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Lung transplant patients have the lowest long-term survival rates compared to other solid
organ transplants. The complications after lung transplantation such as primary graft
dysfunction (PGD) and ultimately chronic lung allograft dysfunction (CLAD) are the main
reasons for this limited survival. In recent years, lung-specific autoantibodies that
recognize non-HLA antigens have been hypothesized to contribute to graft injury and
have been correlated with PGD, CLAD, and survival. Mounting evidence suggests that
autoantibodies can develop during pulmonary disease progression before lung transplant,
termed pre-existing autoantibodies, and may participate in allograft injury after
transplantation. In this review, we summarize what is known about pulmonary disease
autoantibodies, the relationship between pre-existing autoantibodies and lung
transplantation, and potential mechanisms through which pre-existing autoantibodies
contribute to graft injury and rejection.

Keywords: lung transplant, complement, Autoantibodies, primary graft dysfunction, chronic lung allograft
dysfunction, glycans
INTRODUCTION

Lung transplantation (LTx) is the only viable option for many chronic end-stage pulmonary
diseases (CPD). The number of LTx performed annually in the US is rapidly increasing, and the
demand for donor lungs far exceeds availability. Despite the improved surgical techniques and post-
transplant management, the long-term survival has not significantly improved over the last decade
and remains the lowest compared to other solid organ Tx (1). According to the International Society
of Heart and Lung Transplantation (ISHLT) registry data, median survival after lung
transplantation is 6.5 years, the worst amongst all solid organ transplantation, and is, in large
part, the result of chronic allograft dysfunction (CLAD). Primary graft dysfunction (PGD) is a
common early complication after LTx, and a major risk factor for development of CLAD. PGD
occurs within the first 72 hours after transplantation and factors such as the recipient’s underlying
lung disease, donor medical history, recipient/donor interaction, severity of post-Tx complications
all play an integral part in determining LTx success.

Arguably, organ transplantation was made possible through optimization of surgical techniques
and subsequent manipulation of the immune system. Significant improvements have been made in
org August 2021 | Volume 12 | Article 7111021
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controlling the recipient’s immune system post-transplant,
largely by modulating T cell immune responses. While
modulation of adaptive immunity is essential for graft survival
other factors occurring earlier in the transplant process also play
a role in graft injury. Initial immune-mediated graft injury
occurs upon reperfusion, referred to as ischemia reperfusion
injury (IRI). Following IRI, activation of innate and adaptive
immune response drives targeted graft damage. This damage
manifests as post-Tx complications such as PGD, acute rejection,
and CLAD, all of which predispose to increased risk of mortality.
The generally accepted model of immune-mediated graft damage
proposes a feed-forward mechanism starting with donor graft
injury, IRI-mediated immune activation and graft damage,
thereby promoting subsequent adaptive immune activation and
T cell specific graft damage. However, this model does not take
into account the recipients’ lung specific pre-Tx immune system.
Patients with end-stage lung diseases, such as chronic obstructive
pulmonary disease (COPD) and interstitial lung disease (ILD)
often have autoimmunity, which is increasingly being recognized
as a potential driver of graft injury post transplantation (2, 3).

The presence of a lung-specific autoreactive immune system
pre-transplant may well predispose targeted attack of the donor
lung upon implantation, and further exacerbate the alloimmune
effector mechanisms activated post-transplant. Immune-
mediated graft damage remains a major obstacle, and
manipulation of the recipient immune system currently only
occurs upon transplantation. Therefore, gaining a better
understanding of the immune factors present within the LTx
recipient prior to transplantation and how these factors
contribute to shaping post-transplant graft outcomes can have
a significant impact on the patient outcome. In this review, we
will focus on the impact of pulmonary disease-associated
autoantibodies and pulmonary disease-specific autoantibodies
in LTx, and postulate on the clinical significance of
autoantibodies identified in patients.
PULMONARY DISEASES AND
AUTOIMMUNITY: AUTOANTIBODIES

Over the last 20 years, accumulated data proports a role for
autoimmunity in pulmonary disease pathogenesis and
progression of certain lung pathologies (4). How pulmonary
disease autoimmunity arises and its influence on disease
progression is not fully understood; however, it is generally
accepted that autoimmune factors, such as autoantibodies and
autoreactive T cells, play critical roles in disease perpetuation.

Autoantibodies are antibodies produced by the immune
system with reactivity to self-antigens. Multiple mechanisms
can render host molecules antigenic, interestingly, those same
mechanisms can occur during or as a result of pulmonary disease
onset. For example, environmental exposure to pollutants, such
as those found in cigarette smoke, a major risk factor for COPD
development, can drive mutations and post-translational
modifications such as oxidation, carbonylation, and
citrullination to pulmonary peptides rendering them antigenic
Frontiers in Immunology | www.frontiersin.org 2
(5). Fibrotic-associated damage, commonly found in pulmonary
diseases and directly correlated with ROS-mediated oxidative
stress, can lead to the exposure of cryptic neoepitopes that act as
pathogenic antigens that drive inflammation and injury (6).
Autoantibodies against a wide spectrum of self-antigens have
been identified in patients with lung disease and rodent models
of disease (7–9). The clinical relevance of autoantibodies
identified in lung disease patients is an area of intense debate.
While it is clear that a majority of lung disease patients present
with autoantibodies, whether autoantibodies contribute to
pathogenesis, are useful biomarkers, or simply epiphenomenon of
the underlying disease remains to be elucidated. Below, we highlight
recent advances in the association between autoantibodies and
COPD and ILD patients (Table 1).

Autoantibodies in Chronic Obstructive
Pulmonary Disease
Chronic obstructive pulmonary disease (COPD) is a group of
progressive pulmonary disorders characterized by chronic
pulmonary inflammation and damage to small airways and
alveolar airspace that results in airflow limitation. The specific
pathogenesis of COPD remains unknown, but it is widely
accepted that cigarette smoke (CS) exposure is one of the
leading causes. CS promotes innate and adaptive immune cell
infiltration into the lung and airways of COPD patients (10, 11).
Increased immune cell presence and activity in the lungs is
hypothesized to promote progressive tissue destruction, a
hallmark of COPD and critical in COPD pathogenesis.

