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Studies have demonstrated the potential of mesenchymal stem cell (MSC) administration
to promote functional recovery in preclinical studies of multiple sclerosis (MS), yet the
effects of MSCs on remyelination are poorly understood. We wished to evaluate the
therapeutic effects of MSCs on functional and histopathological outcomes in MS;
therefore, we undertook an updated systematic review and meta-analysis of preclinical
data on MSC therapy for MS. We searched mainstream databases from inception to July
15, 2021. Interventional studies of therapy using naive MSCs in in vivo rodent models of
MS were included. From each study, the clinical score was extracted as the functional
outcome, and remyelination was measured as the histopathological outcome. Eighty-
eight studies published from 2005 to 2021 met the inclusion criteria. Our results revealed
an overall positive effect of MSCs on the functional outcome with a standardized mean
difference (SMD) of —1.99 (95% confidence interval (Cl): —2.32, —=1.65; p = 0.000). MSCs
promoted remyelination by an SMD of -2.31 (95% Cl: -2.84, -1.79; p = 0.000).
Significant heterogeneity among studies was observed. Altogether, our meta-analysis
indicated that MSC administration improved functional recovery and promoted
remyelination prominently in rodent models of MS.

Keywords: multiple sclerosis, mesenchymal stem cell, remyelination, meta-analysis, animal model

INTRODUCTION

Multiple sclerosis (MS) is a devastating disease that presents in young adults and can cause
progressive physical disability and cognitive impairment (1). The etiology of MS is not known, but
its pathophysiology has been reported to be associated with the formation of autoreactive
lymphocytes and antigen-presenting cells in the body. The inflammatory cytokines generated by
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these cells in turn promote the recruitment of immune cells in
the central nervous system (CNS), which destroy myelin sheaths
and axon neurons, contributing to inflammation, demyelination,
and massive loss of neurons in the CNS (2).

MS comprises mainly a relapsing-remitting phase and a
progressive phase (3). Better understanding regarding the
mechanisms of relapsing-remitting MS (RRMS) has led to the
development of several disease-modifying therapeutic regimens
that reduced the frequency and severity of acute relapses through
direct action on the immune system, while progression in the
treatment of progressive MS (PMS) remains relatively lacking
(4). In general, the exploitation regarding new treatment options
that promote favorable CNS repair in MS will be of great
significance and is promising.

Potent immunomodulatory properties and pleiotropic effects
have made mesenchymal stem cell (MSC) candidates for MS
treatment (5-8). Abundant data have indicated that
transplantation of MSCs may be efficacious in animal models
of MS. Studies have shown that MSCs can induce autoantigen
immunotolerance, enhance remyelination, maintain and
remodel axons, and promote functional improvement in
animal models of MS (9). Conversely, other studies have
reported that MSC administration did not ameliorate the
neurological deficit of MS in animal models (10, 11). These
differences may be related to the cell type, transplantation route,
and dose of MSCs.

As the questions about the optimal pattern of MSC therapy in
MS remain unanswered, the analysis that evaluates the overall
therapeutic effect of MSCs in animal models of MS among
different experimental conditions will be prospective. And such
analysis is also necessary for the guidance of clinical translation.
A recent meta-analysis by Yang and colleagues demonstrated the
functional promotion effects of MSC transplantation in the
experimental autoimmune encephalomyelitis (EAE) model of
MS, but the database was only until October 1, 2017 (12). In
addition, the meta-analysis that investigates the
histopathological efficiency of MSC transplantation for MS is
also lacking. Myelin repair-promoting therapy has been

Abbreviations: MS, multiple sclerosis; CNS, central nervous system; RRMS,
relapsing-remitting MS; PMS, progressive MS; MSCs, mesenchymal stem cells;
BM-MSC, bone marrow-derived MSC; ASC, adipose tissue-derived MSC; UC-
MSC, umbilical cord MSC; PMSC, placenta-derived MSC; EAE, experimental
autoimmune encephalomyelitis; PRISMA, Preferred Reporting Items for
Systematic Reviews and Meta-Analyses; EV, extracellular vesicles; DPI, days
post immunization; SD, standard deviation; SE, standard error; CAMARADES,
Collaborative Approach to Meta-Analysis and Review of Animal Data from
Experimental Studies; SMD, standardized mean differences; CI, confidence
interval; MOG, myelin oligodendrocyte glycoprotein; PLP, proteolipid protein;
GPSCH, guinea pig spinal cord homogenate; ES-MSC, embryonic stem cell-
derived MSC; AMC, amnion MSC; DMSC, decidua-derived MSC; PDLSC,
periodontal ligament-derived MSC; meMSC, murine endometrial-derived
mesenchymal stem cell; IV, intravenous; IP, intraperitoneal; ICV, intra-
cerebroventricular; IN, intranasal; ICP, intra-cerebroparenchymal; IT,
intrathecal; TEM, transmission electron microscope; LFB, Luxol Fast Blue;
MBP, myelin basic protein; H&E, hematoxylin and eosin; MRI, magnetic
resonance imaging; OPC, oligodendrocyte precursor cell; DA, Dark Agouti;
FGF, fibroblast glial factor; BDNF, brain-derived neurotropic factor; NGF,
neural growth factor; M1, promoting proinflammatory subtypes of microglia;
M2, anti-inflammatory microglia.

