 28 immune
cell types. We screened out four immune cell types conducive to patient survival and
recognized their shared differentially expressed genes (DEGs). Four core genes (CHITT,
GTSF1L, PLA2G2D, and GNG8) that composed the ultimate signature were identified via
univariate and multivariate Cox regression. The optimal model we built up could
distinguish patients with cervical cancer into high-score and low-score subgroups.
These two subgroups showed disparity in aspects of patient survival, immune
infiltration landscape, and response to immune checkpoint inhibitors. Additionally, we
found that GTSF1L was decreased gradually along with the severity of cervical lesions,
and its potential role in immune contexture and clinical practice were also demonstrated.
Our results suggested that the Immunoscore based on four immune-related genes could
serve as a supplementary criterion to effectively foresee the survival outcome, tumor
infiltration status, and immunotherapy efficacy of cervical cancer patients.

Keywords: cervical cancer, Inmunoscore, immune infiltration, bioinformatics, prognostic model

INTRODUCTION

Cervical cancer (CC), as one of the most frequently diagnosed female malignancies, is the fourth
leading cause of cancer mortality in females (1). Although current treatment strategies including
surgery, chemoradiotherapy, and immunotherapy have tremendously ameliorated the prognosis,
the clinical outcome of advanced cervical cancer patients is still not optimistic (2). Owing to its great
threat to women’s health and life, exploration of useful prognostic biomarkers and therapeutic
targets for cervical cancer seems to be essential.
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Mounting evidence indicates that tumor-infiltrating immune
cells (TILs) in the tumor microenvironment (TME) participate in
tumor progression, aggressiveness, and therapeutic responsiveness
(3, 4). A latest single-cell analysis revealed that innate-like CD8" T
cells with low cytotoxicity and clonal expansion might account for
the compromised antitumor immunity and poor prognosis of liver
cancer (5). In cervical cancer, the density of peritumoral CD3" T
cells was proven to have the potential for predicting relapse (6), and
tumor-infiltrating CD204" M2 macrophages predicted worse
prognosis in patients with cervical adenocarcinoma (7).
Additionally, increased CD4, CD8, CD20, and CD56 signals were
associated with good responders to neoadjuvant chemotherapy (8),
and the number of CD8" T cells was correlated with treatment
outcome in patients treated with radiotherapy (9). Thus,
quantitative molecular signatures closely associated with immune
infiltration might display promising capability in predicting the
clinical outcome of cervical cancer.

Furthermore, blockade of immune checkpoints such as PD-1/
PD-L1 and CTLA-4 has been trendy in malignant tumors (10, 11).
Due to the immune components within TME that dampen
antitumor immune responses, most tumors often failed to
respond in single-agent immunotherapy (12). Therefore, it is
necessary to develop superior biomarkers and study the
combination therapy for improving the efficacy of immunotherapy.

Within this context, we established a superior predictive model
incorporating multiple biomarkers in cervical cancer and put forward
a novel modeling algorithm to construct our new immune
infiltration-based gene signature. This signature distinguishes
patients with cervical cancer in respect of clinical outcome, tumor
infiltration state, and immunotherapy efficacy, which may help to
improve patient management and enable personalized treatment.

MATERIALS AND METHODS

Retrieval of Transcriptome Data and
Immune Cell Infiltration Analysis

Transcriptome profiling data harmonized to fragments per-
kilobase million (FPKM) of cervical cancer from TCGA
(https://tcga-data.nci.nih.gov/tcga/) for the cervical squamous
cell carcinoma and endocervical adenocarcinoma (CESC)
project were downloaded. We also obtained gene transfer
format (GTF) files from Ensembl (http://asia.ensembl.org) for
annotation of the mRNAs. Moreover, 217 early cervical cancer
tissues (IB1, GSE44001) based on the GPL14951 (Illumina
HumanHT-12 WG-DASL V4.0 R2 expression beadchip)
platform and corresponding information of disease-free
survival (DFS) were both retrieved from the GEO database
(http://www.ncbi.nlm.nih.gov/geo). Besides, the gene
expression profile of 128 cervical tissue specimens (GSE63514)
based on the GPL570 (Affymetrix Human Genome U133 Plus
2.0 Array) platform was also downloaded. Subsequently, a list of
representative marker genes of tumor-infiltrating immune cell
types was acquired from Charoentong’s research involving 366
microarrays of immune cells summarized from 37 studies, which
was used for immune cell infiltration analysis (13).

Acquisition of Clinical Information

of Patients

Basic clinical information of patients with CESC was retrieved
from the CESC project of TCGA. We excluded samples whose
overall survival (OS) time or survival status was not available.
After filtering, a total of 304 patients with CESC from the TCGA
dataset were enrolled in this study.

Construction of an Immune-Related
Signature to Evaluate the Immunoscore

We developed a novel computational frame to identify tumor-
infiltrating immune-related signature by integrating immune
and transcriptome profiling analysis of CESC tumors as follows.