Autoantibodies and autoantigens have been successfully
identified in COPD patients and animal models of disease. A
systematic review of all clinical studies investigating
autoantibodies in the context of COPD was published in 2019 by
Byrne et al. (12). The review focuses on 42 peer-reviewed articles
that investigate one or multiple autoantibodies. The most well
studied autoantibodies include anti-endothelial/epithelial cell
autoantibodies (anti-AECA), Rheumatoid factor (RF), anti-
cytokeratin (anti-CK), anti-nuclear autoantibodies (ANAs), anti-
collagen, anti-cyclic citrullinated peptide autoantibodies (anti-CCP),
anti-elastin, anti-smooth muscle autoantibodies (ASMA), and anti-
neutrophil cytoplasmic autoantibodies (ANCA) (12). All other
autoantibodies mentioned (approximately 9) in the review were
investigated in less than three studies. Overall, successful
identification of multiple different autoantibodies supports the
hypothesis that autoimmunity is prevalent in COPD patients,
however, much more research is needed to determine the clinical
significance of these autoantibodies.

Many of the most well-studied autoantibodies, such as the
ones listed above, are common to other autoimmune diseases
such as rheumatoid arthritis, systemic sclerosis, and lupus (13).
While those autoantibodies may still be clinically relevant in
COPD, identifying disease specific autoantibodies may prove to
be more useful as biomarkers, and improve diagnoses and
treatment. The complex heterogeneity among COPD patients
makes it difficult to identify a single disease specific
autoantibody/autoantigen common to all patients, therefore,
establishing a panel or signature of autoantibodies may be
August 2021 | Volume 12 | Article 711102
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more useful. A recent study analyzed 19,000 human proteins by
protein microarray and found that COPD patients had higher
autoantibody titers towards extracellular proteins and neutrophil
granule proteins compared to controls (14). Interestingly, IgM
and IgG autoantibodies against intracellular antigens were lower
in COPD patients, potential ly because intracellular
autoantibodies are associated with maintaining homeostasis
(14–16). The fact that some autoantibody titers are increased
while others are decreased in COPD patients compared to
normal controls further supports the need for autoantibody
profiling. Although the aforementioned data provides the start
of a global understanding of the autoantibody landscape,
multiple gaps in our knowledge remain.

The most glaring gap in the literature, as discussed in Duncan
2012, is the functional characterization of autoantibodies in
COPD pathogenesis (17). Thus far, very little is known
whether the autoantibodies identified in COPD patients are
pathogenic, beneficial, biomarkers, or simply epiphenomena of
the underlying disease. The accepted hypothesis is that the
autoantibodies identified contribute to COPD pathogenesis by
promoting immune activation, targeted tissue destruction, and
cell death. How the autoantibodies promote such a response is
unknown. There are multiple autoantibody characteristics and
mechanisms that could promote different pathogenic processes,
as we discuss in detail later in this review.

Interstitial Lung Disease
and Autoantibodies
Interstitial lung disease (ILD) is a group of multiple pulmonary
diseases characterized by progressive scarring or fibrosis of the
lungs. ILD is an extremely complex disease because it is
commonly associated with connective tissue diseases (CTD-
ILD) such as rheumatoid arthritis, lupus, and sclerosis, or non-
connective tissue disease origin referred to as interstitial
pneumonia with autoimmune features (IPAF). In this context
of CTD-ILD, ILD can be one of many manifestations of an
Frontiers in Immunology | www.frontiersin.org 3
established CTD or may be the only manifestation of the CTD.
Interestingly, many CTDs can be categorized as autoimmune
disorders suggesting that ILDmay also comprise an autoimmune
component. For example, ILD manifests and is the leading cause
of mortality in Systemic-Sclerosis, an extensively studied
autoimmune disease with anti-nuclear autoantibodies (ANA)
(anti-centromere antibodies, anti-topoisomerase I antibodies,
and anti-RNA polymerase antibodies) and anti-endothelial cell
antibodies (AECA) in greater than 90% of patients with potential
pathogenic roles (18). Additionally, ILD occurs in upwards of
80% of patients with myositis, a rare autoimmune disease that
presents with myositis-specific autoantibodies (MSAs; anti-
synthetase and anti-CADM140/MDA5).

Whether or not the majority of autoantibodies identified in
CTD-ILD patients are involved in disease pathogenesis remains
unknown, but their clinical significance as diagnostic markers
that shape patient is growing in significance. For example, a
subset of clinically amyopathic dermatomyositis (CADM)
patients with rapidly progressive ILD have been shown to
present with circulating anti-CADM140/MDA5 autoantibody
(19). Studies have demonstrated that anti-CADM140/MDA5
positive patients are at a higher risk for developing ILD, and
are at a higher risk of ILD-related respiratory failure and death
(20–23). While it remains unknown if anti-CADM140/MDA5
play a pathogenic role, its presence can dramatically change
clinical intervention strategies.

In 2011, guidelines from the American Thoracic Society/
European Respiratory Society/Japanese Respiratory Society and
Latin American Thoracic Association highlight ANA, anti-CCP,
and RF as necessary autoantibodies to test for in all potential ILD
patients (24). Not surprisingly, similar to COPD, numerous
other autoantibodies have been discovered in ILD patients with
a broad range of frequencies, associations, and techniques. An
extensive review of autoantibodies in CTD-ILD and IPAF
patients and their clinical importance was recently compiled by
Jee et al. (25). The review article provides insight from over
TABLE 1 | Autoantibody titers correlate with disease progression.

Autoantibody Ig Isotype Disease Association with Severity Citation

HBEC IgG/IgA COPD Most IgG/A Positive patients were GOLD Stage III and IV (48)
Elastin IgG COPD Decreased with severity (GOLD Stage) (49)
Elastin IgG COPD Increased with severity (50)
Cytokeratin 18 IgG/IgA/IgM COPD Increased with severity (GOLD Stage); Correlated with FEV1 (L) and FEV1 (%) Predicted (51, 52)
Cytokeratin 19 IgG/IgA/IgM COPD Increased with severity (GOLD Stage) (51)
CD80 IgG COPD Increased with severity (GOLD Stage) (53)
Carbonyl Modified Proteins IgG COPD Increased with severity (GOLD Stage) (54)
Serum Albumin IgG COPD Increased with severity (GOLD Stage) (54)
ANA IgG COPD Increased with severity (GOLD Stage) (55–57)
ASMA IgG COPD Increased with severity (GOLD Stage) (55)
Anti-Tissue IgG COPD Increased with severity (GOLD Stage) (57)
GRP78 IgG COPD Increased with severity (GOLD Stage) (58)
B2-adrenergic receptor IgG COPD Increased with severity (GOLD Stage) (59)
Ro52 IgG ILD Increased with severity (60)
MDA5 IgG ILD Increased with severity (22)
Cyclic Citrullinated Peptides IgG ILD Increased with severity (61, 62)
CXCR3 IgG ILD Increased with severity (63)
CXCR4 IgG ILD Increased with severity (63)
Periplakin IgG ILD Increased with severity (64)
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100 articles evaluating the clinical relevance of autoantibodies in
CTD-ILD and IPAF, demonstrating their utility, while also
bringing light to hurdles that limit our understanding. The vast
heterogeneity of CTD-ILD and IPAF disease phenotypes coupled
with the lack of standardization in panels of autoantibodies
tested for and techniques used makes it difficult to pool data
(25). While there is great interest in the use of autoantibodies to
predict outcomes and survival, lack of standardization and
consensus hampers clinical utilization.
PULMONARY DISEASE AUTOIMMUNITY
AND LUNG TRANSPLANT