recognized as a well-acknowledged approach to prevent disease
progression of MS, and myelin regeneration is increasingly
measured as the structure outcomes of several studies (13-15).
Thus, remyelination was measured as the histopathological
outcome in our meta-analysis.

The aim of our study was to provide evidence relating to the
therapeutic effects of MSCs on the functional and
histopathological outcomes in rodent models of MS, through
performing an updated systematic review and meta-analysis.

MATERIALS AND METHODS

The present meta-analysis followed the guidelines of the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) checklist (Supplementary
Table 1) (16).

Search Strategy

We searched PubMed, Embase, and Web of Science databases
from inception to July 15, 2021, using the following search
strategy: (“mesenchymal stem cells” OR “mesenchymal stromal
cells” OR “mesenchymal stem cell” OR “mesenchymal stromal
cell”) AND (“Multiple sclerosis” OR “MS” OR “Experimental
Autoimmune Encephalomyelitis” OR “Experimental Allergic
Encephalomyelitis”). Besides, the reference lists of eligible
studies were also reviewed to identify other relevant articles.

Inclusion and Exclusion Criteria

The eligibility criteria were set up according to the PICOS
scheme (population, intervention, control, outcome and study
design) (17). Studies were included if they met the following
criteria: i) a rodent model of MS was induced; ii) the effect of
unmodified MSCs was tested in at least one experimental group;
iii) studies provided adequate data on clinical scores or
remyelination; iv) experimental studies were presented in
original research and published in peer-reviewed journals; and
v) studies are published in English.

The exclusion criteria were as follows: i) studies that did not
involve in vivo testing; ii) the outcome did not include the clinical
score or remyelination; iii) cells were administered before the
animal model induction; iv) studies that used only extracellular
vesicles (EVs), conditioned medium derived from MSCs, or
differentiated MSCs; and v) studies that reported sample
size incompletely.

Study Selection

After removal of duplicated data, two independent investigators
screened titles and abstracts for inclusion. Non-relevant studies
were excluded if the two researchers agreed. Those deemed
“potentially relevant studies” were recorded, and the full text
was acquired. Then, the two researchers screened the full-text
articles independently to evaluate the final eligibility according to
the inclusion and exclusion criteria stated above. Disagreement
was addressed by discussion with a third investigator, if needed.
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Data Collection

The following items from the eligible studies were extracted and
documented independently by two investigators: general
information (first author, publication year, and country);
experimental methods (numbers of animals per group for
individual comparisons; species and strain of animals; gender;
methods of MS induction in the animal model; sources and types
of MSCs; dose of MSCs; delivery route of MSCs; time of
administration [days post immunization (DPI)]; duration of
follow-up; functional outcome (clinical score); and
histopathological outcome (remyelination).

Data regarding the mean and standard deviation (SD) of a
particular parameter from the MSC-treatment group and control
group were extracted independently by the two researchers. If
data were presented only graphically, the mean and SD from
graphs were measured using a “digital ruler” (Graph Digitizer
2.26; GetData; http://getdata-graph-digitizer.com/download.
php/). If SD was not reported, we calculated it through
multiplying the standard error (SE) by the square root of the
group size. If a control group served more than one experimental
group differentiated by a different dose, delivery route, or
administration time, then the size of control group was divided
by the number of experimental groups served. Moreover, if an
outcome observation was carried out at different times, only the
data from the longest time were extracted. Disagreement
between two investigators was solved by checking the data in
the publications together.