To identify the DEGs, we used R package limma for differential
expression analysis among these genes. The thresholds were settled
as log fold change (FC) >1 along with adjusted p-value < 0.05. For
the four immune cell types, DEGs in common were obtained as
candidate immune-related genes. To enhance the availability of this
model, we constructed a 1-or-2 matrix to represent the expression
levels of these overlapped genes in patient samples. Assuming Y as
the value of gene A, Y is defined as 1 if the expression level of gene
A in the individual sample is lower than its median expression level
in all cases; otherwise, Y is assigned as 2.

Then, we screened out the core genes by a Cox regression
strategy. A univariate analysis was conducted, following which a
multivariate Cox proportional hazard regression was performed.
Candidate genes with p-value < 0.05 were selected for
establishment of the model. The 1-, 3-, and 5-year ROC curves
were plotted. The following formula was applied to calculate the

Immunoscore for all clinical samples: Tumor-infiltrating
N

Immunoscore = > Exp; - Gene;, where N is the total number of
i=1

core immune-related genes, Exp; is the regression coefficient, and

Gene; refers to the relative expression of gene i transformed by our

expression matrix. According to the median value, the whole

cohorts were re-divided into high- and low-score subgroups.

Validation of the Established Immunoscore
Signature

Kaplan-Meier analysis was used to illustrate the survival
difference of patients from high-score and low-score
subgroups. In line with our expectation, higher Immunoscore
indicated a better prognosis for patients, as was visualized by R
tools. The R packages employed in this step involved survival,
survminer, and plyr. In addition, ggrisk package was also applied
to re-order these clinical samples in TCGA datasets as well as
GSE44001. The relationship between four hub genes consisting
this immune signature and prognosis was demonstrated with
risk curve, scatter plot, and heatmap.

We also visualized this signature model with a nomogram,
and further analysis revealed that this signature could serve as an
independent prognostic predictor, which was proved by
univariate and multivariate Cox regression analyses. The R
packages involved in this operation included survival,
survMisc, pROC, survminer, and rms.
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Correlation Analysis Between Immune
Landscape and the Constructed Signature
Spearman correlation analysis was performed between the
Immunoscore and infiltrating immune cells. The correlation
coefficients of the results were shown in the lollipop diagram,
with a significance threshold of p-value < 0.05. The R package
ggplot2 was used in this procedure.

The violin and box plot was used for visualization and was
labeled as listed below: < 0.0001 = ****, < 0.001 = ***, < 0.01 =**,
and < 0.05 = *. Wilcoxon signed-rank test was applied to evaluate
the statistical differences among different subgroups
of Immunoscore.

Investigation of Immune Subtypes

To analyze the clinical cases from another perspective, we recognized
immune subtypes based on their immune infiltration status among
28 immune cells, adopting the currently acknowledged method. The
R package ConsensusClusterPlus was applied to identify the subtypes
and sigclust proved that the p-value was significant in this
classification. We chose k = 5 and plotted the survival map of five
immune subtypes via R packages survminer and survival.

Estimation of the ICI-Related Immune
Molecule Expression

To study the immune infiltration characteristics, we amounted
the expression levels of ICP and ICD genes in high- and low-
score groups of the established model, respectively. The
differences in these gene expressions were analyzed by
Wilcoxon signed-rank test and displayed in a violin chart. The
gglot2 and ggpubr packages were performed to visualize this plot.

The Predictive Potential of Immunoscore
on Clinical Response

To verify the clinical application potential of this signature, we
conducted the Kruskal-Wallis test to explore the relationship
between the Immunoscore and clinical outcome. The box
diagram was used for visualization of the result. The R
packages ggplot2 and ggpubr were utilized.

We also explored the significance of the Immunoscore in clinical
immunotherapy treatment. The prognostic difference among four
subgroups was compared by Kruskal-Wallis test and the results were
shown as survival curves via survival and survminer of R.

Gene Set Enrichment Analysis

To evaluate the infiltration of immune cells, we performed
single-sample gene set enrichment analysis (ssGSEA) using the
marker gene set of different immune cells with R package GSVA,
which can calculate the normalized enrichment score of immune
cell types. Furthermore, GSEA was also conducted with
Bioconductor packages clusterProfiler and msigdbr, which can
identify hallmark gene sets or immunologic signatures that are
activated or suppressed according to their correlation with
Immunoscore and immune-related genes. Moreover, we
evaluated the correlation between this Immunoscore and
specific phenotypes such as epithelial-mesenchymal transition
(EMT) and hypoxia via the ssGSEA method. Related gene sets

were downloaded from the Molecular Signature Database
(MSigDB) via Gene Set Enrichment Analysis tool (GSEA,
http://software.broadinstitute.org/gsea/index.jsp).

TIMER2.0 Platform Analysis

The correlation of the mutation status of specific genes (MUCI6,
ERBB2, KRAS, and MAPK1) with GTSFIL expression was
analyzed by TIMER2.0 (14). The association between immune
infiltrates and genomic changes in TCGA-CESC project was also
explored using the TIMER2.0 sCNA module.

