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Severe SARS-CoV-2 infection can trigger uncontrolled innate and adaptive immune
responses, which are commonly associated with lymphopenia and increased neutrophil
counts. However, whether the immune abnormalities observed in mild to severely infected
patients persist into convalescence remains unclear. Herein, comparisons were drawn
between the immune responses of COVID-19 infected and convalescent adults.
Strikingly, survivors of severe COVID-19 had decreased proportions of NKT and Vd2 T
cells, and increased proportions of low-density neutrophils, IgA+/CD86+/CD123+ non-
classical monocytes and hyperactivated HLADR+CD38+ CD8+ T cells, and elevated
levels of pro-inflammatory cytokines such as hepatocyte growth factor and vascular
endothelial growth factor A, long after virus clearance. Our study suggests potential
immune correlates of “long COVID-19”, and defines key cells and cytokines that delineate
true and quasi-convalescent states.
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INTRODUCTION

Severe COVID-19 is caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) that affects about 5-
15% of infected individuals (1, 2). Clinical presentation is highly
variable, whereby most patients (about 80%) experience mild to
moderate symptoms, and some individuals develop pneumonia,
acute respiratory distress syndrome, septic shock or even
multiple organ failure from a hyperactivated immune system
(3, 4). Previous studies of peripheral blood mononuclear cells
(PBMCs) from COVID-19 patients using cytometry and
transcriptomic methods have revealed changes in several
cellular immunotypes, including monocytes, natural killer cells,
dendritic cells, neutrophils and T cells (5–9). In patients with
severe COVID-19, immune perturbations are characterized by
advanced lymphopenia in the T cell compartment, elevated
immature neutrophils and altered myeloid cell frequencies (5–
9). Another hallmark of severe COVID-19 is the cytokine storm
associated with elevated levels of cytokines (IL1b, IL1Ra, IL2,
IL6, IL7, IL10, G-CSF, TNFa), chemokines (IP10, MCP1,
MIP1a) and endogenous neutrophil calprotectin (8, 10, 11).
Although these studies have provided deeper insights on
COVID-19 induced immunopathology, the long-term
complications of COVID-19 remain unclear. This is important
as a segment of COVID-19 survivors, including those who had
mild disease continued to experience symptoms or become
disease vulnerable (12).

Upon clearance of SARS-CoV-2, a sizeable number of
recovered patients may exhibit lingering immune responses,
which are believed to be responsible for long-COVID
symptoms, including extreme fatigue, brain fogs and
depression (13, 14). Ongoing inflammatory processes or
aberrant immune responses can collectively contribute to
clinical manifestations due to cellular and molecular damages
of COVID-19 (15). At the same time, it is important to fully
characterize the contribution of many immune abnormalities
from early COVID-19 infection leading into convalescence, and
the return to baseline. Yet, a comprehensive insight into the
immunopathology of ongoing immune dysfunctions is
still missing.

Previously, we have shown the neutrophil to Vd2 ratio as
prognostics for COVID-19 severity (7), as well as massive
cytokine storm (11, 16). Also, we have reported protective
mechanisms among asymptomatic patients (17). In this study,
given the complex clinical manifestations, detailed analyses of
the course of COVID-19 until convalescence were performed
using high-parameter mass cytometry and multiplexed plasma
cytokine profiling. We show that COVID-19 continues to alter
the immune system following virus clearance; (i) COVID-19
severity is characterized by abundant low-density neutrophils
or high neutrophil-to-lymphocyte ratio persisting into
convalescence, (ii) elevated levels of hyperactivated CD8+ T
cells and proinflammatory non-classical monocytes were found
in the blood among convalescent severe COVID-19 patients, and
(iii) high values of HGF, VEGF-A and TNF-a are associated with
COVID-19 severity leading into convalescence. Overall, we have
performed a detailed evaluation of more than 5000 immunotypes
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from both adaptive and innate branches along with a range of
circulating cytokines and chemokines, to chart the most
significant changes in the immune system that persisted into
convalescence, which suggest incomplete recovery, and identified
pathways for therapeutic agents.
MATERIALS AND METHODS

Study Design, Sample Size and
Participants
For this study, 77 COVID-19 patients and 10 healthy donors
were recruited between April and June 2020. Enrollment of
COVID-19 patients was via PROTECT, a Singapore COVID-
19 cohort study among seven public health institutions. Healthy
individuals were recruited under a Singapore Immunology
Network study entitled, “Study of blood cell subsets and their
products in models of infection, inflammation and immune
regulation”. Both studies had received prior approval from
their respective institutional review boards (IRBs). All
individuals involved in this study were over the age of 21,
comprising 66 males and 21 females. Additional demographic
details can be found in Supplementary Table 1.

Sample Collection
Blood from healthy adult donors and COVID-19 patients were
collected in BD Vacutainer CPT Tubes and processed according
to manufacturer’s instructions to obtain the PBMC and plasma
fractions. Isolated PBMCs were then used for mass cytometry
staining after two washes with 1X phosphate buffer saline (PBS).

Cytometry by Time-of-Flight (CyTOF)
Sample Processing and Data Acquisition
Freshly isolated ficoll-density centrifuged PBMCs were plated at
0.5 – 1 x 106 in a 96-well V bottom plates and stained for viability
with 100 µL of 66 µM of cisplatin (Sigma-Aldrich) for 5 minutes
on ice. Cells were then washed with staining buffer (4% v/v fetal
bovine serum, 0.05% v/v sodium azide in 1X PBS) and stained
with anti-gdTCR-PE and anti-Vd1-FITC in 50 µL reaction
volume for 15 minutes at room temperature. Cells were
washed with staining buffer and then stained with 50 µL of
metal isotope-labeled surface antibodies on ice. After 20 minutes,
cells were washed with staining buffer, followed by PBS, and fixed
in 4% v/v paraformaldehyde (PFA, Electron Microscopy
Sciences) at 4°C overnight. On the following day, cells were
incubated in staining buffer for 5 minutes. Cellular DNA was
labeled at room temperature with 170 nM iridium intercalator
(Fluidigm) in 2% v/v PFA/PBS. After 20 minutes, cells were
washed twice with staining buffer.

Prior to CyTOF acquisition, cells were washed twice with
water before final re-suspension in water. Cells were enumerated,
filtered and diluted to a final concentration of 0.6 x 106 cells/mL.
EQ Four Element Calibration Beads (Fluidigm) were added to
the samples at a final concentration of 2% v/v prior to
acquisition. Samples were acquired on a Helios Mass
Cytometer (Fluidigm) at an event rate of < 500 events per
November 2021 | Volume 12 | Article 710217
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second. After CyTOF acquisition, data were exported in flow-
cytometry (FCS) format, normalized to 300,000 PBMCs and
events with parameters having zero values were randomized
using a uniform distribution of values between minus-one and
zero. Subsequently, manual gating was performed to exclude
residual beads, debris and dead cells.