Pulmonary disease autoimmunity and lung transplant can be
seen as a ‘perfect storm’ for graft injury and rejection. While
several studies have investigated autoantibodies in context of
lung transplantation few have attempted to determine the
clinical significance or the mechanism of action of pre-existing
autoantibodies, present prior to transplantation, on post-
transplant outcomes. It is important to note that many of the
autoantigens identified in pulmonary disease patients are not
lung-specific, but rather have a broad biodistribution. While
pulmonary disease-associated autoantigens that are not lung-
specific may still be clinically relevant, it is possible that lung-
restricted self-antigens may also be clinically relevant with regard to
LTx outcomes because they could represent biomarkers of graft
health/damage or contribute pathogenically to graft damage.
Frontiers in Immunology | www.frontiersin.org 4
In this context, pre-existing autoantibodies that recognize lung-
restricted self-antigens can be produced prior to LTx (Figure 1). One
hypothesis for their production is that natural low-affinity IgM
autoantibodies recognize damaged and abnormally exposed self-
proteins as antigenic and act as templates for somatic
hypermutation and class switching to high-affinity IgG/IgA
autoantibodies (26). Lung-restricted proteins can become antigenic
through tissue destruction and inherent pulmonary disease
characteristics, as previously stated. Interestingly, similar processes
that expose and render self-proteins antigenic in pulmonary disease
can occur to the graft. This is interesting because it could explain a
mechanism by which pre-existing autoantibodies bind to and target
the donor graft. For example, donor brain death induces
inflammation and immune cell infiltration into the lung that
potentiate cell death and tissue damage (27). Other unavoidable
injuries that impact the donor organ prior to transplantation such as
organ procurement strategies, cold storage, transportation, time
between organ procurement to transplantation, and reperfusion of
the graft have all been demonstrated to reduce viability of the lung
due to severe inflammatory responses and irreversible tissue damage
(28, 29). The subsequent inflammation and tissue damage drives cell
death, release of ROS, and degradation of proteins thereby promoting
an environment for pre-existing recipient autoantibodies present
prior to transplantation to bind to damaged lung-proteins early
post-transplant and induce graft injury, however, definitive
evidence for this mechanism is currently lacking.

Although there are not any studies directly comparing the
tissue damage that occurs in pulmonary disease to graft damage,
it is reasonable to hypothesize that similar enzymatic
FIGURE 1 | Pre-existing Autoantibody-mediated Graft Injury. Autoantibodies developed as a consequence of chronic end-stage pulmonary diseases (CPD), such
COPD and ILD may pre-dispose to worse graft outcomes. Autoantibodies characteristic of COPD and ILD have been shown to not only correlate with disease
severity pre-transplant but hold the potential to target the lung and induce injury post-transplantation. Pre-existing autoantibodies that have been described can
promote pro-inflammatory responses via a variety of effector pathways, including complement activation and Fc gamma receptor mediated inflammation, the impact
of which on graft rejection has not been fully explored.
August 2021 | Volume 12 | Article 711102
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degradation of extracellular matrix occurs early post-transplant.
The innate immune cells associated with injury in both
pulmonary disease and graft damage are essentially the same,
and can induce post-translational modifications to ECM proteins
through secretion of proteases and production of ROS. Along
this line of thinking, the LTx recipient’s pre-existing
autoantibodies could recognize self-antigens that are present
and exposed in the new graft. Therefore, the recipient’s
immune system is primed to target and attack the graft prior
to transplant which could manifest as severe pre-existing
autoantibody-mediated graft damage once the graft is
implanted. Potential mechanisms by which pre-existing
autoantibodies mediate graft damage could be increased
complement activation and/or FcyR binding, which we discuss
later in this review.

Although it is enticing to hypothesize about the potential
pathogenicity and clinical relevance of pulmonary disease
autoantibodies in LTx, definitive experimental and clinical data
supporting potential mechanisms are lacking. The presence of
pre-existing autoantibodies in transplant patients and their
association with poor clinical outcomes has been well
established in other solid organ transplants, specifically in renal
and heart transplants; driving the hypothesis that pre-existing
autoantibodies may also play a role in LTx outcomes (30, 31). As
our understanding of autoimmune-mediated graft damage in
LTx patients deepens, the association between pre-existing
autoantibodies and post-LTx disorders has become an intense
area of research. Identification and functional characterization of
pre-existing autoantibodies in disorders such as primary graft
dysfunction, chronic lung allograft dysfunction, and mortality
has begun to accumulate (32–34). Below we will outline the
research analyzing the association of pre-existing autoantibodies
and lung transplant outcome.

Pre-Existing Autoantibodies and Primary
Graft Dysfunction
Primary graft dysfunction (PGD) is a progressive acute lung
injury syndrome that manifests within the first 72 hours after
lung transplantation and affects 25-30% of LTx patients (35). The
ISHLT definition of PGD is based on radiographic infiltrates and
P/F ratios, the ratio between arterial partial pressure and inspired
oxygen, assessed at multiple time points post-LTx and is graded
on a scale of Grade 0 to 3. PGD onset and grade are correlated
with increased mechanical ventilation, hospital stay, cost, CLAD,
and most importantly, early morbidity and mortality (36). The
mechanisms responsible for PGD development are not
completely understood, however, donor- and recipient-related
clinical risk factors (age, gender, race, and comorbidities) and IRI
have all been associated with PGD etiology [For detailed reviews
see Diamond et al. (35), Suzuki et al. (37), and Altun et al. (38)].

Recently, the presence of pre-existing autoantibodies has been
associated with increased risk of PGD in multiple retrospective
clinical studies. The most well studied pre-existing
autoantibodies correlated with PGD onset are Collagen V (Col
V) and K-alpha1-tubulin (KAT). Col-V is a minor fibrillar
collagen found in the lungs where it is normally sequestered
Frontiers in Immunology | www.frontiersin.org 5
from recognition by collagen I and collagen III overlays.
Exposure to Col-V is hypothesized to occur upon matrix
metalloprotease (MMP) degradation of the extracellular milieu
during ischemia reperfusion injury, and immunogenic Col-V
fragments can be found in BAL fluid (39–41). KAT is a gap
junction protein that was observed to promote fibrogenic
signaling after binding to airway epithelial cells (42). Clinically,
anti-Col-V and anti-KAT autoantibodies have been identified in
different CPD populations at different frequencies.
Approximately 30% of ILD patients and 20% of COPD
patients are positive for pre-existing anti-Col-V and anti-KAT
autoantibodies (39). A second study also found that
approximately 20% of LTx patients tested positive for pre-
existing anti-Col-V autoantibodies and about 60% of those
patients remained positive for anti-Col-V pre-existing
autoantibodies after LTx (43).