Kaplan-Meier Plotter Online Analysis

To analyze the prognostic value of the four hub genes, the online
analysis tool Kaplan—Meier plotter (http://kmplot.com/analysis/)
was utilized to shed light on the correlation of their expression
levels with patients’ relapse-free survival (RFS) based on the
TCGA cohort (15).

Cell Culture

Human cervical epithelial cell line H8 and human cervical cancer cell
lines HeLa, SiHa, ME180, and Caski were purchased from FuHeng
Cell Center (Shanghai, China). These cells were cultured in DMEM
(HyClone, UT, USA) supplemented with 10% fetal bovine serum
(FBS, Gibco, USA) in 100 U/ml penicillin/streptomycin (Beyotime,
Jiangsu, China). All cell lines were cultured at 37°C with 5% CO,. Cell
cultures were periodically screened for mycoplasma contamination.

RNA Isolation, cDNA Synthesis, and Real-
Time PCR

We applied the TRIzol reagent (Invitrogen, USA) to extract RNA
from cell lines and each total RNA was then reversely transcribed
into cDNA using PrimeScript RT-PCR kit (Takara, China) and
subsequently amplified by TB Green'" Premix Ex Taq = II
(Takara, China) according to the manufacturer’s protocol. The
expressions of mRNAs were further normalized to GAPDH. The
sequences of primers used in this study are listed in Table S1.
The relative expressions were quantified by the 27**“" method.

Statistical Analysis

All data were processed within the R software (version 4.0.4).
The Kruskal-Wallis test was applied to compare among at least
three groups, whereas the Wilcoxon test was used to compare
between two groups. The Kaplan—Meier plotter was conducted
to generate survival curves for subgroups of the cohort, and the
log-rank test was utilized to estimate the statistically significant
differences. Spearman analysis was employed to calculate the
correlation coefficient. For all analyses, a two-tailed p < 0.05 was
regarded as statistically significant.

RESULTS

The Landscape of Immune Cells in Human
Cervical Cancers

To explore the effect of different immune cell subgroups on
cervical cancer patient’s prognosis, we first obtained the
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transcriptome profiling data of the CESC project of the TCGA  cells by single-sample GSEA analysis to characterize their
database, of which 304 tumor samples were included. The entire ~ expression pattern in CESC cases (Figure 2A), and explored
flow diagram of this study is shown in Figure 1. their impact on patient prognosis (Figure 2B). We totally

Then, we annotated these data with GTF files of Ensembl,  identified four immune cells positively correlated with OS
calculated the normalized enrichment score of various immune (Figures 2B, C), including activated B cell (p = 0.00321, HR =

CESC project of TCGA cohort
(n=304)
ssGSEA
Y
Normalized enrichment score of « | Five potential immune subtypes
28 tumor-infiltrating immune cell types - of CESC specimens
Kaplan-Meier analysis
Y Y
Four candidate immune fraction Significant difference in patient prognosis
conducive to patient prognosis among five subgroups
Y Y
Group with higher enrichment level Group with lower enrichment score
of these immune fractions of these immune cells
Y
~ Differential analysis of DEGs L Significant difference in Immunoscore and
1 between these subgroups e four ir-gene expression among five subgroups
A
Y
Overlapped DEGs shared by
the four gene sets
N
v Tumor infiltrating Immunoscore :Z:Expi -Gene,
. i=1
Univariate and multivariate Cox | N=number of core ir-genes
regression analysis 71 Exp = regression coefficient
Gene = relative expression of gene i
Validation of this
immune signature
Kaplan-Meier analysis s s e s
ubgroup validation
ROC curve Pan-cancer analysis
Nomogram
Correlation with infiltration of diverse immune cell types [«
Y
ICl-related gene expression (ICP and ICD genes) | Disparity in immune-related features
Th1/IFNy signature between high-score and low-score groups
Gene Ontology and Gene Set Enrichment Analysis [« A 4
Clinical implications:
Impact of Immunoscore and immune checkpoint
gene expression on clinical outcome
FIGURE 1 | Flow chart of this study.
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0.48, 95% CI [0.3-0.78]), effector memory CD8 T cell (p =
0.03789, HR = 0.6, 95% CI [0.37-0.97]), eosinophil (p = 0.01921,
HR = 0.56, 95% CI [0.35-0.91]), and plasmacytoid dendritic cell
(p = 0.02166, HR = 0.57, 95% CI [0.36-0.92]).