Gating Strategy for CyTOF
We have designed a 40-plex antibodies panel for mass cytometry
and performed non-supervi sed Uniform Manifo ld
Approximation and Projection (UMAP) or Triplet-constraint
(TriMAP) dimensionality reduction for larger dataset
embedding of ficoll-density centrifuged PBMCs obtained from
both COVID-19 active and convalescent patients (18, 19).
Iterative manual and UMAP clustering identified populations
of T cells, B cells, monocytes (Mono), natural killer (NK) cells,
dendritic cells (DCs), innate lymphoid cells (ILCs), mucosal-
associated invariant T (MAIT) cells, basophil as well as the low-
density (LD) neutrophils based on their cell surface expression
markers to generate 327 different immune cell subpopulations.

Multiplex Microbead-Based Luminex
Immunoassays
Plasma samples were treated by solvent/detergent based on
Triton™ X-100 (1%) for virus inactivation (20). Immune
mediator levels in COVID-19 patient plasma across different
active and convalescent groups were measured with 24-plex
Human ProcartaPlex™ (ThermoFisher Scientific). The kit
analyte detection panel included brain-derived neurotrophic
factor (BDNF), beta-nerve growth factor (bNGF), hepatocyte
growth factor (HGF), monocyte chemoattractant protein (MCP)
1, macrophage inflammatory protein (MIP) 1a, MIP1b, RANTES
(regulated on activation, normal T cell expressed and secreted),
stromal cell-derived factor 1 (SDF1a), interferon (IFN) gamma-
induced protein 10 (IP10), IFNg, interleukin (IL) IL1b, IL1RA,
IL2, IL5, IL6, IL7, IL18, IL12p70, leukemia inhibitory factor (LIF),
stem cell factor (SCF), tumor necrosis factor (TNFa), vascular
endothelial growth factor A (VEGF-A), platelet derived growth
factor (PDGF-BB), and placental growth factor (PLGF1).

Plasma from COVID-19 patients, healthy controls, as well as
standards were incubated with fluorescent-coded magnetic beads
pre-coated with respective antibodies in a black 96-well clear-
bottom plate overnight at 4°C. After incubation, plates were
washed 5 times with wash buffer (PBS with 1% v/v bovine serum
albumin (Capricorn Scientific) and 0.05% v/v Tween-20
(Promega)). Sample-antibody-bead complexes were incubated
with biotinylated detection antibodies for 1 hour and washed 5
times with wash buffer. Subsequently, Streptavidin-PE was added
and incubated for another 30 minutes. Plates were washed 5
times again, before sample-antibody-bead complexes were re-
suspended in sheath fluid for acquisition on the FLEXMAP® 3D
(Luminex) using xPONENT® 4.0 (Luminex) software. Data
analysis was done on Bio-Plex Manager™ 6.1.1 (Bio-Rad).
Standard curves were generated with a 5-PL (5-parameter
logistic) algorithm, reporting values for both mean florescence
intensity (MFI) and concentration data.
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Internal control samples were included in each plate to
remove any potential plate effects. Readouts of these samples
were then used to normalize the assayed plates. A correction
factor was obtained from the median concentration values
observed across the multiple assay plates and this correction
factor was then used to normalize all the samples. The
concentrations were logarithmically transformed to ensure
normality. Analytes that were not detectable in patient samples
were assigned the value of logarithmic transformation of the
Limit of Quantification (LOQ).

Multiplex Microbead-Based Quanterix
Immunoassays
Plasma immune mediator levels in selected active and
convalescence phase of COVID-19 patients were measured
using SIMOA Cytokine 3-Plex B (C3PB) assay kit (Quanterix)
and SIMOA IFN-a assay kit (Quanterix). C3PB kit analyte
detection included interleukin (IL) IL6, IL17A and tumor
necrosis factor a (TNFa).

Standards and plasma from COVID-19 patients and healthy
controls were pre-diluted in a 96-well plate before loading into
the Simoa® HD-1 Analyzer (Quanterix) for data acquisition.
Reagents from the C3PB and IFNa assay kits were prepared
according to the kit manual and loaded into the analyzer.
Fully automated data acquisition was done on Simoa® HD-1
Analyzer (Quanterix). Standard curves were generated with
a 4-PL (4-parameter logistic) algorithm, reporting values for
concentration data.

Quantification and Statistical Analysis
Active and convalescence phase samples were defined by PCR
positivity and serve as time based clinical end points. Active
COVID-19 infection can last up to a month, and samples were
further divided into early (post illness onset, PIO <= 14 days) and
late (PIO > 14 days). Convalescence phase samples were also
further divided into early (PIO <= 28 days) and late (PIO > 28
days). At each time point, clinical data, whole blood and plasma
were collected for all patients. The patients were screened for co-
infections, and one patient was excluded due to HIV-1 positivity.
Whole blood was immediately processed to isolate PBMCs using
ficoll-density gradient centrifugation for mass cytometry, and
plasma kept at -80°C for long-term storage.

Severity based clinical end points were defined for active and
convalescence phase samples separately. Three severity groups
were defined for each phase consisting of symptomatic patients,
patients requiring oxygen supplementation and patients
requiring oxygen supplementation and awarded into intensive
care unit as shown in Figure 1A.

Mass cytometry and cytokine measurements were associated
to the clinical end points (time based as well as severity based)
using Kruskal-Wallis tests followed by Dunn’s post hoc tests.
Correlations betweenmass cytometry and cytokine measurements
were done using Spearman Rank correlations. In the event
that multiple samples from the same patient were available for
same time period, the earliest of the samples was used for
analyses to ensure that all samples used in the analyses are
November 2021 | Volume 12 | Article 710217
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distinct. Multiple testing correction was done using the method
of Benjamini and Hochberg. P values less than 0.05 were deemed
to be significant. All statistical tests were two-sided (when
appropriate) unless otherwise indicated. Statistical analyses
were done using the R statistical language version 3.6.2. All
statistical details are provided in the interactive viewers provided
at https://data.mendeley.com/datasets/467s57xj8s/draft?a=
15341765-e712-4eec-8107-a1d9c8da331a.