More literature focusing on the correlation between Col-V
and KAT autoantibodies and PGD, and potential mechanisms
were recently reviewed by Sureshbabu et al. (32). Briefly, the
presence of pre-existing anti-Col-I, anti-Col-V, and anti-KAT
autoantibodies correlated with increased risk of PGD
development and high levels of proinflammatory cytokines (39,
44). In a syngeneic LTx mouse model, immunization with anti-
Col-V or anti-KAT resulted in dose-dependent PGD-like
phenotype development. Interestingly, immunization with
KAT induced an immune response that led to de novo anti-
Col-V antibody development post transplantation, and vice
versa. Taken together these data suggest that autoantibodies to
either self-antigen are capable of inducing lung injury that leads
to epitope spreading post transplantation (45). These reductive
models drive the hypothesis that pre-existing lung
autoantibodies could impact post-transplant outcome in those
patients with diverse high titers of autoantibodies associated with
their relative CPD. The presence of pre-existing recipient
autoantibodies pre-transplant may not only promote more
intense graft injury but further promote diverse epitope
spreading, de novo antibody production, and an increased
antibody mediated graft injury (Figure 2). However, human
studies demonstrating pre-existing autoantibody-mediated graft
injury and epitope spreading by anti-Col-V or anti-KAT have
not as yet been reported.

A potential mechanism for anti-Col-V autoantibody-
mediated damage can be found in elegant adoptive transfer
studies performed by Iwata et al. (40). Transfer of total serum,
purified serum IgG, and B cells from Col-V immunized rats into
rat lung isograft recipients induced PGD-like phenotype,
impaired graft function, and increased local expression of IFN-y,
TNF-alpha, and IL-1ß. Interestingly, Col-V was shown to be
apically expressed by epithelial cells, and when exposed to
immunized rat serum, rat airway epithelial cells were sensitive to
complement-mediated cytotoxicity (40). These data suggest that
anti-Col-V autoantibodies promote graft damage via antibody-
dependent complement activity and by increasing injurious pro-
inflammatory cytokine production. Similarly, novel studies by Patel
et al. (33) explored the impact of CPD autoantibodies on lung
transplant outcomes. Using a mouse model of emphysema, the
August 2021 | Volume 12 | Article 711102
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authors demonstrated that chronic exposure of mice to cigarette
smoke led to the characteristic features of emphysema, such as
airspace enlargement, immune cell infiltration and significantly
elevated serum autoantibodies compared with non-smoke-
exposed age-matched controls. To determine the impact of a full
pre-existing autoantibody repertoire on lung transplant IRI the
authors transplanted BALB/c donor lungs into control or
chronically cigarette smoke (CS) exposed recipients. CS recipients
had significantly increased lung injury and immune cell infiltration
after transplant. Immunofluorescence staining revealed increased
IgM, IgG, and C3d deposition in CS recipients. To exclude
confounding alloreactivity and confirm the role of pre-existing
autoantibodies in IRI, syngeneic Rag1 knockout transplants were
performed in which recipients were reconstituted with pooled
serum from CS or control mice. Serum from CS-exposed mice
significantly increased IRI compared with control mice
characterized by increased antibody and complement deposition.
To confirm the role of autoantibodies, serum from CS was
immunoglobulin depleted and adoptively transferred.
Immunoglobulin depleted serum had no significant impact on
transplant outcomes as compared to controls. Taken together
these data demonstrate that pre-transplant CS exposure was
associated with increased IgM/IgG autoantibodies, which,
upon transplant, bind to the donor lung, activate complement,
and exacerbate post-transplant IRI. Further studies are needed to
determine, if any, the long term sequalae that a broad spectrum of
Frontiers in Immunology | www.frontiersin.org 6
autoantibodies have on graft injury, epitope spreading, and
rejection. Clinical studies are also needed to corroborate
these findings.

Previous literature has largely focused on Collagen V and
KAT autoantibodies. As discussed earlier, and in the studies by
Patel et al. (33), a diverse spectrum of autoantibodies are likely
present in the lung transplant population pre-transplantation,
and therefore investigating if these antibodies pre and post-
transplant are clinically relevant is urgently needed. To this end,
a recent large proteomic/antigen microarray study using human
patient sera has successfully identified multiple different pre-
existing autoantibodies that correlated with PGD. A microarray
with 504 and 610 potential IgG and IgM targets, respectively,
which covered 272 different proteins was created to identify new
pre-existing autoantibodies. A total of 17 IgM/IgG novel
autoantibodies were discovered that correlated with PGD onset
(Table 2) (47). Another group performed a proteomic
microarray analysis investigating 124 autoantigens identified 17
IgA and 3 IgG additional pre-existing autoantibodies that
correlated with PGD development (See Table 2 for list of
autoantibodies) (46). Interestingly, 6 of the 17 IgA
autoantibodies correlated with worse survival and those 6
autoantibodies were able to correctly classify PGD positive
from PGD negative patients. Survival was not statistically
different for the 3 IgG autoantibodies (Periplakin, Muscarinic
acetylcholine receptor type 3 (AChR3), and Angiotensin II
FIGURE 2 | Pre-existing autoantibodies could pre-dispose to heightened epitope spreading. The existence of lung targeted autoreactive antibodies generated pre-
transplantation as a consequence of the recipient’s chronic lung diseases could exacerbate cellular injury. 1. Pre-existing lung autoreactive antibodies bind within the
lung upon reperfusion and induce cell injury. 2. Injury to donor lung cells releases other self-antigens. 3. Self-antigens are internalized by antigen presenting cells and
presented to T cells (4) and promote B cell production of autoreactive antibodies (5 and 6).
August 2021 | Volume 12 | Article 711102
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receptor type 1 (AT1R)) or the 11 remaining IgA autoantibodies
(46). Anti-AT1R autoantibodies were the only antibodies
discovered to have titers for both IgG and IgA subtypes.
Although the 3 IgG and 11 remaining IgA autoantibodies do
not correlate with reduced survival, they may play a role in PGD
pathogenesis, but that is speculation. Anti-Periplakin IgG have
been observed to decrease cell migration and induce
bronchoalveolar lavage T lymphocyte proliferation in IPF, but
their role in transplant is unknown (64). It is important to note
that the mere presence of autoantibodies and their correlation
with PGD development does not mean that they play a role in
PGD pathogenesis. These autoantibodies could also represent
novel predictive biomarkers for patients at risk of
developing PGD.