Establishment of an Immune-Related Cox
Regression Model of Prognostic Value

To screen for the immune-related genes of these four immune
cell types mentioned above, we distinguished those genes
showing significantly disparate expression levels between the
high- and low-infiltration subgroup (Figure 3A) and identified
61 differentially expressed genes (DEGs) in common
(Figure 3B). After re-examining their tendency of upregulation

or downregulation in the subgroups of the four immune cells, we
eventually confirmed 60 genes that were highly expressed in the
high-infiltration subgroup. These genes were assumed to be
universally relevant to immune cells and critical for
maintenance of immune cellular functions, and thus have been
considered as candidate CESC model components (Table S2).
Then, we used a 1-or-2 matrix to represent the relative
expression levels of the overlapped 60 genes and investigated
the association between the expressions of these genes and
patients’ OS time in the TCGA dataset via univariate Cox
proportional hazards regression analysis. As listed in Table S2,
we validated 23 candidates that impose effect on patient survival.
A multivariate Cox regression analysis was then implemented
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following this single-factor test, which extracted a set of four
immune-related genes (CHIT1, GTSF1L, PLA2G2D, and GNGS8)
and constituted a Cox proportional hazards model by stepwise
method (Table S2).

These four genes were all upregulated in the high-infiltration
group of the four immune cells (Figure 3A), positively related to one
another (Figure S1), and significantly correlated with CESC
patients’ OS (Figure 3C). Therefore, we consisted these four
genes as a potential prognostic signature. The signature was
indicative of immune infiltration using the expression of the four
immune-related genes weighted by the multivariate Cox regression
coefficient as follows: Immunoscore = (0.7071341 X expression
value of CHIT1) + (0.6469606 x expression value of GNGS8) +
(0.5702634 x expression value of GTSF1L) + (0.7482603 x
expression value of PLA2G2D). Taking advantage of this model,
we calculated the Immunoscore to all these acceptable cases of
patients with CESC from TCGA.

The median Immunoscore was identified as the cutoff point to
re-classify the cohort into two subgroups: 147 samples were
classified into the high-score group and 157 were classified into
the low-score group. Kaplan—-Meier analysis demonstrated that
patients in the high-score group were inclined to exhibit a longer
survival time than those in the low-score group (Log-rank p <
0.0001, Figure 3D). We also demonstrated this immune-related
signature with an easy-to-use and clinically adaptable risk
nomogram. As depicted in Figure 3E, higher total points based
on the sum of assigned numbers for each factor in this nomogram
was associated with a worse 1-, 3-, and 5-year OS rates. The
prognostic performance of this signature after adjusted by
another clinical factor (age) showed that Immunoscore was still
significantly correlated with favorable OS in the cohort (p < 0.0001,
HR =0.53,95% CI [0.41-0.70], Table S3). Moreover, we calculated
the areas under curve (AUCs) for the 1-, 3-, and 5-year receiver
operating characteristic (ROC) curve of this model. As shown in
Figure 3F, the AUC values of this signature were 0.72, 0.66, and 0.69
at 1, 3, and 5 years of OS, indicating a relatively high reliability.

We also computed the discrimination index as well as the
calibration plot of the model for 3- and 5-year survival
(Figure 3G). The accompanied C-statistic discriminatory index
value of 0.708 reveals that this signature is quite robust in
distinguishing subjects with different outcomes. Moreover, the
calibration plots of this nomogram showed excellent
concordance between observed outcome and predicted survival
probabilities. The decision curve analysis (DCA) also indicated
that the risk signature brought clinical benefit to patients with
CESC (Figure 3H). These results further foster the clinical
implication of the prognostic signature.

Validation of the Four-Gene Immune-
Related Prognostic Model

To confirm the robustness of this signature, we tested its prognostic
power by using subgroup analysis as well as pan-cancer evaluation.
According to the clinical characteristics involving age, clinical
stage, histological grade, and human race, the whole cohort was
divided into different subgroups. The association of the
Immunoscore with OS in these subgroups was examined via

univariate Cox analysis. As expected, the four-gene Immunoscore
predicts a superior clinical outcome (Figure 4).

Meanwhile, we also explored the impact of this Immunoscore
on the progression-free survival (PFS) and RFS of patients from
the TCGA-CESC cohort. In light of the risk curve obtained by
ggrisk R package, we could find that the four hub genes showed a
relatively higher expression in the low-risk group with better
outcome (Figure 5A). ROC curve (Figure 5B) and Kaplan-
Meier analysis (Log-rank p < 0.0001, Figure 5C) also verified the
predictive power of this Immunoscore. Higher expressions of
these four immune-related genes indicated ameliorated PFS and
RFS, respectively (Figures S2A, B). There also existed
statistically significant differences between high- and low-score
groups in terms of the enrichment score of gene sets correlated
with hypoxia and EMT (Figures S3A, B). To further underpin
our conclusion, we testified this established Immunoscore in an
additional series of patients with early cervical cancers (IB1 stage,
n = 217). Consistent results were achieved that this
Immunoscore predicted a superior disease-free survival time in
this cohort (Figures 5D-F). Experimental validation was
conducted to quantify the relative expressions of these four
hub genes in diverse human cervical cell lines. The results
revealed that all of these four genes exhibited lower expression
levels in cervical cancer cells compared to human cervical
epithelial cell H8 (Figure S4).