Overviews of the mass cytometry immune cell subpopulations
were generated using UMAP in R version 3.6.2 using the ‘uwot’
package. Heatmaps were generated in R version 3.6.2 using the
CompexHeatmap package. Graphs of the significant associations
were generated in R version 3.6.2 using the iGraph package and
visualized in Cytoscape version 3.8.0. Additional visualizations
were done in TIBCO Spotfire.
Data and Code Availability
Data generated and/or analyzed during this study are available in
the following public repositories and also at https://data.
mendeley.com/datasets/467s57xj8s/draft?a=15341765-e712-
4eec-8107-a1d9c8da331a.
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An interactive viewer of the mass cytometry data associations
with clinical endpoints (Figures 2A, 3, 5A and Supplementary
Figure 2) are available at https://www.dropbox.com/s/
wz93vwn2vvjsjry/cytof_sample_group_association_results_
paper_vis_covid19_cytof_results_viewer.html?dl=1.

An interactive viewer of the cytokine data associations with
clinical endpoints (Figures 6A, B) are available at https://www.
dropbox.com/s/4v107l3b65h5qfh/luminex_sample_group_
association_results_vis_covid19_cytof_results_viewer.html?dl=1.

The mass cytometry, cytokine and clinical data is available as
an Excel file at https://www.dropbox.com/s/yd2spn3lholhuv3/
all_cytof_multimodal_data_paper.xlsx?dl=1.

An interactive viewer of interaction network in Figure 7A is
available at https://www.dropbox.com/s/zm7a4s6nqelfnso/
network_data_early_active_late_con_all_subset_percent_only_
vis_bivariatetests.html?dl=1.

An interactive viewer of interaction network in Figure 7B is
available at https://www.dropbox.com/s/yt8sf6uwhtte55y/
network_data_late_active_late_con_all_subset_percent_only_
vis_bivariatetests.html?dl=1.

An interactive viewer of interaction network in Figure 7C is
available at https://www.dropbox.com/s/50tfhif6eqz3uoa/
A

B

FIGURE 1 | Study design and clinical characteristics of the cohort. (A) Schematic showing the pipeline for sample acquisition and analysis. A list of the antibody
targets is presented. (B) Timelines for individual COVID-19 cases, indicating points of sample collection and any clinically pertinent detail e.g. duration of hospitalization,
oxygen supplementation and admission to the intensive care unit (ICU). Patients are grouped as a function of days post illness onset (PIO) – d9 (early active; median: 9
days PIO), d20 (late active; median: 20 days PIO), d25 (early convalescence; median: 25 days PIO), d39 (late convalescence; median: 39 days PIO).
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network_data_active_all_subset_percent_only_icu_regression_
vis_bivariatetests.html?dl=1.

An interactive viewer of interaction network in Figure 7D is
available at https://www.dropbox.com/s/q43bz8s294bwobu/
network_data_con_all_subset_percent_only_icu_regression_
vis_bivariatetests.html?dl=1.

An interactive viewer of cytokine data correlation with mass
cytometry data (Figure 6C) is available at https://www.dropbox.
com/s/6y6bo7zl40qlm26/luminex_correlation_analysis_active_
convalescence_group_active_results_vis_stats_results_viewer.
html?dl=1.

An interactive viewer of cytokine data correlation with
mass cytometry data at convalescence phase (Figure 6C) is
available at https://www.dropbox.com/s/2h0awk6l4rgzmn9/
luminex_correlation_analysis_active_convalescence_group_
convalescence_results_vis_stats_results_viewer.html?dl=1.
Frontiers in Immunology | www.frontiersin.org 5
RESULTS

Study Design and Clinical Characteristics
of the COVID-19 Cohort
In this study, convalescent patients with different previous
clinical trajectories were recruited to aid in the understanding
of the COVID-19 immune landscape. To determine the changes
in PBMCs induced by SARS-CoV-2 infection in active and
convalescent patients, we used a comprehensive mass
cytometry panel of 40 antibodies covering lineage-specific
markers, adhesion molecules and other surface molecules
indicative of the functional state of the cells (Figure 1A). This
allowed us to study distinct immune cell populations such as T
cells, B cells, NK cells, DCs, Mono, basophils, MAIT cells, ILCs
and LD Neu, as well as lesser-known immune cell populations
such as CD56+ Mono, CD56+/- MAIT and the PD-L1+ LD Neu
A

B

FIGURE 2 | Frequency changes in 38 basic immune cell populations with SARS-CoV-2 infection. (A) Uniform Manifold Approximation and Projection (UMAP) plots
of 38 main immune cell populations detected by mass cytometry (left). Right: Bubble representation of fold changes in the detected populations during activeinfection
relative to convalescence, with color-coding done on a log2 scale, and bubble size reflecting the percentage of the subset. (B) Frequency-time plots of immune cell
populations of interest over the course of disease. Asterisks indicate statistical significance- ns, not significant, *p < 0.03; **p < 0.002; ***p < 0.0002, ****p < 0.0001
(Kruskal-Wallis test with multiple comparison corrected on each disease phases versus healthy controls).
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immunotypes (21). Cytokine bead arrays based on Luminex™

and ultra-sensitive Quanterix™ technologies were also used to
quantify the changes of 28 cytokines in patient plasma
(Figure 1A). These data were then subjected to network
analysis to determine molecular immune signatures of the
anti-SARS-CoV-2 response that may drive severe COVID-19
and from those that persist in recovering patients.
Frontiers in Immunology | www.frontiersin.org 6
Earlier studies by other groups have shown that COVID-19 is
a phasic disease (22–24). Here, 87 blood samples were collected
from 77 hospitalized COVID-19 patients at varying time points,
up to late convalescence and 10 healthy control donors
(Figure 1B). The state of infection was determined by SARS-
CoV-2 real-time reverse transcriptase polymerase chain reaction
(PCR) as previously described (16, 25). PCR positive samples
A