Anti-AT1R autoantibodies have been previously identified in
kidney, heart, and liver transplants with their presence associated
with poor prognosis (65, 66). Specifically, the presence of pre-Tx
anti-AT1R autoantibodies was associated with fibrosis and vessel
Frontiers in Immunology | www.frontiersin.org 7
occlusion in renal transplant, suggesting a potential mechanism
through which anti-AT1R could promote PGD (67). Anti-AT1R
acts as an agonist on AT1R, which leads to sustained AT1R
activation which is thought to promote vasoconstriction,
inflammation and fibrosis (68–70). In the context of kidney
Tx, anti-AT1R-mediated prolonged signaling of AT1R which
induced pro-inflammatory and pro-coagulant processes via
activation of extracellular signaling-regulated kinase 1/2 and
nuclear factor-kB in endothelial and vascular smooth muscle
cells (69). Other studies have purported a pathogenic role of anti-
AT1R through modulation of AT1R expressing immune cells
(65). AT1R expression is observed on monocytes, T and B cells,
and serum from anti-AT1R positive systemic sclerosis patients
induced peripheral blood mononuclear cell production of pro-
inflammatory chemokines, IL-8 and CCL18 (71). Interestingly,
anti-AT1R antibodies were found to belong to the complement
fixing IgG1 and IgG3 subclasses, however, its mechanism of
action is reportedly complement independent based on the lack
of complement deposition in anti-AT1R positive patients (The
impact of IgG structure and subclass on function is discussed
later in this review) (69, 72, 73). Although these elegant studies
proposed pathogenic mechanisms for anti-AT1R in kidney
transplant and systemic sclerosis patients, to the best of our
knowledge no experimental evidence exists demonstrating
pathogenic functions of anti-AT1R in the context of LTx and
PGD onset.

One study identified anti-AT1R in conjunction with anti-
endothelin type A receptor (ETAR) in cystic fibrosis patients both
pre- and post-Tx (74). A second study analyzing pre- and post-LTx
sera of 162 patients from 3 centers also identified the presence of
anti-AT1R and anti-ETAR. The presence of human leukocyte
antigen (HLA)-specific antibodies and strong anti-AT1R and
anti-ETAR binding significantly reduced freedom from de novo
donor specific antigen (DSA) development post-LTx (75). De novo
DSA development in LTx is well known to promote acute and
chronic rejection, and reduce survival (76–78). Interestingly, the
presence of anti-ETAR is highly associated with anti-AT1R in
pediatric kidney transplant which may suggest another example
of epitope spreading, however this has not been proven (79).

Overall, more research into pre-existing autoantibodies and
PGD is needed. Large screenings, such as those used to discover
autoantibodies in COPD and ILD patients, would help identify
and measure pre-existing autoantibodies before and after LTx.
Following identification, functional analyses of pre-existing
autoantibodies are needed to determine if they are biomarkers,
pathogenic, both, or neither. This information could hold the key
to novel pre-Tx or perioperative treatments that reduce the risk
of PGD development. Reducing the incidence of PGD is essential
step to overcome poor survival. PGD is also a major risk factor
for chronic lung allograft dysfunction (CLAD), the main cause of
late-stage mortality (35, 80).
Pre-Existing Autoantibodies and Chronic
Lung Allograft Dysfunction
Chronic lung allograft dysfunction (CLAD) remains the largest
obstacle to long term allograft survival. ISHLT defines CLAD as
TABLE 2 | Pre-existing autoantibodies and primary graft dysfunction development.

Autoantibody Ig Isotype Associated with
Survival

Citation

Collagen I IgM/IgG Yes (44)
Collagen V IgM/IgG Yes (44)
K-alpha Tubulin IgM/IgG Yes (44)
Filaggrin IgA Yes (46)
Factor P IgA Yes (46)
Heparan sulfate IgA Yes (46)
Laminin IgA Yes (46)
RSV antigen IgA Yes (46)
CRP antigen IgA Yes (46)
Factor B IgA No (46)
ERP29 IgA No (46)
Enolase IgA No (46)
Endothelial cell extract IgA No (46)
rhHSPG2 IgA No (46)
AGTR1 IgA/IgG No (46)
Proteopglycan IgA No (46)
c-MYC IgA No (46)
SDC1 IgA No (46)
Aggrecan IgA No (46)
Complement C1q IgA No (46)
Periplakin IgG No (46)
Acetylcholine receptor (AchR3) IgG No (46)
EGFR IgM/IgG No (47)
MBP IgM/IgG No (47)
MLANA IgM/IgG No (47)
MUC1 IgM/IgG No (47)
MYCL1 IgM/IgG No (47)
PLCG1 IgM/IgG No (47)
PRKCA IgM/IgG No (47)
HSP90AA1 IgM/IgG No (47)
IGF1R IgM/IgG No (47)
RB1 IgM/IgG No (47)
CERK IgM/IgG No (47)
HSPD1 IgM/IgG No (47)
TEP1 IgM/IgG No (47)
CYP3A4 IgM/IgG No (47)
SOCS3 IgM/IgG No (47)
TARP IgM/IgG No (47)
TP53 IgM/IgG No (47)
Pre-existing autoantibodies found in COPD and ILD patients compared to healthy controls.
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the consistent decline in forced expiratory volume in 1 second
(FEV1) from baseline FEV1 following LTx. There are three
CLAD phenotypes referred to as bronchiolitis obliterans
syndrome (BOS), restrictive allograft syndrome (RAS,
previously known as restrictive CLAD), and neutrophilic
reversible allograft dysfunction (NRAD). However, NRAD was
not included in the most recent ISHLT consensus report. BOS,
the most common CLAD phenotype, accounts for approximately
60-75% of CLAD cases (81) [Extensive reviews of CLAD can be
found in Verleden et al. (82) and Glanville et al. (83)].