In addition, we conducted a pan-cancer analysis on the basis
of TCGA transcriptome profiling data and clinical information.
Among the 33 sorts of cancers in the TCGA cohort, we extended
our conclusion to examine whether this model posed an impact
on other human cancers. The pan-cancer analysis revealed
significant association between the four-gene Immunoscore
and OS in two other cancers: head and neck squamous cell
carcinoma (HNSC, p = 0.00847, HR = 0.81, 95% CI [0.7-0.95])
and skin cutaneous melanoma (SKCM, p = 0.00005, HR = 0.73,
95% CI [0.63-0.85]) (Figure S5A). In HNSC and SKCM, the
signature could stratify patients into low score and high score
with significantly different OS using the same Immunoscore
derived from the training CESC dataset. Furthermore, Kaplan-
Meier analysis also showed that a high score of this model
predicted a better prognosis in HNSC (p = 0.028) and SKCM
(p < 0.001) patients (Figures 5G, H). Additionally, these four hub
genes all displayed higher expression levels in the low-risk group
with longer OS, which was re-divided by ggrisk package (Figures
S5B, C). The univariate Cox hazard ratio analyses in sub-cohorts of
SKCM and HNSC revealed that the Immunoscore was statistically
different in almost all the subgroups classified by age, gender, and
tumor stage in SKCM (Figure S6A) and in patients within
subgroups such as younger age, male patients as well as III-IV
clinical stage in HNSC (Figure S6B). These results indicated that
our Immunoscore model exhibited some specificity to squamous
cancers to a certain extent.

Meanwhile, we re-classified the TCGA cohort of 304 patients
based on the enrichment score of 28 immune subpopulations via
R package ConsensusClusterPlus (Figures 6A-C). The whole
cohort was classified into five subtypes (Figure 6D), and
Kaplan-Meier analysis demonstrated that these groups were
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Stage llI_IV 66(21.71) 0.40(0.24 t0 0.67)  0.0004***
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Unknown 32(10.53) | * 0.71(0.35t0 1.43)  0.33364
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FIGURE 4 | Internal validation of the prognostic potential of the Immunoscore. A univariate Cox hazard ratio analysis revealed that the Immunoscore was statistically
different in almost all the subgroups classified by age, race, clinical stage, and histological grade. *p < 0.05, **p < 0.01, **p < 0.001, ***p < 0.0001.

significantly different in OS (Log-rank p = 0.028, Figure 6E):
subtype V showed a worse outcome whereas subtypes IIT and IV
implied a better prognosis. We also found that there existed a
significant difference in Immunoscore among the five immune
subtypes (Kruskal-Wallis test p < 0.0001, Figure 6F), suggesting
that the immune-related signature is closely associated with the
immune microenvironment of CESC. In addition, the expression
levels of the four immune-related genes in this signature seemed
to be significantly different among five subtypes as well: they
tended to be overexpressed in immune subtypes III and IV, while
they had relatively lower expression levels in immune subtype
V (Figure 6G).

Characterization of the Immune
Landscape Disparity With Immunoscore
Signature

Since the signature was composed of immune-related genes, the
association between the Immunoscore and intratumoral immune
cell infiltration was further explored. We re-divided the cases
into high-score and low-score subgroups and estimated the
discrepancy in tumor-infiltrating immune cells with distinct
groups. The infiltration of 28 immune subpopulations of high-
score and low-score groups was estimated using single-sample
GSEA analysis. As shown in Figure 7A, patients in the high-
score group were more inclined to be enriched with the vast
majority of immune subpopulations, such as CD4" T cells, CD8"
T cells, and T follicular helper cells, while patients with a low
score showed obviously less enrichment. Spearman correlation

analysis also indicated that a higher score of this signature
corresponded to greater immune cell infiltration (Figure S7).

Immune checkpoint inhibitors (ICIs) have been administered
for CESC treatment in clinical practice (16), and we found that a
series of immune checkpoints (ICPs) had a positive impact on
CESC prognosis (Figure S8). In view of the importance of ICPs
and immunogenic cell death (ICD) modulators in tumor
immunology, we compared the expression level of these genes
in different groups (Figures 7B and §9). According to the plot,
most ICI-related biomarkers, ICP and ICD genes, showed
significantly relatively high expression levels in the high-score
group, including PDCD1, LAG3, IDO1, CTLA4, and CD274 (p <
0.0001, Figure 7B).

To further confirm whether the Immunoscore was highly
reflective of the immune infiltration status, we then performed
Gene Ontology (GO) enrichment analysis. The bubble plot
suggested that differential expression between high- and low-score
groups were significantly enriched in diverse immune-related
biological processes (Figure 7C). Furthermore, GSEA conducted
with R package clusterProfiler and msigdbr also identified hallmark
gene sets or immunologic signatures that are activated or suppressed
according to their correlation with Immunoscore and the four
immune-related genes (Figures S10, S11).