Methodological Quality of Studies

The quality of each study was assessed according to the
Collaborative Approach to Meta-Analysis and Review of
Animal Data from Experimental Studies (CAMARADES)
checklist. This comprises i) publication in a peer-reviewed
journal; ii) reporting of a sample size calculation; iii) allocation
of randomized treatment; iv) allocation concealment; v) blind
assessment of outcome; vi) use of suitable animal models; vii)
avoidance of anesthetic agents with significant intrinsic
neuroprotective activity (e.g., ketamine); viii) statement of
compliance with regulatory requirements; ix) statements
describing temperature control; and x) declarations of potential
conflicts of interest. Therefore, the total score of each study ranged
from 0 through 10, where “10” represents the greatest
methodological strength. The sum of the quality scores was
recorded for each research by the two investigators independently.

Statistical Analysis

The meta-analysis was carried out using Stata 15.1 (StataCorp,
College Station, TX, USA) and Cochrane Review Manager 5.3
(Cochrane Collaboration; www.cochrane.org/). The combined
effect size was calculated as standardized mean differences
(SMDs) with 95% confidence interval (CI) between MSC-
treatment group and control group. Hedge’s statistic was used
to estimate the effect size (18). Forest plots were generated to
display the SMD and 95% CI of each study, and the pooled mean
difference by combining all studies. p-Value < 0.05 was
considered statistically significant.

Statistical heterogeneity was assessed using the I” statistic. I”
that ranged from 0% to 40%, 30% to 60%, 50% to 90%, and 75%
to 100% was defined as “low,” “moderate,” “substantial,” and
“considerable” heterogeneity, respectively (19). A random-effects
model was used if substantial heterogeneity (I* > 50%, p < 0.05)
was observed. Sensitivity analyses were undertaken to remove
extreme values thought to be driving the overall effect. Subgroup
analysis and multivariate meta-regression analysis were carried
out to identify the source of the heterogeneity.

Publication bias was detected using funnel plots (20).
Asymmetry was evaluated through Egger’s test and “trim-and-
fill” method (21).

RESULTS

Study Selection

The literature search identified 4,680 potential studies at the
primary retrieval: 1,043 records in PubMed, 2,303 in Embase,
and 1,334 in Web of science. After review and exclusion, 139 full-
text articles remained and were evaluated for inclusion eligibility.
From these, 51 records were excluded due to the reasons given in
Figure 1. Finally, data from 88 studies published from 2005 to
2021 were included in the meta-analysis.

Study Characteristics

The overall study characteristics are outlined in Supplementary
Table 2, and the reference lists of included studies are
summarized in the Supplementary Materials. All research was
undertaken in rats and mice, and female animals were used in
most of the studies. The animal model of MS was induced via
myelin oligodendrocyte glycoprotein (MOG), proteolipid
protein (PLP), guinea pig spinal cord homogenate (GPSCH),
myelin basic protein (MBP), or cuprizone, with MOG
accounting for the greatest proportion. The vast majority of
studies used bone marrow-derived MSC (BM-MSC) and adipose
tissue-derived MSC (ASC), or umbilical cord MSC (UC-MSC)
derived from mice, rats, or humans. The remaining studies used
placenta-derived MSC (PMSC), embryonic stem cell-derived
MSC (ES-MSC), amnion MSC (AMC), decidua-derived MSC
(DMSC), periodontal ligament-derived MSC (PDLSC), and
murine endometrial-derived MSC (meMSC). The number of
MSCs also varied greatly among these studies, with 1 x 10° being
the most common, and those MSCs were transplanted via
intravenous (IV) or intraperitoneal (IP) injection in most
studies. Furthermore, MSCs were administered from 0 days to
13 weeks after MS induction, and the duration of follow-up
ranged from 18 to >315 days.

Functional outcomes were assessed in 75 studies using clinical
score. In addition, the Morris water maze, basket test, footprint
analysis, track visualizations, and Rotarod'" experiments were
undertaken to measure functional outcomes in some
publications. Forty-eight studies evaluated the histopathological
outcomes (remyelination) using transmission electron
microscope (TEM), Luxol Fast Blue (LFB) staining, MBP
staining, Spielmeyer staining, Solochrome Cyanine staining,
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0 additional records identified
through other sources

2956 records screening after duplicates removed

2817 records excluded based on title or
abstract screening

51 articles excluded:

Cell administration before model
induction (n=2)

No outcome or incomplete data (n=13)

No in vivo testing (n=8)

No unmodified MSC (n=9)

Not English (n=6) Not MSC (n=4)
Same cohort (n=2)

Review (n=7)

g 4680 records identified through
= database searching:
8] PubMed: n=1043
= EMBASE: n=2303
3 Web of science: n=1334
=
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g
=
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o 139 full-text articles assessed for eligibility
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88 articles included in meta-analysis
FIGURE 1 | The flow diagram describing literature search and study selection.

hematoxylin and eosin (H&E) staining, or magnetic resonance
imaging (MRI). Intriguingly, six studies measured the
oligodendrocyte precursor cell (OPC) count, and nine reports
detected the oligodendrocyte count (Supplementary Table 3).