To date, three studies have evaluated whether pre-existing
autoantibodies are associated with CLAD development. In the
first, patients with pre-existing anti-Col-V and anti-KAT
autoantibodies were at increased risk for development of HLA-
antibodies and for BOS development (44). In the second, a single
center study investigated the presence of pre-existing autoantibodies
in ‘stable BOS’ and ‘progressive BOS’ patients. Using a proteomic
microarray with 124 self-antigens, analysis revealed 16 IgG pre-
existing autoantibodies that were elevated in the progressive BOS
patients as compared to stable BOS patients (See Table 3 for list of
autoantibodies). A subset of 6 out of the 16 pre-existing
autoantibodies correlated with worse BOS free survival. Those 6
IgG autoantibodies remained elevated three months and one-year
post-Tx. Another microarray investigating 751 different antigens
investigated autoantibodies in a subset of LTx patients with no-to-
mild BOS compared to moderate-to-severe BOS patients (84).
Approximately 28 pre-existing autoantibodies were elevated in the
moderate-to-severe BOS patient population compared to the no-to-
mild BOS patient population (Table 3). Interestingly, 6 of the IgM/
IgG autoantibodies identified were also elevated in a subset
of patients that develop PGD, suggesting a connection between
PGD and BOS development (47, 84). However, further studies
are required to determine whether these pre-existing autoantibodies
are pathogenic or epiphenomena of chronic rejection (85).

There are likely more pre-existing autoantibodies associated
with CLAD that need to be identified. Interestingly, some of the
same autoantibodies identified in the Kaza et al. (85) study have
been described and associated with other solid organ transplants
(30, 86–88). For example, anti-AGTR1, anti-LG3, and anti-
vimentin pre-transplant autoantibodies have been correlated
with high risk of graft failure in kidney and heart transplant
(30, 86–88). The presence of anti-vimentin autoantibodies in
patients awaiting solid organ transplantation (heart and
lung transplantations) was previously observed to be low
(approximately 6%) (89). Alternatively, a second study identified
that circulating vimentin and anti-vimentin IgG autoantibodies
were increased in IPF patients compared to healthy individuals
(90). Interestingly, these data demonstrate that anti-vimentin
autoantibodies have been identified in ILD patients and vimentin
expression increases following LTx. However, any association
between anti-vimentin autoantibodies and LTx outcome has not
been studied (91). The list of potential pre-existing autoantibodies
associated with CLAD is extensive based on the sheer number of
different autoantibodies identified in COPD and ILD patients, and
more research is needed to streamline and elucidate their clinical
significance in post-LTx outcome (12, 25).
Frontiers in Immunology | www.frontiersin.org 8
POTENTIAL MECHANISMS OF
GRAFT INJURY BY PRE-
EXISTING AUTOANTIBODIES

In addition to gaining a better understanding of the epitope
targets, the functional characterization of pre-existing
autoantibodies in transplantation is understudied. There is
support and agreement that pre-existing autoantibodies are
TABLE 3 | Pre-existing autoantibodies and chronic lung allograft dysfunction.

Autoantibody Ig
Isotype

CLAD
Phenotype

Associated
with Survival

Citation

Collagen V IgM/IgG BOS Yes (39–41)
K-alpha Tubulin IgM/IgG BOS Yes (42, 136)
ALDOC IgG BOS No (85)
Aldolase muscle IgG BOS No (85)
APEX1 IgG BOS Yes (85)
B7H4 IgG BOS Yes (85)
BAFF IgG BOS No (85)
BPI IgG BOS No (85)
Complement C1q IgG BOS No (85)
Complement C6 IgG BOS No (85)
Fuca1 IgG BOS No (85)
Clycyl tRNA synthetase EJ IgG BOS No (85)
MAGEA3 IgG BOS No (85)
MBP IgG BOS Yes (85)
Nup62 IgG BOS Yes (85)
Ro/SSA(52/60 Kda) IgG BOS No (85)
Troponin I IgG BOS No (85)
Troponin I T C Terniary
Complex

IgG BOS No (85)

NTF3 IgM/IgG BOS No (84)
CCl5 IgM/IgG BOS No (84)
NPPB IgM/IgG BOS No (84)
TBX21 IgM/IgG BOS No (84)
PRKCA IgM/IgG BOS No (84)
JUN IgM/IgG BOS No (84)
GATA3 IgM/IgG BOS No (84)
NPPA IgM/IgG BOS No (84)
GCG IgM/IgG BOS No (84)
CXCL10 IgM/IgG BOS No (84)
IL-11 IgM/IgG BOS No (84)
PLD3 IgM/IgG BOS No (84)
SSB IgM/IgG BOS No (84)
IGF1R IgM/IgG BOS No (84)
CNTNAP1 IgM/IgG BOS No (84)
HPSD1 IgM/IgG BOS No (84)
FOXP3 IgM/IgG BOS No (84)
CRYBB1 IgM/IgG BOS No (84)
TNF IgM/IgG BOS No (84)
TP53 IgM/IgG BOS No (84)
CASP3 IgM/IgG BOS No (84)
TARP IgM/IgG BOS No (84)
CYP3A43 IgM/IgG BOS No (84)
GAD2 IgM/IgG BOS No (84)
CASP8 IgM/IgG BOS No (84)
HSP90AA1 IgM/IgG BOS No (84)
EEF1A1 IgM/IgG BOS No (84)
SNCG IgM/IgG BOS No (84)
HSPD1 IgM/IgG BOS No (84)
Au
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Pre-existing autoantibodies associated with CLAD compared to control (Col-V and KAT)
and pre-existing autoantibodies associated with progressive CLAD compared to stable
CLAD (85).
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associated with graft injury and poor prognosis, however,
conclusive evidence suggesting whether they are biomarkers of
injury, pathogenic, beneficial, or simply epiphenomena of the
diseases are lacking. Teasing out the biological function of pre-
existing autoantibodies may be difficult due to the
interconnectedness of antibodies in multiple different immune
responses (i.e., complement fixing and FcyR interactions) and
the heterogeneity of antibody characteristics (i.e., Ig class and
class subtypes). Nonetheless, functional characterization could
lead to the development of patient risk stratification strategies if
the autoantibodies prove to be biomarkers. Further, a better
understanding of the type and function of autoantibodies could
be leveraged to develop novel antibody-targeted therapeutics
designed to reduce graft damage if autoantibodies are found to
be pathogenic.

Pre-Existing Autoantibody Immunoglobulin
Classes, Subtypes, and Fab Specificity
The inherent heterogeneity among antibodies and their structure
gives them the ability to mediate different immune responses.
Antibodies, or immunoglobulins, are composed of two heavy
and two light chains. The heavy chain, or constant domain (Fc),
specifies effector function and the light chain, or variable domain
(Fab), binds to antigen. There are five main Fc immunoglobulin
(Ig) isotypes; IgM, IgG, IgA, IgE, and IgD. The IgG and IgA
isotypes can be split into IgG1, IgG2, IgG3, and IgG4, and IgA1
and IgA2 subclasses, respectively.