Since Th1 bias is principally responsible for the activation of
antitumor immune response and the Th1/IFNYy gene signature is
associated with clinical outcome (17), we examined the
relationship between the four immune-related genes and a
combined Th1/IFNY gene signature. As shown in Figure 7D,
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FIGURE 5 | External verification of prognostic value of this Immunoscore. (A) The risk curve and scatter plot of each sample in the TCGA-CESC cohort after
realignment via ggrisk algorithm. The heatmap showed distinct expression profiles of four hub genes in the high- and low-risk groups. (B) The 1-, 3-, and 5-year
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the four immune-related genes exhibit positive correlation with
the Th1/TFNY signature. These findings suggest that the signature
composed of the four immune-related genes seemed to be
extensively positively correlated with almost all immune cell
types and might be essential for basic immune cellular functions.

Potential of the Signature as an Indicator
of Immunotherapy Response in Patients
With CESC

Next, we retrieved the clinical information of TCGA-CESC
samples and found significant differences in Immunoscore
distribution between patients with different outcomes after the

first course of treatment (Kruskal-Wallis test p < 0.05,
Figure 8A). Notably, patients with progressive disease had the
lowest Immunoscore, whereas patients showing stable disease or
complete response had a substantially higher Immunoscore.
Then, we explored whether the immune infiltration posed an
impact on clinical outcomes in patients with similar expression
levels of ICI-related genes. The patients were stratified by the
Immunoscore as well as the high or low ICI-related gene
expression into four groups, among which their survival
distribution was compared. As shown in Figure 8B, patients
with high Immunoscore and high PD-1 displayed prolonged OS
compared to those with low Immunoscore and high PD-1 (Log-
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was compared through the Wilcoxon test. *p < 0.05;

Wilcoxon test. *p < 0.05; *p < 0.01; **p < 0.001; ***
between high- and low-score groups. (D) A heatmap showing the correlation between the four immune-related genes and Th1/IFNy signature.

e and immune checkpoint inhibitor-related molecules by the Immunoscore. (A) Patients in the high-score group were
une cells including CD4* T cells, CD8" T cells, and T follicular helper cells. The statistical difference of two groups
*p < 0.01; *p < 0.001; ***p < 0.0001, ns, not significant. (B) High Immunoscore was positively associated with
, CTLA4, and LAGS in patients with CESC. The statistical difference of two groups was compared through the
p < 0.0001, ns, not significant. (C) Gene Ontology (GO) enrichment analysis of the differentially expressed genes

Frontiers in Immunology | www.frontiersin.org

September 2021 | Volume 12 | Article 709493


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Yu et al.

Immune Signature in Cervical Cancer

rank p < 0.001). Similar survival patterns could also be observed
using the Immunoscore and PD-L1, CTLA-4, CD47, or CD38
(Figures 8C-F).

The Role of GTSF1L in Immune Contexture
and Clinical Practice
To further analyze the expression patterns of the four immune-
related genes in different pathological types of cervical tissues, we
compared the expressions of these four genes in an independent
GEO dataset GSE63514, which involves 128 cervical specimens,
ranging from normal cervix to cervical cancer. The results
demonstrated that GTSFIL and GNGS8 exhibited a gradually
decreasing tendency along with the disease progression, and
GTSF1L showed greater expression disparity (Figure 9A).
CA125 (MUCI16), CEA (CEACAMS), and HE4 (WFDC2) are
clinically established diagnostic and prognostic markers of

CESC; high levels of these biomarkers suggest cancer
progression and poor prognosis (18, 19). Here, we found that
the expression level of GTSF1L in CESC displayed a significantly
negative relationship with these biomarkers (Figures 9B and
S12A), which was relatively consistent with the better prognosis
observed in the GTSF1L-high patient group.

Besides, the expression level of GTSFIL had a significant
difference in some specific gene-mutated conditions. For
instance, GTSF1L was upregulated in CESC with mutated
CA125 or MAPKI1 compared to the wild-type counterpart,
while the expression of GTSF1L was reduced in the KRAS- or
ERBB2-mutated CESC tumors (Figure 9C). According to the
online tool TIMER 2.0, we also found that high amplication of
GTSFIL was linked to higher infiltration of CD8" naive T cell
and resting mast cell, but correlated with lower infiltration of NK
cell and activated mast cell (Figure S13). In addition, GTSF1L as
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well as other candidate immune-related genes (CHIT1, GNGS,
and PLA2G2D) were all universally positively correlated with
infiltration of the majority of immune cells (Figures 9D
and S14).

The correlation between GTSF1L and ICI-related genes such
as PD1, PD-L1, CTLA4, and CD38 was computed by Pearson
analysis in all types of cancers from the TCGA cohort. The
results revealed that GTSFIL was on the whole positively
correlated with these biomarkers in multiple cancers, especially
in CESC and OV (Figures 9E and S12B).

Finally, we stratified patients with high GTSF1L expression
based on immune cell infiltration level and found that immune
cell infiltration indicated noticeable survival differences in
patients with high GTSFIL expression (Figures 9F-I).
Meanwhile, survival difference was also present in patients
with low GTSFIL expression when stratifying them with
signature-based immune cell infiltration level. Furthermore, we
plotted the survival distributions of patients stratified by GTSFIL
expression as well as ICI-related gene expression and obtained a
similar tendency to that of the immune signature (Figure S15).
These observations suggested that GTSF1L might be a predictive
biomarker of treatment response to immunotherapy.