Study Quality

The quality assessment of the included studies is outlined in
Table 1; the detailed information of each study is listed in
Supplementary Table 4. The quality score of the studies ranged
from 2 to 8. All studies were published in peer-reviewed journals
and used suitable animal models. Also, 85.23% of studies reported
a statement of compliance with regulatory requirement. Only
2.27% reported a calculation for the sample size, 39.77% of
studies reported allocation of randomized treatment, 11.36%
reported allocation concealment, and 42.05% of studies declared
a blind assessment of outcome. In addition, the percentage of
studies that avoided neuroprotective anesthetic agents, stated a
temperature control, and a declared conflict of interest was 6.82%,
15.91%, and 70.45%, respectively.

Meta-Analysis

MSC administration exhibited a favorable effect on the clinical
score and remyelination. More specifically, the composite
weighted mean of clinical score was —1.99 (95% CI: -2.32 to
-1.65, p = 0.000, 75 studies, 101 comparisons; Figure 2A), and

TABLE 1 | Percentage of included studies satisfying each criterion of
CAMARADES checklist.

Quality score criterion Percentage of qualified

studies
Publication in a peer-reviewed journal 100%
Reporting of a sample size calculation 2.27%
Randomized treatment allocation 39.77%
Allocation concealment 11.36%
Blind assessment of outcome 42.05%
Use of suitable animal models 100%
Avoidance of anesthetics with neuroprotective 6.82%
activity
Statement of regulatory requirements 85.23%
Statements describing temperature control 15.91%
Declarations of potential conflicts of interest 70.45%

CAMARADES, Collaborative Approach to Meta-Analysis and Review of Animal Data from
Experimental Studiies.

remyelination was —2.31 (95% CI: —2.84 to —1.79, p = 0.000, 48
studies, 59 comparisons; Figure 2B). We also undertook a
pooled analysis for the OPC count and oligodendrocyte count:
the composite weighted mean was —3.66 (95% CI: —6.44 to —0.88,
p = 0.000, six studies, six comparisons) (Supplementary
Figure 1A) and -3.64 (95% CI: —5.14 to —2.14, p = 0.000, nine
studies, nine comparisons) (Supplementary Figure 1B),
respectively. These findings provided evidence of the
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advantageous effect of MSCs on MS models. The I* statistic
suggested remarkable heterogeneity among comparisons of
clinical score and remyelination (p = 0.000).

Sensitivity Analysis

We performed a sensitivity analysis to identify the stability of
results by sequential omission of each study because of the
notable heterogeneity. As depicted in Figures 3A, B, the
pooled SMD of clinical score and remyelination was not
affected by any study.

Stratified Analysis and

Meta-Regression Analysis

We did a further subgroup analysis for the clinical score and
remyelination based on different categories, which are
summarized in Tables 2 and 3, respectively. In general, the
prominent efficacy of MSCs intervention was observed in most
subgroups, but significance was not seen in a few individual
subgroups (p > 0.05). Significant differences between groups

were found in some stratified analyses, but the source of
heterogeneity was not identified.

Subsequently, multivariate meta-regression analysis was
employed to explore potential contributions to the
heterogeneity of the items mentioned in Tables 2 and 3. For
clinical score, the source of heterogeneity was not discovered, but
the source of MSCs may be the cause of heterogeneity in
remyelination (p = 0.022).

Publication Bias

The funnel plot was asymmetrical for the comparisons of the
clinical score and remyelination (Figures 4A, B). Egger’s test
demonstrated a conspicuous publication bias (p = 0.000). Then,
we adopted the trim-and-fill approach to evaluate missing
studies and recalculated the overall estimate of the pooled
effect. Both of the imputed effect estimates of clinical score and
remyelination were consistent with the previous one (SMD:
-1.99, 95% CI: -2.32 to —1.65, p = 0.000; SMD: -2.31, 95% CI:
-2.84 to —1.79, p = 0.000, respectively), which implied no
“missing” studies (Figures 4C, D).
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FIGURE 3 | Sensitivity analysis of the studies included in clinical score (A) and remyelination (B).

DISCUSSION
Main Findings

Overall, our updated meta-analysis comprising 88 studies
suggested that rodents with MS benefited from MSC therapy
as manifested by significant amelioration of functional and
histopathological outcomes. Subgroup analysis provided more
detailed information.