B

FIGURE 3 | Temporal changes in frequencies and surface marker expression profiles of various immunotypes during active and convalescent COVID-19. (A) Left:
Heatmap of CyTOF data of the frequencies of all 38 basic immune cell populations as a function of days post illness onset (PIO) – d9 (early active), d20 (late active),
d25 (early convalescence) and d39 (late convalescence). Asterisks indicate statistical significance - *p < 0.05; **p < 0.01; ***p < 0.001 (Kruskal-Wallis test with
multiple comparison corrected on all disease phases and healthy controls). Right: up- or down-regulation of indicated surface markers for the 38 main immune cell
populations as a function of disease phase. (B) Left: Heatmap of CyTOF data of the frequencies of the top 38 immunotypes as a function of disease phase. Right:
Box-and-whiskers plots of select immunotypes showing the frequency-time relationships, with mean and IQR indicated. “Late Con” refers to a group of immunotypes,
which fail to recover to healthy levels even in late convalescence as post-infection aberrations. Asterisks indicate statistical significance- ns, not significant, *p < 0.03; **p
< 0.002; ***p < 0.0002, ****p < 0.0001 (Kruskal-Wallis test with multiple comparison corrected on each disease phases versus healthy controls).
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were grouped into early or late active, and PCR negative were
grouped into early or late convalescence (Figure 1B). As a proxy
for disease severity, the samples were stratified into three severity
groups; mild (symptomatic without supplemental oxygen; n =
32), moderate (symptomatic with supplemental oxygen (suppl.
Frontiers in Immunology | www.frontiersin.org 7
O2); n = 24) and severe (suppl. O2 and need for intensive care
unit (ICU); n = 31) based on the treatment regime. With the
exception of age, most demographic variables including gender
(c2 test, 0.0814) did not differ significantly between COVID-19
patients and healthy donors, as well as between severity groups
A

B

FIGURE 4 | Alterations of immunotypes associated with the six-group disease severity states. (A) Distribution of 38 immune cells among group I active mild
symptomatic, group II active suppl. O2 group III active suppl. O2 ICU, group IV convalescent suppl. O2 ICU, group V convalescent Suppl. O2 and group VI
convalescent mild symptomatic using UMAP clustering. Color indicates the log2 fold change in the frequency against healthy donors. (B) TriMap clustering of
CD16+/hi LD Neu, Vd2 TCM, Vd2 TEM, pan-CD57- NKT, pDC, cDC2, IgA+/- plasmablasts, IgD+CD27+ NSM, HLA-DR+CD38+ CD8 T cells, C. Mono, Int. Mono and
NC. Mono among 6 groups of SAR-CoV-2 patients and healthy donors (HD). The absolute number shown for the immune cells has been normalized per 300,000
PBMCs and thus reflects its frequency.
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(Supplementary Table 1). The association between severity and
age was statistically significant (p < 0.0001).

Temporal Variations in PBMCs during
Active and Convalescent COVID-19
To understand the dynamics of circulatory immune cells due to
COVID-19 infection, we obtained 38 non-overlapping basic
Frontiers in Immunology | www.frontiersin.org 8
immunotypes from the adaptive and innate branches of the
immune system (Figure 2A and Supplementary Table 2). The
abundance of each immunotype was depicted in a bubble plot
(Figure 2B and Supplementary Figure 1). Surprisingly, large
numbers of LD Neu were detected in COVID-19 samples, which
are also absent in healthy donors (Supplementary Figure 1). A
targeted mass cytometry panel confirmed that these cells are
A

B

C

FIGURE 5 | Association of immunotypes with COVID-19 disease severity in active and convalescent individuals. (A) Left: Heatmap of CyTOF data of frequencies
of 53 immune cell populations among the 6 group severity stratifications and divided into five clusters. Right: Box-and-whiskers plots showing means and IQR
increased and reduced frequency of immune cell pollutions with disease severity. (B) Enumeration of immune cell frequencies compared across severity groups
against healthy donors. Selected immunotypes mentioned in this study are shown in bold. (C) Profiles of immunotypes persisting in convalescent severe patients.
Immunotypes of LD Neu, HLA-DR+CD38+ CD8+ T cells, CD86+/CD123+ NC. Mono and C56Dim NK cells, are further defined by co-expression of PD-L1, IgA,
CD11b, CD16, CD24 or CD45RO frequencies. Scatter plots depict the means with SEM. ns, not significant, *p < 0.03; **p < 0.002; ***p < 0.0002, ****p < 0.0001
(Kruskal-Wallis test with multiple comparison corrected on each disease severity group versus total healthy). See Supplementary Figure 7 for comparisons with
Vd2 T and NKT cells.
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indeed LD Neu expressing canonical CD66b+CD15+

CD16highCD10+CD24+ phenotype (Supplementary Table 2).
Also, generalized lymphopenia was observed in active COVID-
19 relative to convalescent phase (Figure 2A), particularly in
various CD4+ and CD8+ T cell, NKT, MAIT cell and certain B
cell immunotypes. We also observed a significant loss of non-
classical monocytes (NC. Mono), while increased frequencies
were found for plasmablasts, classical monocytes (C. Mono) and
Frontiers in Immunology | www.frontiersin.org 9
LD Neu. Temporal analysis of these immunotypes into four
active and convalescent phases further showed their
redistribution with disease progression (Figure 2B).

We next performed a heatmap analysis to map the temporal
changes of immune cells (Figure 3A). The earliest responders
were elevated levels of NK cells followed by plasmablasts, C./
Intermediate (Int.) Mono and LD Neu. In contrary, a sharp
decrease in frequency may indicate the mobilization to the
A

C

B

FIGURE 6 | Characterization of cytokines in COVID-19 patients. (A) Changes in cytokine levels among COVID-19 patients based on timing and severity. The
heatmap shows the z-scores of the mean logarithmically transformed concentration of the 13 cytokines (of a total of 28) showing significant differences between any
of the 6 severity groups. The z-scores are colored in red for positive values and in blue for negative values. The cytokines are clustered using hierarchical clustering
using Euclidean distances into four clusters, which are labeled 1 to 4 in the figure. (B) Box plots of selected cytokines showing differences in timing and/or severity.
The timing (left panels) refers to the plasma cytokine levels detected on the respective day post illness onset (PIO), the severity (right panels) to the levels detected in
the 6 severity groups. Red colors refer to samples from the active phase, green to convalescence phase. An interactive viewer is available in the online content: data
availability section. (C) Associations between cytokine level and cell frequency during active and convalescent phase. The heatmap displays the strength of the
association indicated by the correlation coefficient (rho). Color indicated the direction (Red: positive, blue: negative). Only associations abs(rho) > 0.3 and p < 0.05
are shown. Selected examples of these correlations are shown in the scatter plots. An interactive viewer is available in the Materials and Methods: Data and Code
Availability section.
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inflamed tissues, involving immune cells such as NC. Mono, T
regulatory (Treg), T follicular helper (TFH), CD4

+ T and MAIT
cells until the late active phase. In particular, the loss in blood
MAIT cell frequency was restored to healthy levels during
convalescence, supporting its recruitment to the lung mucosa
during active infection (26). Also, the expansion of circulating
plasmablasts during the active phase is consistent with the single-
cell analysis of plasmablasts in severe COVID-19 patients leading
to emergency granulopoiesis of neutrophils (27). In contrast,
non-class-switched memory (NSM), class-switched memory
(CSM) and IgM+ memory B cells showed decreased frequencies
associated with elevated levels of IL6 during cytokine storm (28).
These three memory B cell sub-populations increased during
convalescence but were still lower compared to healthy
donors (Figure 3A).