The Fc immunoglobulin classes differ in various properties
such as structure, complement fixation, and FcyR binding [For
detailed review see: Schroeder and Cavacini (92)]. Historically,
little attention was paid to IgA, IgD, and IgE in the context of
autoantibodies because they function predominantly in mucosal
response to pathogens, homeostasis, and allergens, respectively,
and do not interact with FcyRs, and are incapable of complement
fixation. Furthermore, while IgM makes up a group of antibodies
termed natural antibodies that are capable of binding
autoantigens, natural IgM antibodies have relatively low
affinity and are not hypothesized to be drivers of autoimmune
disease or pathogenesis (92). Natural IgM antibodies role in IRI
and IgG (total IgG, not IgG subtypes) have received most of the
attention from those studying autoantibodies (93–98). While
focusing on total IgG autoantibodies in pulmonary disease has
proven to be fruitful, we know little about the role if any of other
Ig classes and IgG subtypes in autoreactive-mediated graft
damage. Ig isotypes and subclasses have been studied in the
context of alloantibodies (DSA and anti-HLA antibodies),
however much less is known with regard to pre-existing
autoantibodies (non-HLA autoantibodies). Comparatively
fewer reports have investigated the mechanistic significance of
Ig sub-classes of pre-existing autoantibodies in LTx. Elucidating
whether Ig subclasses are clinically relevant in the context of LTx
may well provide novel information that could be therapeutically
leveraged to improve graft outcomes (33). Therefore, it is
essential to study the multiple characteristics of pre-existing
autoantibodies to comprehensively understand if they have any
impact on graft injury. Below we will discuss different
Frontiers in Immunology | www.frontiersin.org 9
immunoglobulins and postulate on the potential impact they
may have on pre-existing autoantibody-mediated graft damage.

IgA. IgA has been well studied in the context of mucosal
immunity and renal function (IgA nephropathy), however, little
is known about IgA and solid organ transplantation. A singular
report has analyzed pre-existing IgA autoantibodies in LTx
patients. Kaza et al. (46) performed a proteomic microarray of
124 potential antigens to measure serum profiles of IgG and IgA
pre-existing autoantibodies. Although IgG is present at a higher
concentration in the serum than IgA, the authors reported larger
numbers of pre-existing IgA autoantibodies compared to pre-
existing IgG autoantibodies. Furthermore, only pre-existing IgA
autoantibodies correlated with PGD development and survival
(46). One explanation for higher IgA pre-existing autoantibodies
could be the fact that IgA plays an important role in mucosal
immunologic defense. Some of the IgA pre-existing autoantibodies
identified were directed against proteoglycans that may be present
in the respiratory mucosal system and extracellular matrix. IgA can
promote pro-inflammatory responses when interacting with the
FcaRI on neutrophils (99–101). Given the importance of the
respiratory mucosal system, neutrophil infiltration and damage in
LTx, it is reasonable to hypothesize that IgA-immune complexes
may promote graft damage after binding mucosal and ECM
autoantigens. Interestingly, recent evidence suggests that
molecular phenotyping of mucosal biopsies can be used to detect
and accurately diagnose rejection following LTx (102).

A group of studies examining pre-existing IgA autoantibodies,
although in kidney Tx patients, identified a positive correlation with
kidney graft survival. In contrast to most examples thus far, the
authors demonstrated that the presence of pre-existing IgA
autoantibodies directed against the Fab region of human IgG
molecule increased the chance of kidney graft survival (103).
Although the aforementioned studies were in a different solid
organ Tx system, these studies suggest that whether an
autoantibody is pathogenic or advantageous is dependent on the
antigen. More support for IgA antibodies impacting transplant
outcomes lies in the observation that low pre-transplant levels of
systemic IgA antibodies have been associated with increased post-
LTx mortality (104). Although no specific antigens were
investigated in this study, increased mortality was hypothesized to
result from increased risk of post-LTx infection, therefore, not
necessarily autoantibody mediated. Nonetheless, these studies
demonstrate that much more research is needed to better
understand the relationship between IgA antibodies, their
corresponding antigens, differences in IgA subclass, and their
function/role in transplant outcome.

IgG. The connection between IgG and transplant success has
been well studied for over forty years. IgG has been studied in the
context of DSA and HLA- and non-HLA antibodies, antibody
mediated rejection, and hypogammaglobulinemia, or
immunoglobulin deficiency, in lung transplant. In general, studies
examining total IgG indicate that expression levels and their antigen
of target (HLA and non-HLA) play crucial roles in transplantation
outcome. However, significantly less research has focused on the
influence and importance of different IgG subclasses. The four IgG
subclasses, IgG1, IgG2, IgG3, and IgG4, have different physical
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properties, abundance, and effector functions. For example, IgG1-
IgG3 are complement fixing with IgG3 having highest binding
efficiency to C1q followed by IgG1 and IgG2 (105). However, IgG4
does not appear to have any complement activating ability and is
often associated with immunotolerance (106, 107). IgG subclasses
also demonstrate different binding affinities for FcyRs: IgG1 and
IgG3 bind FcyRI-III, while IgG4 binds FcyR I and II, and IgG2 only
binds FcyRII (92). More details describing the differences in IgG
subclasses can be found in elegant reviews by Schroeder and
Cavacini (92) and in Figure 3. Overall, the differences in these
properties between subclasses could greatly influence the effector
functions of a pre-existing IgG autoantibody.

Unfortunately, very few papers have delved into characterizing
the IgG subclasses of pre-existing autoantibodies in LTx. Our group
recently performed a study measuring the level of anti-elastin pre-
existing autoantibody IgG subclasses in an emphysema mouse
model. We discovered that all four IgG anti-elastin pre-existing
autoantibodies are elevated in CS exposed mice compared to
controls. These pre-existing autoantibodies were determined to be
pathogenic, however, it remains unclear whether one subclass of
IgG is more pathogenic than another (33). The hypothesized
mechanism of action for pre-existing autoantibody-mediated
damage includes complement fixation and activation, therefore,
IgG3 and IgG1 would likely be the predominantly pathogenic IgG
subclasses in this case, but further studies are needed.

Due to the lack of publications on pre-existing IgG subclass
autoantibodies, support for this hypothesis can be found by
investigating the role of IgG subclasses in donor specific antigen
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DSA HLA-antibodies. For example, a retrospective study analyzing
individual IgG subclass DSAs following liver transplant found that
patients positive for DSAs presented with IgG1most often, followed
by IgG3, and then IgG4 and IgG2. Patients that demonstrated
chronic rejection often times had a combination of IgG subclasses,
but patients with IgG3 DSAs were at increased risk of graft loss
(108). A similar observation was made in patients following renal
transplant. Antibody mediated rejection was more prevalent in
patients with IgG1/IgG3 de novo DSA antibodies compared to a
mixture of complement and non-complement fixing de novo DSA
antibodies (109). In contrast, patients with pre-existing
complement-fixing DSA IgG subclasses did not demonstrate
significantly different incidence of antibody mediated rejection
(AMR) as compared to patients with a combination of pre-
existing IgG1/IgG3 and IgG2/IgG4 DSA antibodies in kidney
transplant (110). However, there was a trend that ABMR was
higher 6 months post-Tx in patients with pre-existing
complement fixing DSA antibodies. Taken together, these data
suggest that IgG subclass DSA antibodies, whether pre-existing or
developed de novo, impact outcomes. Therefore, it is reasonable to
hypothesize that pre-existing non-HLA autoantibody Ig subtype
analysis could prove beneficial in predicting graft outcomes.