Species, Gender, and Methods of MS

Induction in Rodents

Commonly used experimental systems of MS includes EAE (28),
virus-induced demyelination/inflammation (29), and toxin-
induced demyelination models with cuprizone (30) or
ethidium bromide (31). In general, distinct histopathological
discrepancies are recognized among these models. EAE and
virus-induced demyelination/inflammation model reproduce
well the disseminated and inflammatory characteristics of MS,
whereas toxin-induced demyelination models are more suitable
for simulating the specific mechanism of myelin decline and
regeneration (32).

EAE is induced in susceptible animal strains either through
active immunization with CNS tissue or myelin peptides (e.g.,
MOG, GPSCH, PLP, and MBP) or by passive transfer of
encephalitogenic T cells (33). C57BL/6 mice, SJL/] mice, NOD
mice, Lewis rats, and Dark Agouti (DA) rats are frequently used
rodent species. Individual models of EAE can resemble
corresponding types of MS clinical forms. Immunization of
SJL/] mice with PLP;39 ;5; induces a relapsing-remitting
disease course, while C57BL/6 mice often develop a chronic
disease after being immunized with a high dose of MOG3;s_ss.
Interestingly, immunization of NOD mice with MOGg5_s5 results
in an initial acute episode of EAE followed by a secondary
progressive EAE course, which is reminiscent of the secondary

progressive phase of MS patients (28, 34). And EAE displays a
sex bias that parallels MS whereby females are more susceptible
than males (35).

Animal studies can differ widely in terms of experimental
conditions. Hence, the species, gender, and methods of MS
induction in rodents were applied as the items of stratified
analysis in our meta-analysis. No difference in the effect size of
species was observed. Males seemed to be more sensitive to MSC
treatment than females in terms of the clinical score and
remyelination. MSC administration exhibited similar beneficial
effects on remyelination among different MS models, but the
rodents that were immunized with GPSCH responded best to
MSC therapy in terms of the clinical score, followed by PLP
immunization group and MOG immunization group. Those
outcomes may be related to the small sample size.

Source and Type of MSCs

Several sources of MSCs have been used in experimental models
of MS, but most studies used BM-MSCs or ASC from humans,
mice, or rats (9). In general, previous data demonstrating the
beneficial effects of MSCs were not dependent on the MSCs
source (6). Zhu et al. observed no difference in the amelioration
of EAE clinical signs between administration of syngeneic and
allogeneic MSCs in animal models of MS (36). Similarly, another
study suggested that PMSC and ES-MSC exhibited a similarly
favorable effect on MS models (37). Payne et al. reported no
beneficial effect of BM-MSC, ASC, and UC-MSC in animal
models of MS when MSCs were administered after symptom
onset (10). In our meta-analysis, the source of MSC was
correlated with the effect size in clinical score and
remyelination. Allogeneic MSCs displayed the greatest efficacy,
followed by syngeneic MSCs and then xenogeneic MSCs. And
the types of the MSC also had impact on the effect size in terms of
the clinical score and remyelination; however, the number of
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TABLE 2 | Stratified meta-analysis of clinical score.

Categories No. of studies Pooled SMD (95% CI)
Species
Mice 84 -1.98 (-2.29, -1.58)
Rats 11 —2.57 (-3.67, —1.46)
Gender
Female 81 -1.73 (-2.06, —-1.40)
Male 6 -4.37 (-6.36, —2.38)
NR 8 -3.00 (-4.59, —-1.41)
Methods of MS induction
MOG 81 —1.79 (-2.14, —1.45)
PLP 9 -2.81 (-4.02, -1.59)
GPSCH 5 -5.51 (-8.90, —2.12)
MBP NA NA
MSC source
Xenogeneic 50 -1.66 (-2.09, -1.23)
Syngeneic 37 -2.05 (-2.60, -1.49)
Allogeneic 8 —4.09 (-5.50, -2.68)
MSC type
BM-MSC 56 -2.37 (-2.87, -1.87)
DMSC 1 -3.04 (-4.10, -1.98)
ASC 22 —1.33 (-1.84, -0.82)
UC-MSC 7 -1.22 (-1.91, -0.52)
PMSC 5 —-2.07 (-3.89, -0.26)
ES-MSC 2 —2.67 (-6.92, 1.58)
PDLSC 1 -3.54 (-5.04, —2.03)
meMSC 1 —0.38 (-1.44, 0.69)
Dose
>1 x 10° 24 -2.37 (-3.16, —-1.58)
<1 x 10° 70 -1.82 (-2.18, —1.46)
NR 1 —-6.48 (-8.38, —4.58)
Delivery route
v 56 -1.83 (-2.20, —-1.47)
IP 26 -2.15(-2.88, -1.42)
IN 3 -2.06 (-3.24, —-0.89)
ICV 8 -2.70 (-4.62, -0.77)
M 1 0.58 (-0.06, 1.21)
IT 1 -3.85 (-5.17, —2.53)
Administration time
>14 days 20 -2.76 (-3.74, -1.78)
<14 days 70 -1.73 (-2.08, -1.37)
NR 5 -4.23 (-6.93, —1.54)
Duration of Follow-up
30-60 days 71 —1.86 (-2.24, —1.48)
<30 days 15 -1.91 (-2.81, -1.02)
>60 days 9 -3.33 (-4.57, —2.09)