We then defined various activation and differentiation states
of the 38 basic immune cells based on surface marker expression
Frontiers in Immunology | www.frontiersin.org 10
curated in the CellMarker database (Figure 3A and Supplementary
Table 2) (29). Despite the highly heterogeneous changes in immune
responses, we still observed some high-confidence trends. CD38, an
activation and endothelial-adhesion marker (30, 31), was
upregulated across diverse immune cells during active infection,
indicative of widespread anti-viral responses (Supplementary
Figure 2). CD169, an adhesin that binds sialic acid, was also
selectively upregulated in all monocytes during the early but not
late active phase (Supplementary Figure 2). Many T and B cell
immunotypes – Treg TEM, NSM and CSM cells – downregulated
the lymph node homing molecule CCR6 over the course of disease
primarily during active infection (Supplementary Figure 2), which
may impede homing to inflamed tissues and development of
germinal center responses. Additionally, a range of immune cells
exhibited elevated levels of CD57 from early active infection to early
convalescence, indicative of immune senescence (Supplementary
Figure 2). Finally, CD16 (or FcgRIII) which recognizes soluble
A C

B D

FIGURE 7 | A node-edge interaction network of the cytokine level and immune cellular frequencies in COVID-19 patients. Association are shown with regard to the
timing (A, B) and the severity (C, D). Nodes represent either cytokines (white) or immunotypes (colored). The central node represents the “comparison of interest”.
The edges represent significant associations between two nodes with the thickness indicating the strength either based on fold change or correlation coefficient
(rho). Color indicates the direction (Red: positive, blue: negative), dotted lines indicate associations with cytokines. For the central node, only associations with abs
(rho) > 0.3 and p < 0.05 are colored and shown as bar charts on the right. For the timing (A, B) these bar charts indicate the fold changes in the early active; median
day 9 PIO (A), and late active state; median day 24 PIO (B) in reference to late convalescent state while for the severity (C, D) they represent the correlation
coefficient (rho) in reference to the severity groups in the active (C) and convalescent state (D). The number code of the immunotype is listed in Supplementary
Table 3, an interactive network viewer is available in the Materials and Methods: Data and Code Availability section. ++ denotes highly stained immunotype.
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antigen-antibody complexes (32), was upregulated on MAIT
cells in late active infection, and on LD Neu, all monocytes and
CD16+ NK cells during convalescence (Figure 3A and
Supplementary Figure 2).

Based on the major phenotype variations from 38 basic
immune cel ls , we further derived more than 5000
immunotypes to obtain 327 partly overlapping immunotypes
(Figure 1A and Supplementary Table 3). During early active
SARS-CoV-2 infection, a transient increased frequency of
CD169+ C. Mono, CD38high plasmacytoid dendritic cell (pDC)
and IgA+ plasmablasts were observed. CD141+HLADR- C.
Mono, CD56+ C. Mono, CD45RA- Int. Mono and CD56+ Int.
Mono peaked during late active infection (Figure 3B). We also
observed an increase in LD Neu population expressing PD-L1
and CD5 markers from early to late active infection but decline
in late convalescence (Figure 3B). In contrast, lymphopenia
affected virtually all CD8+ central (CD8 TCM) and effector
memory T cells (CD8 TEM) during active infection, and
subsequent T cell subsets recovering to either baseline (ICOS+

TFH and HLADR+CD38- CD4+ T cells) or enriched (Treg TEM
and HLADR+CD38+ CD8+ T cells) during late convalescence
(Figure 3B). Other significant losses included CD45RO- NC.
Mono, CD56+CD8+ MAIT, and CD57-CD8+ NKT cells during
active infection (Figure 3B). These are in line with previous
studies of preferential T cell lymphopenia, neutrophilia and
monocytosis during COVID-19 infection (6, 23, 27, 33, 34).
During the entire convalescent period, two groups of
immunotypes (“late-con”) did not recover to healthy levels
(Figure 3B). The first group comprised of frequencies of
immune cells higher above healthy levels. These are T cells
(such as CD57+CD4+ T, HLA-DR+CD38+ CD8+ T, CD38+/
ICOS+ TFH defined as circulatory CXCR5+, Treg TCM/TEM),
NC. Mono (IgA+, CD45RO- and CD16+CD169+) and CCR6-

CSM (Figure 3B, left). On the other hand, the second group
consisted of persistent loss of CD5- conventional type 2 DC
(cDC2), Vd2 TCM, Vd2 TEM, B cells memory CXCR5+, CCR6+

CSM and CD5- transitional B cells, even into late convalescence
below healthy levels (Figure 3B, left). These late-convalescent
immunotypes may contribute to post-COVID-19 aberrations.
These results indicate dynamic changes to both innate and
adaptive cell types among COVID-19 patients ranging from
early transient, late active and late convalescent immunotypes.
Alterations of Immunotypes Associated
With Disease Severity
To gain an insight on the impact of severity among active and
convalescent patients, we further stratified group I, II and III
denoting active mild, active moderate and active severe,
respectively, and group IV (severe), V (moderate), and VI
(mild) for patients in the convalescent phase, and summarized
the frequency changes to key immunotypes in Supplementary
Figure 3.

The most striking observation was the high levels of severity-
associated LD Neu and high LD Neu-to-lymphocyte ratios (33),
even in convalescent individuals who had experienced moderate
Frontiers in Immunology | www.frontiersin.org 11
to severe COVID-19 (Figure 4A and Supplementary Figure 4A).
The expansion of LD Neu fraction was accompanied by an
increase of CD16+/high neutrophils. CD16high neutrophils
(Figure 4B and Supplementary Figures 4B, C) described herein
as pseudo-Pelger-Huet cells were previously reported in other
severe viral infections (33).