IgE/IgD. To date, there are no studies investigating IgE or IgD
autoantibodies in the context of transplantation.

Pre-Existing Autoantibody Glycan Profiles
Antibody glycosylation is a fundamental biochemical reaction
determined by various biological factors that significantly
FIGURE 3 | Pre-Existing Autoantibody Characteristics Impact Effector Functions. Autoantibodies bind to a variety of different antigens expressed on the cell surface
of damaged cells or damaged/modified proteins that exist in the extracellular space. Upon binding, autoantibodies work to fine-tune the activation or suppression of
the immune response. Inherent antibody characteristics such as antigen specificity, Ig class, IgG/A subclass, and glycosylation give autoantibodies the ability to
regulate the immunological response to stimuli. Antigenic specificity is determined by the Fab’ portion of the antibody while effector function is dependent on the Fc
portion of the antibody. Immune responses can be pro-inflammatory or anti-inflammatory based on the target antigen. Ig classes (IgM/G/A/E/D) have different
immune activation capabilities and activate different immune pathways. For example, IgG and IgM are able to fix complement while IgA, IgD, and IgE are not. IgG/A
subclasses are also capable of modulating effector functions. IgG1-4 have different complement fixation capabilities and interact with different FcyR’s, thereby, fine-
tuning the immune response.
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influence disease and immune states (111–121). All Ig families
are glycosylated and previous review articles have elegantly
highlighted the biological significance of Ig glycosylation in
multiple disease settings (113, 114, 120, 121). A conserved site
of N-glycosylation at N297 in the heavy chain (HC) region is
common in the IgG class of antibodies which maintains the
structure and stability of the Fc region (Figure 4) (92). IgG
glycan alterations have significant impact on effector functions,
such as immune cell FcyR interactions and altered complement
activation, with some glycan signatures being predominantly
pro-inflammatory, while others render IgG anti-inflammatory
(120, 122–128). Given the importance of Ig in transplantation, it
is clear that investigating Ig characteristics such as glycosylation
state could well be essential in increasing our understanding of
the role of antibodies in solid organ transplant. Unfortunately, to
date little is known regarding Ig glycosylation status in solid
organ transplant in general, and even less is known regarding
autoantibodies in LTx.

Experimental evidence has demonstrated that serum and IgG
N-glycan signatures change with disease and impact disease
progression [Reviewed by: Goulabchand et al. (112); Maverakis
et al. (121); and Zhou et al. (129)]. For example, COPD patients
have more complex glycan structures and a decrease in
monogalactosylated species compared to healthy individuals
(130). In fact, the more complex glycan structures correlate
with COPD GOLD stage progression. Similar serum N-glycan
signature changes were observed in the IgG N-glycan signature
(130). Therefore, it would be reasonable to hypothesize that LTx
Frontiers in Immunology | www.frontiersin.org 11
patients present with pre-existing autoantibodies that have pro-
inflammatory N-glycan signatures.

In support of this hypothesis, what little data that does exist
on glycosylation in Tx has demonstrated that changes in the N-
glycome are predictive of poorer outcomes in liver and kidney
transplantation (131–134). Interestingly, one group studying IgG
N-glycosylation in hematopoietic stem cell transplantation
(HSCT) found that the recipients’ IgG glycosylation status
post-Tx does not mimic the donor profile, and instead is
determined by environmental factors of the host (135). These
data could suggest that the IgG N-glycan profile present pre-
transplant could be pro-inflammatory due to underlying
pulmonary disease. A well-established pro-inflammatory
environment resulting from pulmonary disease combined with
pro-inflammatory processes inherent to transplantation may
lead to environmental pressures that maintain pro-
inflammatory IgG N-glycosylation states. Furthermore, unlike
in HSCT, the LTx recipient’s B cell population would remain of
recipient origin and therefore already be primed to produce pro-
inflammatory N-glycan signature IgG autoantibodies.
CONCLUDING REMARKS

Current immunosuppressive strategies only start upon
transplantation and have little impact on B cell functions and
pre-existing antibodies. While de-sensitization strategies exist for
FIGURE 4 | Antibody N-glycosylation can influence antibody effector functions. Antibodies are asymmetrically glycosylated on a conserved Asn297 residue within
each of their Fc fragments. There are estimated to be at least 33 different glycosylation signatures that can be post-translationally added to an antibody. The fact that
each antibody can be asymmetrically glycosylated on each Fc fragment suggests that there are many iterations of glycan modifications. Antigen-Antibody complexes
can thus stimulate pro- or anti-inflammatory responses based on the combination of glycans added.
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pre-sensitized patients no studies have investigated the impact of
autoantibody depletion on lung transplant outcomes. Pre-
existing autoantibodies such as anti-Col-V, anti-KAT, and
anti-elastin have been demonstrated to cause inflammatory-
mediated graft damage and promote epitope spreading in
murine models. Furthermore, anti-Col-V and anti-KAT
autoantibodies have been identified in patient samples and
correlate with LTx rejection. Multiple other pre-existing
autoantibodies have been inconsistently correlated with
increased risk of PGD, and CLAD. While a greater
understanding of the repertoires present is slowly emerging,
little is still known regarding the antibody characteristics that
may fine-tune the pathogenic mechanisms of autoantibodies in
organ transplantation. Immunoglobulin class (IgM, IgG, IgA,
IgE, IgD) and subclass (IgG1-4; IgA1-2) have all been shown to
interact with different Fc receptors and have different
complement fixation capabilities. Structural changes to the Fc
portion of immunoglobulins such as glycosylation can also
greatly impact the antibody-mediated inflammatory response.
Unfortunately, little is known with regard to these antibody
features and as such the pathogenic mechanisms and
corresponding antibody characteristics of disease specific pre-
existing autoantibodies is largely still unknown. Gaining a better
Frontiers in Immunology | www.frontiersin.org 12
understanding of the epitopes, Ig-sub class and glycosylation
state may facilitate the development of novel personalized
pharmacotherapeutics that can be leveraged to augment
immunosuppression and improve the outcomes of lung
transplant recipients.
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