p-Value Heterogeneity test Between groups
p-value
Q statistics P p-Value
0.28
0.000 605.43 86.3% 0.000
0.000 52.74 81.0% 0.000
0.01
0.000 501.10 84.0% 0.000
0.000 33.82 85.2% 0.000
0.000 68.02 89.7% 0.000
0.03
0.000 541.85 85.2% 0.000
0.000 55.52 85.6% 0.000
0.001 48.81 91.8% 0.000
NA NA NA NA
0.005
0.000 334.25 85.3% 0.000
0.000 236.99 84.8% 0.000
0.000 39.54 82.3% 0.000
0.0002
0.000 463.43 88.1% 0.000
0.000 NA NA NA
0.000 84.72 75.2% 0.000
0.001 21.62 72.2% 0.001
0.025 28.59 86.0% 0.000
0.217 6.53 84.7% 0.011
0.000 NA NA NA
0.487 NA NA NA
<0.00001
0.000 211.26 89.1% 0.000
0.000 412.39 83.2% 0.000
0.000 NA NA NA
<0.00001
0.000 265.02 79.2% 0.000
0.000 215.82 88.4% 0.000
0.001 5.70 64.9% 0.058
0.006 114.49 93.9% 0.000
0.074 NA NA NA
0.000 NA NA NA
0.03
0.000 149.70 87.3% 0.000
0.000 468.37 85.2% 0.000
0.002 30.24 86.8% 0.000
0.08
0.000 466.51 85.0% 0.000
0.000 131.53 89.4% 0.000
0.000 44.76 82.1% 0.000

NR, not recorded; MOG, myelin oligodendrocyte glycoprotein; PLP, proteolipid protein; GPSCH, guinea pig spinal cord homogenate; MBP, myelin basic protein; BM-MSC, bone marrow-
derived mesenchymal stem cell; DMSC, decidua-derived mesenchymal stem cell; ASC, adipose tissue-derived mesenchymal stem cell; UC-MSC, umbilical cord mesenchymal stem cell;
PMSC, placenta-derived mesenchymal stem cell; ES-MSC, embryonic stem cell-derived mesenchymal stem cell; PDLSC, periodontal ligament-derived mesenchymal stem cell; meMSC,
murine endometrial-derived mesenchymal stem cell; IV, intravenous; IP, intraperitoneal; IN, intranasal; ICV, intra-cerebroventricular; IM, intramuscular; IT, intrathecal; NA, not available.

studies included in several subgroups was too small, and larger
preclinical studies are needed to explore this issue in-depth.

Dose and Delivery Route

Delivery dose and route are typically the topic of concern when
MSC therapy is applied in clinical situations. The literature
suggests that the MSC dose administered in rodent models of
MS is in the range from 3 x 10° to 1 x 10”. These doses exerted
protective effects when administered alone or in multiple
injections (6). Yousefi et al. attempted to compare the
therapeutic impact of ASC injected via IP and IV routes but

did not document the disparity in improvement of the clinical
score using these two routes (38). Morando and colleagues also
did not observe the significant difference when they compared
the clinical course of mice IV injected with those treated
intrathecally (IT) (39). The meta-analysis by Yang and
colleagues did not find a significant difference in the effect size
with regard to the dose and the delivery methods of MSCs (12).
Inversely, we observed that a high dose of MSCs (>1 x 10°)
improved the functional and histopathological outcomes better
than a low dose (<1 x 10°). Meanwhile, the delivery route
contributed to apparent differences in the clinical score and
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TABLE 3 | Stratified meta-analysis of remyelination.