DISCUSSION

In this study, we attempted to establish a predictive model with
four immune-related genes with an expression matrix of 1-or-2
to replace their previous specific expression values. To a certain
extent, we avoided the problem caused by platform differences
and detecting technique to a certain extent, so as to make up for
the limitations of previous studies (20-25).

First, we retrieved the transcriptome data of CESC samples
from the TCGA cohort, analyzed the normalized enrichment
score of diverse immune cells. Then we performed a differential
expression analysis to identify DEGs and validated core genes
using a univariate analysis combined with multivariate Cox
hazard regression method, on the basis of a 1-or-2 expression
matrix. In this way, we determined the formula of Immunoscore
signature and calculated the AUC value of 1-, 3-, and 5-year ROC
curves. With the median score set as the cutoff point, we
differentiated the high- and low-score group among patients
with CESC. Furthermore, we evaluated this novel signature in
the context of survival, tumor-infiltrating immune cells, and
checkpoint-related biomarkers.

Our algorithm suggested a significant immune-related gene
model in which researchers were only required to compare the
expression level of samples with median expression of each gene
so as to avoid the disparity of detecting platform and technique.
This signature has clinical significance after distinguished into
high- and low-score groups. Since these genes were all closely
related to immune cells, they are likely to participate in the
process of immune context regulation as well as immune
activation. The results revealed that the two groups possessed
distinct survival outcome, tumor immune infiltration, and ICI-
related biomarker expression. We also validated this modeling

algorithm in subgroups of the CESC dataset of the TCGA project,
according to different clinicopathological characteristics. Besides,
this conclusion could also be examined in SKCM and HNSC
datasets of the TCGA cohort, which implied that this modeling
algorithm worked well. Therefore, these proposed core genes might
be novel biomarkers for further study.

To further understand the prognostic role of this signature,
we utilized this Immunoscore to analyze patient survival, leading
to significant risk stratification of OS in patients with CESC.
With single-sample GSEA analysis to measure the infiltration
levels of 28 immune cells of different groups of Immunoscore, we
also uncovered significantly different immune context between
two groups. The high-score group defined by this signature
seems to be relatively immune-inflamed with greater immune
cell infiltration whereas the low-score group seems to be an
immune-cold group with less infiltration of immune cells.
Thereby, the results indicated that this signature is highly
reflective of immune cell infiltration giving rise to a better
prognostic outcome in patients with CESC.

Cancer cells often increase the expression of molecules
involved in the inhibitory immune checkpoints to escape anti-
tumor immunity (26, 27). Nowadays, immunotherapy targeting
PD-1 or other immune checkpoints elicits antitumor responses
in cervical cancer (16, 28). Nevertheless, clinical responses to
checkpoint blockade immunotherapy vary due to disparities in
elements such as tumor mutational burden (TMB) or cytolytic
elements of TME; therefore, not all patients are suitable for ICI
treatment based on their diverse immune context in vivo (29, 30).
A pre-existing intratumor adaptive immune response was
required for effective immunotherapy, such as checkpoint
inhibitors. For instance, specific immune contexture with
higher immune gene expression as well as Immunoscore (“hot-
inflamed” tumors) was associated with reduced risk of certain
diseases such as colorectal cancer (31). Therefore, an early
assessment and prediction for ICI response by biomarkers is in
urgent need for selection of patients likely to benefit from ICIs
(32-34).

Here, we found that patients with high levels of our
Immunoscore were inclined to express higher ICI-related genes
(PDI, PD-L1, CTLA-4, CD38, and CD47). This tendency does
not coincide with the currently universal opinions that correlate
higher expression of ICI genes to poor clinical outcomes.
Actually, although the high-score group co-expressed higher
levels of immune-resistant molecules such as PD1, PD-L1, and
CTLA-4, due to its tight correlation with immune infiltration, the
immune cell subpopulations were still more activated. On the
other hand, the low-score group exhibited a more exhausted
immune landscape compared to the high-score group, despite
that the expression levels of immune-resistant markers were
relatively lower in this subgroup. A study pinpointed that in spite
of the traditionally recognized role as exhaustion T-cell markers,
PD-1,LAG-3, and TIM-3 were expressed preferentially in activated
TILs (35). This result was consistent with a model where co-
inhibitory receptors were upregulated upon T-cell stimulation so
as to limit exaggerated responses and tissue damage. However,
additional studies are still warranted to refine the phenotype of cells
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expressing each inhibitory receptor combination and explore how
to apply this fact into clinical intervention.