Among the T cells, we found the strongest association with
severity to be the HLADR+CD38+ CD8+ T cells. Unlike the
largely invariant frequencies of MAIT and NK cells, which
remained low across groups I to V (Supplementary
Figures 5A, B), hyperactivated HLADR+CD38+ CD8+ T cells
was more pronounced in groups III/IV, in particular group IV
(Figure 4B and Supplementary Figure 6A). This is in line with
previous report on CD8+ T cells co-expressing CD38 and HLA-
DR in hospitalized patients by Matthew et al. (34). In this study,
we further showed that these CD8 T cells continue to persist in
convalescent severity. Also, many studies have suggested a role
of inflammatory monocytes in the pathogenesis of COVID-19
(9, 35, 36). Among the monocytes affected by COVID-19,
CD14+CD16- C. Mono and CD14+CD16+ Int. Mono
accounted for 91-96% of total monocytes, which remained
high in convalescent severe patients (68%) relative to healthy
donors (39%) (Supplementary Figure 4D), which is in
agreement with Zhou et al. (36). Notably, there is a higher
fraction of Int. Mono with more severe COVID-19 cases in
blood monocytes, relative to convalescent and healthy donors
(Supplementary Figure 4D). Also, the loss of CD14lowCD16+/++

NC. Mono during COVID-19 prominently increased in groups
IV/V, relative to mild group VI and healthy donors
(Supplementary Figure 4D). More interestingly, we observed
an injury-related switch in the monocytes (37, 38), which
enriched NC. Mono frequency in the convalescent blood (2%
in both groups IV/V) despite a much smaller monocyte fraction
in group IV (32%) than V (66%). (Figure 4B and
Supplementary Figure 4D). We further analyzed the
phenotypic alterations of the monocytes. Here, increased
CD169 expression across the monocytes is disease- and not
severity-related (Supplementary Figures 4E, F). More
interestingly, more NC. Mono expressing CD86 and CD123
markers were found in convalescent severe individuals, which
persisted till late convalescence (Supplementary Figures 4E, F).

Two other severity-associated immunotypes are Vd2 T and
NKT cells (Figure 4B and Supplementary Figure 7). Their
frequencies sharply declined in groups II/III/IV patients. The
losses of Vd2 T are mostly Vd2 TCM and Vd2 TEM (Figure 4B
and Supplementary Figure 7A). Similarly for NKT cells
reported by Zingaropoli et al. (39), we further showed that all
CD57- immunotypes (CD4+, CD8+ and DN) but not the
senescent CD57+ NKT cells, was markedly reduced in groups
II/III/IV (Supplementary Figure 7D). Instead, CD57+ NKT cells
were slightly expanded in groups IV/V (Supplementary
Figure 7D). Other affected immunotypes, which remained low
in convalescent severe individuals included dendritic cells; pDC
and cDCs. (Figure 4B and Supplementary Figures 7B, C). As
for the plasmablasts, its expansion during the active phase
recovered to near healthy levels, and thus did not associate
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with convalescent severity (Figure 4B and Supplementary
Figure 8). The results taken together indicate that there were
increased and decreased frequencies in specific immunotypes
associated with disease severity.

Clustering Analysis of Immunotypes Based
on Disease Severity
To determine the relative contribution of each immunotype in
promoting disease severity, we analyzed the extended
immunotypes with disease severity (Figures 5A, B). A group
of five clusters based on the immune responses and disease
severity was observed (Figure 5A). The first cluster comprised of
CD161+ NKT and CD5+ cDC2 increasing in the mild group I,
suggesting a disease-protecting role. The second cluster is a
transitional severe group positive association across the 3
active groups. These included high levels of plasmablasts,
CD169+/CD38+ C. Mono and CD86+/CD45RA-/CD38+ Int.
Mono but not total monocytes. Moreover, increased HLA-
DRLowCD141+ C. Mono, which was previously reported in
ICU patients displayed equivalent changes across our active
mild and severe COVID-19 (8).The third cluster was positively
associated with severe COVID-19 infection showing increased
CXCR5+ memory B cells in groups II/III, and many LD Neu
immunotypes such as IgA+, PD-L1+ and CD5+ in ICU groups
III/IV (Figures 5A–C). Here, hyperactivated HLA-DR+CD38+

CD8+ memory T cells significantly increased in ICU groups
III/IV (Figures 5B, C). The fourth cluster exhibited
disproportionate frequency changes during convalescence.
Various Treg TEM, TFH and NC. Mono immunotypes
(CD38+/CD123+/CD86+/CD45RO-/IgA+) expanded across
groups III/IV/V/VI above healthy levels (Figures 5A–C). For
example, IgA+ NC. Mono immunotypes were found elevated in
both ICU groups III/IV but CD86+CD123+ NC Mono
significantly increased only in convalescent severity group IV
(Figures 5B, C). On the other hand, immunotypes of MAIT,
CSM and NSM of more severe COVID-19 patients remained
below healthy levels (Figure 5A). Finally, the fifth cluster defined
as “severe inverse” showing a decline in the frequencies with
increased disease severity. These immunotypes included cDC2,
CD45RA+ pDC, CD57- NKT and Vd2 memory T cells
(Figure 5A). Of note, the frequency of transdifferentiating
CD56dimNK expressing CD11b+ and CD24+ markers was
found to be increased in ICU groups III/IV (Figure 5C), and
remained low even in late convalescence (40). These results
indicate the contribution of distinct immunotypes in the
trajectory of COVID19 symptoms.
Dynamics of Plasma Cytokine Levels in
COVID-19 Patients
In COVID-19 patients with severe disease, cytokine storm causes
uncontrolled inflammatory responses by own immune system
that can lead to death (10, 41). We next employed either
Luminex or high-sensitivity Quanterix bead arrays to identify
persistent cytokine production in COVID-19 patients. Using the
same groups of COVID-19 patients, 13 out of 28 cytokines
Frontiers in Immunology | www.frontiersin.org 12
showed statistically significant associations with the six severity
groups (adjusted p < 0.05) (Figure 6A). Our analysis revealed
that IFNa, while abundantly found in the early active phase, did
not indicate severity (Figure 6B). Also, increased IL6 is known to
worsen disease and reduce T cells (42), but only increased in the
active phase (Figure 6B). The association with severity however
substantially improved for IP10, TNFa, HGF and VEGF-A.
Especially the latter two remained at high levels in both the
active and convalescent severity phases (Figure 6B).