Categories No. of studies Pooled SMD (95% CI)
Species
Mice 52 -2.21 (-2.76, -1.66)
Rats 6 -3.51 (-5.48, —-1.54)
Gender
Female 39 -1.70 (-2.15, —-1.24)
Male 13 -4.41 (-6.52, —2.31)
NR 6 -2.84 (-4.22, —-1.50)
Methods of MS induction
MOG 39 -2.05 (-2.60, —1.49)
Cuprizone 10 -2.97 (-4.98, -0.96)
GPSCH 5 —4.36 (-7.17, —1.55)
PLP 4 -2.53 (-3.57, -1.48)
MSC source
Xenogeneic 24 -1.49 (-2.18, -0.80)
Syngeneic 30 -2.80 (-3.58, —-2.01)
Allogeneic 4 -5.24 (-2.84, -1.79)
MSC type
BM-MSC 32 -2.74 (-3.53, -1.95)
ASC 17 -1.38 (-2.11, -0.64)
ES-MSC 1 -4.27 (-6.97, —1.56)
PMSC 1 —-7.60 (-12.05, -3.15)
UC-MSC 5 -2.02 (-3.76, -0.27)
AMC 1 -3.15 (-4.75, —1.56)
meMSC 1 -2.40 (-3.89.-0.92)
Dose
>1 % 10° 13 —2.79 (-4.44, -1.15)
<1x10° 44 —2.04 (-2.53, -1.56)
NR 1 —-10.94 (-14.00, -7.88)
Delivery route
v 33 -2.33 (-2.88, -1.77)
ICV 6 -3.23 (-5.03, -1.43)
IN 3 -5.19 (-10.08, —-0.30)
ICP 1 -5.71 (-8.42, -3.01)
P 14 -1.13 (-2.31, 0.05)
IT 1 -4.63 (-6.13, -3.13)
Administration time
>14 days 18 -1.88 (-2.91, -0.85)
<14 days 37 —2.46 (-3.08, -1.85)
NR 3 -3.18 (-5.21, -1.15)
Duration of Follow-up
30-60 days 44 -2.15 (-2.75, -1.55)
>60 days 9 -3.23 (-4.66, —1.80)
<30 days 5 -2.78 (-5.03, -0.52)

p-Value Heterogeneity test Between groups
p-value
Q statistics P p-Value
0.21
0.000 275.35 81.4% 0.000
0.000 23.59 78.8% 0.000
0.02
0.000 111.18 65.5% 0.000
0.000 150.59 92.0% 0.000
0.000 21.88 77.2% 0.000
0.33
0.000 166.04 77.0% 0.000
0.004 96.20 90.6% 0.000
0.002 22.66 82.3% 0.000
0.000 4.26 29.6% 0.235
<0.0001
0.000 122.22 81.2% 0.000
0.000 141.95 79.6% 0.000
0.000 1.77 0.0% 0.622
0.01
0.000 201.50 84.6% 0.000
0.000 54.56 70.7% 0.000
0.002 NA NA NA
0.001 NA NA NA
0.024 12.82 68.8% 0.012
0.000 NA NA NA
0.000 NA NA NA
<0.00001
0.001 89.98 86.7% 0.000
0.000 168.65 74.4% 0.000
0.000 NA NA NA
0.001
0.000 116.40 72.4% 0.000
0.000 17.35 71.2% 0.004
0.037 36.12 94.5% 0.000
0.000 NA NA NA
0.060 81.59 84.1% 0.000
0.000 NA NA NA
0.46
0.000 115.48 85.3% 0.000
0.000 158.94 77.3% 0.000
0.002 6.13 67.3% 0.047
0.36
0.000 229.87 81.2% 0.000
0.000 44.88 82.2% 0.000
0.016 23.38 82.9% 0.000

NR, not recorded; MOG, myelin oligodendrocyte glycoprotein; GRSCH, guinea pig spinal cord homogenate; PLP, proteolipid protein; BM-MSC, bone marrow-derived mesenchymal stem
cell: ASC, adipose tissue-derived mesenchymal stem cell; ES-MSC, embryonic stem cell-derived mesenchymal stem cell: PMSC, placenta-derived mesenchymal stem cell; UC-MSC,
umbilical cord mesenchymal stem cell; AMC, amnion mesenchymal stem cell; meMSC, murine endometrial-derived mesenchymal stem cell; 1V, intravenous; ICV, intra-cerebroventricular;
IN, intranasal; ICP, intra-cerebroparenchymal; IP, intraperitoneal; IT, intrathecal; NA, not available.

remyelination. For the clinical score, IT injection seems to show
the greatest efficacy, followed by intra-cerebroventricular (ICV),
IP, intranasal (IN), and IV injections. In addition, ICV injection
was discovered to be the most effective administration route to
promote remyelination in comparison with IT, IV, or IP
injection. IN and intra-cerebroparenchymal (ICP) injections
were also favorable, but large CIs and small sample sizes
diminished the robustness of the data.