Immune infiltration in TME is regarded as a crucial factor of
immunotherapy response (3, 36). Combined estimation of
biomarkers independently predicting response has been better-
studied in recent decades. A refined set of biomarker tools
stratifying patients with the same sort of cancer into different
immune-based patterns of tumor immunobiology may allow
more rational and personalized treatment regimens. In this
study, we noticed that the Immunoscore has a discriminatory
power in patients with similar expression levels of immune
checkpoint genes. This phenomenon also revealed the
complicated crosstalk between immune infiltration and
immune checkpoint genes in TME and patient prognosis. In
this perspective, the immune signature is also implied to be
associated with better response to ICI therapy.

On the other hand, we are aware of pre-existing studies,
which have developed some immune-related prognostic models
to demonstrate the relationship between immune landscape and
cervical cancer development. For instance, Zhao et al. (25) and
Ding et al. (24) investigated the differentially expressed immune-
related genes in CESC. However, the association of their model
with immune infiltration was not definitely pinpointed and had
nothing to do with clinicopathological characteristics. In four
latest published studies, researchers have reclassified the cervical
cancer cohorts and established gene signature derived from the
ESTIMATE algorithm or constructed specific TMEscore based
on the penetration pattern of immune cells to evaluate the
relationship between immune infiltration and prognosis (20-
23). Considering the relatively great differences between tumor
and normal tissues, we aimed at exploring the heterogeneity in
immune landscape of tumors. Notably, we expected to find the
crucial immune-related genes of prognostic value, which might
not be necessarily within the list of known immune-related gene
sets as previous studies employed (24). Therefore, we analyzed
the prognostic value of 28 immune cells and identified the
principal common DEGs of these prognostic immune cells via
multivariate Cox analysis to develop a new Immunoscore
signature. We thoroughly illustrated the characteristics of this
signature from multiple angles, such as immune cell infiltration,
ICI-related gene expression, Th1/IFNY signaling, and GO and
GSEA analysis. In addition, we also evaluated the impact of this
Immunoscore and ICI-related gene expression on different
clinical outcomes.

Our study also had some limitations. For example, the
detailed supporting information of a few patients in the TCGA
cohort was relatively lacking, which hindered a more
comprehensive analysis of clinicopathological characteristics
for patients with CESC. Moreover, due to the relative scarcity
of cervical cancer datasets so far, this model was only able to be
externally validated by independent cohorts with early cervical
cancers (IB1 stage). However, the constructed signature was
validated by various methods involving subgroup analysis as
well as TCGA pan-cancer test as mentioned in this article. This
computational frame of Immunoscore identification may also be
referred within other cancer types. Therefore, our modeling

algorithm was confirmed based on these results and we
assumed that this signature might be reliable despite lack of
adequate external validation. In the coming future, we will collect
clinical specimens to better confirm our conclusion.

To sum up, our study put forward an immune-related signature
composed of immune-related genes that were predictive in survival
outcome, immune landscape, and response to immunotherapy,
regardless of the diversity in detecting methods and platforms.
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Supplementary Figure 1 | Relationships between expressions of the four
immune-related genes in CESC. The Spearman correlation is shown.

Supplementary Figure 2 | Kaplan-Meier curves for progression-free survival
(PFS) and relapse-free survival (RFS) of CESC patients from TCGA. Log-rank test
showed p < 0.05.

Supplementary Figure 3 | The association between the Immunoscore and
enrichment score of specific gene sets EMT (A) and hypoxia (B) in TCGA-CESC
cohort. Mann-Whitney test, **p<0.01, **p<0.001

Supplementary Figure 4 | The relative mRNA expressions of four immune-
related hub genes were tested by quantitative RT-PCR in human cervical epithelial
cell line H8 and human cervical cancer cell lines Hela, SiHa, ME180 and Caski.
**p<0.0001.

Supplementary Figure 5 | (A) Forest plot of the Immunoscore in all sorts of
cancer of TCGA database. (B, C) The risk curve and scatter plot of each sample in
the TCGA-SKCM and TCGA-HNSC cohorts after realignment via ggrisk algorithm.
And the heatmap showed distinct expression profiles of four hub genes in the high-
and low-risk groups.
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Supplementary Figure 6 | A univariate Cox hazard ratio analysis revealed that
the Immunoscore was statistically different in aimost all the subgroups classified by
age, gender and tumor stage in SKCM (A) and in patients within subgroups such as
younger age, male patients as well as lll-IV clinical stage in HNSC (B).

Supplementary Figure 7 | Spearman correlation analysis of the Immunoscore
and tumor-infiltrating cells.

Supplementary Figure 8 | Kaplan-Meier curves for overall survival (OS) of all
CESC patients with multiple prognostic immune checkpoints. Log-rank test
showed p < 0.05 respectively.

Supplementary Figure 9 | Expression levels of immunogenic cell death (ICD)
modulators in high- and low-score subgroups. The statistical difference of two
groups was compared through the Wilcoxon test. *p < 0.05; **p < 0.01; **p <
0.001; ***p < 0.0001.

Supplementary Figure 10 | Gene set enrichment analysis identified hallmark
gene sets or immunologic signatures that are activated or suppressed according to
their correlation with Immunoscore.
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