To further understand the abnormal levels of cytokines,
various correlative plots with 327 immunotypes are provided
in an interactive online viewer (seeMaterials and Methods: Data
and Code Availability). The natures of immune responses are
shown in Figure 6C. During active infection, IFNa, IP10, IL6
and HGF showed a pleiotropic effect on several immune cells
(Figure 6C, top). IFNa had a negative correlation with various
monocytes such as NC. Mono but positively associated with
ILC2, CD38+ Vd2 TCM, IgM+CD38high B cells, CD5- transitional
B cells, CCR6- transitional B cells and CD25+ ILCs. IL6 was
positively associated with B cells and various plasmablasts, and
HGF was negatively associated with NKT but positively with LD
Neu. During convalescence, a greater number of cytokines but
fewer associations were found with various immunotypes than in
the active phase (Figure 6C, bottom). Interestingly, IgA+, CD5+

and PD-L1+ LD Neu positively associated with TNFa, which is
known to promote neutrophil degranulation (43, 44).
Additionally, PIGF1 and IL17A positively associated with
CD38+ NKT and CXCR5- B cells, respectively. And negative
associations of both proinflammatory TNFa and HGF with Vd2
T cells were observed, as well as negative associations of both IL6
and HGF with CD8+CD56-MAIT (Figure 6C, bottom). Here,
VEGF-A negatively associated with CD8+CD56- MAIT cells but
was strongly associated with HLA-DR+CD38+ CD8+ T cells
during convalescence (Figure 6C, bottom).
Network Analysis of Immunotypes
and Plasma Cytokines
To determine the immunopathogenesis of COVID-19, we
integrated the plasma cytokines, immunotypes, and clinical
symptoms into a database and performed Bayesian
network analysis.

In the early active phase of SARS-CoV-2 infection, a dynamic
range of anti-viral responses was observed. Hierarchical positive
correlations were observed for IFNa, followed by IL6 and IL1RA
(Figure 7A). Notably, elevated levels of IFNa inversely
correlated with a general depletion of NC. Mono populations,
including the CD141+CD11b-, CD141-HLA-DR1-, CD45RO-

and CD16+CD11b- immunotypes (fold change > 3) (Figure 7A).
On the other hand, higher levels of early responders are CD38high

CD45RA+ pDC, activated B memory, VdVmT cells, plasmablasts,
and C. Mono immunotype expressing a CD169 marker directly
induced by IFNa (Figure 7A). Of these, IgA- plasmabasts positively
correlated with plasma IL6. In parallel, this increased in IL6 was
associated with a loss of CD8+ T cells, MAIT and cDC2 (Figure 7A).
In addition, elevated IP10 was associated with a depletion of MAIT
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and certain B cell immunotypes (NSM CD27+CD38- and NSM
CD27-CD38+) (Figure 7A). We did not find any association of SCF
and IL1RA with any immunotypes (Figure 7A).

With disease progression, the dominating IFNa levels as
observed in the early phase waned (Figure 7B). Although the
correlation with NC. Mono nearly diminished, Int. and C. Mono
strongly expanded in this phase, in particular for the CD169+

immunotype with a 8-fold increase in frequency (Figure 7B).
Also, the earlier correlations between MAIT, IgA- plasmablasts
and IL6 levels maintained at the late active phase. Next, two other
cytokines, VEGF-A and TNFa, begun to show multiple cellular
associations with significant depletion of gd T, ILC2 and MAIT
cells, while IL6 was associated with late increase in LD Neu and
Int. Mono (Figure 7B). These correlations potentially link
different cytokines to lymphopenia, neutrophilia and
monocytosis, which are characteristic of SARS-CoV-2 infection.

A strikingly different picture emerged when the network
analysis was performed for severe COVID-19 immune
responses found in ICU patients. During the active phase, the
strongest positive correlation was observed for increased levels of
HGF and severity-related LD Neu and its CD38+, PD-L1+, IgA+

and CD5+ immunotypes (Figure 7C). On the contrary, increase
in HGF levels was associated with a loss of NKT cells, namely the
CD57- immunotype, which may be a consequence of their
redistribution from peripheral blood to the inflamed tissue.
Other immunotypes, which were positively associated with
severity included IgA- plasmablasts and CD16+CD11b- C.
Mono (Figure 7C), possibly pointing to the role of IgG in
COVID-19 pathogenesis. Moreover, during active severe
COVID-19, increased plasmablast frequency directly correlated
with IL6 level, which was instead inversely associated with cDC2
(Figure 7C). Similarly, other inverse associations with active
severe COVID-19 included pDC and Vdp T cells in the blood
(Figure 7C), which suggests the propensity of these immune cells
to home to the lungs or other inflamed tissues during active
severe COVID-19. For convalescent ICU cases, there was no
inverse association found in the blood (Figure 7D). Instead
TNFa, HGF and VEGF-A correlated directly with convalescent
severity. The increase in TNFa but not HGF was positively
associated with IgA+ LD Neu and PD-L1+ LD Neu (Figure 7D)
(44). Elevated VEGF-A level was strongly associated with
enriched HLA-DR+CD38+CD8+ T cells (Figure 7D), which
can drive CD8+ T cell exhaustion in tumors (45). On the other
hand, only IgA+ NC. Mono was strongly associated with
convalescent severity (Figure 7D), based on elevated frequency
in ICU groups III/IV (Figure 5C). Finally, IFNa and IL6 served
only as early immune responses directed against SARS-CoV-2
(Figures 7A, B and Supplementary Figure 9) but not the
severity of the disease in both active and convalescent COVID-
19 phases.
DISCUSSION

Much work has identified the immunological and inflammatory
profiles of COVID-19 patients with severe disease but little is
Frontiers in Immunology | www.frontiersin.org 13
known about the convalescent patients. In this study, we show
that individuals recovering from severe COVID-19 present
persistent features of immunopathology. These are mainly
caused by collateral or even autoimmune-like damage inflicted
by a hyperactivated immune system. Presently, about 2.5%
convalescent COVID-19 patients develop thrombosis at 30
days post discharge, or mucormycosis which can overburden
the healthcare (46, 47).

Convalescent severe patients recovering from COVID-19
lung damage showed persistent loss or abundance of immune
cells that can contribute to host protection or disease
progression. These include reduction of NKT (e.g. CD57-) and
Vd2 (e.g. TCM) in blood, which contributed to viral clearance in
lungs (7, 39, 48), and possible signs of inflammation (49). On the
other hand, we found major increased of LD Neu such as PD-L1+

in severe COVID-19, that can suppress cytotoxic T cells (9, 50,
51). Degranulation is an integral part of neutrophil biology hence
the number of LD Neu in the blood may indicate ongoing
neutrophil responses. Previous COVID-19 studies have
reported abundant activated neutrophils inside the inflamed
lung tissue (52–55), and higher levels of immature neutrophils
in blood (7). Notably, LD Neu have a higher capacity to release
NETs (56), which were found in the lungs of deceased COVID-
19 patients (57). Interestingly, LD Neu and NET formation have
been reported in several autoimmune diseases, such as
antiphospholipid syndrome (58), systemic lupus erythematosus
(59), and anti-neutrophil cytoplasm autoantibody vasculitis
(60). Thus, excessive circulating neutrophils can contribute
to lung injuries (61), and complicate recovery among
convalescent patients.

Monocytes have been implicated in COVID-19 pathology
with contrasting results in decreased or increased levels of C., Int.
and NC. monocytes (8, 62–64). Interestingly, we found that LD
Neu can contaminate these monocytes during cytometry data
analysis, and performed UMAP clustering to first segregate the
basic immunotypes. Hence we have characterized about 90
different monocytes distinct from the LD Neu population to
identify key contributors. As expected, IFNa induced CD169+ C.
Mono during early phase, as well as increased CD16hi monocyte
populations. However, we did not observe any disease-severity
associations. Here, we also did not observe increased
CD141+HLADR- C. Mono in severe cases as reported by
Hadjadj et al. (65). A possible explanation may be attributed to
the sample time-point or definition of severity in Hadjadj’s study;
‘mild’ cases were asymptomatic but our patients were all
hospitalized. Instead we found an expansion of inflammatory
CD16+ monocytes, CD16+CD14+ Int. Mono and CD16+CD14-

NC. Mono. Of note, the expansion of pro-inflammatory CD16+

monocytes can produce cytokines TNF-a, IL6 and IL10 in
response to microbial-associated molecular patterns (66, 67).

Among the CD16+ monocytes, Int. Mono is responsible for T
cell proliferation stimulation (68), and can augment IL6
inflammation leading to severe COVID-19 lung damage (36).
Indeed abundant Int. Mono was found in severe COVID
patients, which subsequently declined in convalescence. On the
other hand, NC. Mono are patrolling monocytes in the
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vasculature (69), and remain elevated in convalescent severe
blood. Their other abilities include antigen presentation, T cell
stimulation and even neutrophil recruitment to vascular
endothelial cells (68, 70, 71). The high level of NC. Mono is
attributed to the switching of C. Mono directly to NC. Mono and
macrophages at inflamed sites (37, 38). These patrolling NC
Mono are custodians of vasculature (72), and thus promote
healing of inflamed tissues (73). However, we found a distinct
co-stimulatory CD86+CD123+ NC. Mono subset elevated in
convalescent severe cases. The increased CD86+ expression is
likely through IFN-g stimulation, and is associated with high
antigen presentation (74, 75). Notably, CD86high NC. Mono may
drive pathogenic CD4+ T cell polarization and Ig production, as
reported in system lupus erythematosus and chronic Chagas
disease (76, 77). Additionally, healthy monocytes normally have
a low expression of CD123, and its aberrations are found in
various hematologic malignancies (78, 79). Thus, accumulating
CD86+CD123+ NC. Mono levels may contribute to ongoing
inflammatory responses.

Unlike phagocytic C. Mono expressing CCR2+CX3CR1low,
pro-inflammatory NC. Mono are exclusively CCR2-CX3CR1high

(80), and thus migrate to different ligands CCL2 and CX3CL1,
respectively. Presently, KAND567 an inhibitor targeting
CX3CR1 is in clinical trial for treating COVID-19 hyper-
inflammation (81). More recently, elevated NC. Mono was
reported to persist up to 16 months post infection among
post-acute sequelae SARS-CoV-2 or long-COVID-19 patients
in the presence of TNF (70, 82). Indeed we observed higher levels
of TNF-a that can promote the survival of NC. Mono found in
convalescent severe patients. The same trend was observed
within the IgA immune system, IgA is the dominant antibody
isotype ascribed to early novel SARS-CoV-2 infection (83, 84). In
this work, high level of IgA deposited on LD Neu and NC. Mono
are preserved in convalescent severity, and can form circulating
IgA-FcaRI complexes (85). Such IgA immune complexes can
resolve mucosal infection but in excess can become detrimental
(86). Therefore, a single wave of NC. Mono can become wound
healing macrophages, initiate and propagate immune responses
(87). However, excessive levels of IgA+/CD86+/CD123+ NC.
Mono in convalescent severe COVID-19 patients may
correspond to incomplete disease resolution.

Another notable feature among convalescent severe patients is
the strong T cell activation. A significant increase of peripheral
hyperactivated HLA-DR+CD38+ CD8+ T cell expressing
CD45RO+ memory phenotype in some convalescent severe
patients is interesting considering its oblivion during active
severe COVID-19. These highly activated CD8+ T cells are
critical in viral control, and have been found in lungs of
deceased COVID-19 patients (2, 88). Such focal hyperactivation
of CD8+ T cells but not CD4+ T cells is similar to those of other
acute viral infections and vaccines but were relatively short-lived
in peripheral blood (89, 90). The stability of CD8+ T cell
activation suggested prolonged peak immune responses
preserved even in the convalescent period. Moreover, the
differentiation into memory-type T cells suggested the
durability of T cell response in viral clearance and maintained
Frontiers in Immunology | www.frontiersin.org 14
immunity. Thus, the frequency of HLA-DR+CD38+ CD8+ T cell
in convalescent severe patients may suggest a failure to down-
regulate responses due to earlier overactive immune responses.
Another finding is an unreported frequency of transdifferentiating
NK cells that were marginally elevated in severe COVID-19 and
convalescent severity. These CD11b+CD27+ NK cells which
express c-Kit, are myeloid progenitor of neutrophils and
monocytes (40), and may contribute to the persistent signs of
immunomodulatory in convalescent severe COVID-19. Thus, a
key question will be how will these elevated immune responses
change over time with new COVID-19 variants.

In summary, as COVID-19 continues to plague the nations
with only some parts of the world progressing to reopening, the
possibility of waves and variants-of-concern outbreaks remain.
Identifying early inflammatory immunopathology can minimize
a patient’s vulnerability in developing more severe diseases,
which can be compounded by comorbidities. Our study
revealed characteristics of prolonged overactive state of the
immune system. Since activated immune cells are likely to
generate cytokines, targeting specific cytokines with inhibitors
may calm the immune reactions. Out of the 327 immunotypes,
we have obtained the strongest severity associations between LD
neutrophils and HGF in active patients, and HLADR+CD38+

CD8+ T cells and VEGF-A in convalescent patients. Notably,
there were also elevated NC. Mono, HGF and TNFa levels
among convalescent severe patients compared to healthy
adults, which are associated with lung injury (1). Thus, our
understanding of distinct immunotypes that reflect their clinical
feature and disease severity may aid in the management of post-
COVID-19 symptoms.
Limitations
Our study is subject to certain limitations. Although fewer female
patients were admitted at the time of the study, the gender
imbalance was found not significant (c2 test, 0.0814). Instead,
age remains a variable; The COVID-19 patients had a median
age of 52 and were older than HCs’ median age of 34.
Additionally, the cytokine levels for healthy donors were
unavailable for reference comparison.
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