Time of Administration and Duration of Follow-Up
It is also considerable to determine the role of MSCs in the light
of the time of administration and duration of follow-up. In

studies that explored the therapeutic effects of MSCs in MS
models, MSCs were administered at the onset, peak, or after EAE
stabilization. The optimal time of MSC transplantation was
controversial. Several studies demonstrated the ability of MSCs
to promote functional recovery regardless of the injection time
(22, 40). Conversely, other research concluded that the beneficial
effect of MSCs was negatively correlated with the time of
administration. More specifically, MSC injection induced a
significant improvement in the clinical score in animals
suffering from EAE at the onset or peak of the disease, with
more sustained effects being documented at disease onset (41,
42). Later administration of MSCs had little or no effect on
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clinical signs or remyelination (41, 43, 44). However, our meta-
analysis showed a positive correlation between the effect size and
administration time in the clinical score, but not for
remyelination. And no difference in the effect size of follow-up
duration was observed.

The findings of subgroup analysis are speculative because
they are based on the reanalysis of published data, rather than the
data from a well-designed randomized controlled trial.
Therefore, although the subgroup analysis provided updated
evidence, the results of subgroup analysis should be viewed
with caution.

Mechanisms of the MSC Therapies in MS

Studies have suggested that MSC transplantation may aid in
neuroprotection, anti-inflammation, neuroregeneration, and
tissue repair in animal models of MS (45, 46). MSCs confer
benefit mainly via the release of soluble trophic factors that
stimulate intrinsic tissue restoration mechanisms and the
production of EV that enables cell-to-cell communication.
MSC transplantation results in reduction of demyelination
and axonal loss through production of neurotrophic factors, such
as fibroblast glial factor (FGF), brain-derived neurotropic factor
(BDNF), and neural growth factor (NGF) (47). Increased
oligodendrogenesis, remyelination, and neurogenesis can be
attributed to the neuroregeneration ability of MSCs. The anti-
inflammation effect of MSCs not only aids the decline in the
numbers of inflammatory cell infiltration but also modulates
systematic immune cells (48). Barati et al. noted that MSC

Funnel plot with pseudo 95% confidence limits

.,|;‘; .
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FIGURE 4 | The evaluation of publication bias. Funnel plots for clinical score (A) and remyelination (B). Each dot in the figure represents a study, with the y-axis
signifying study quality and the x-axis showing the study results. (C, D) Trim-and-fill method was used to evaluate the missing studies in clinical score and

infusion diminished neuroinflammation by suppressing
activation of astrocytes and microglia as well as promoting a
shift of proinflammatory subtypes of microglia (M1) into anti-
inflammatory microglia (M2) (49). In addition, another study
demonstrated that MSCs attenuated MS by reducing oxidative
stress and improving mitochondrial homeostasis (50). Overall,
the mechanism of MSC-derived therapeutic effects in MS is
depicted in Figure 5.

Clinical Perspective

To date, a considerable number of small clinical trials involving
MSCs in MS with inspiring results have been completed (51-56).
Those trials have supported the safety, tolerability, and feasibility
of MSC transplantation in MS disorders. Most studies used
autologous BM-MSC, and allogeneic PMSC or UC-MSC was
applied in a few trials. The infusion routes of MSCs were IV and
IT. However, the optimal choice of the source, dose, and
transplantation route of MSCs is inconclusive. Data have
shown that systemic delivery of MSCs provided safer and
beneficial effects (57), but a recent double-blind phase II trial
involving 48 patients with PMS found that IT injection was more
efficacious than IV injection for several parameters of the
outcome (58). Intriguingly, another open prospective study,
which was conducted by the same group, noted that multiple
IT injections of autologous MSC in patients with PMS were
shown safe at the short/intermediate term and induced clinical
benefits (59). As many open issues are still unsolved, larger and
longer-term trials are warranted to determine the more favorable

Frontiers in Immunology | www.frontiersin.org

August 2021 | Volume 12 | Article 711362


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

He et al.

Efficacy of MSC in MS

# Neuroprotection

_e Neuroregeneration and
tissue repair

L /A
o O
= \
Anti-inflammation and
MSC immunomodulation

*® Antioxidant

Decrease demyelination and axonal loss
Produce neurotrophic factors e

Increase oligodendrogenesis and N
remyelination .
neurogenesis k

Functional

recovery
Reduce inflammatory cells infiltration
Modulate systematic immune cells o2
Promote M1 shift into M2 L
Suppress astrocyte activation

Reduce oxidative stress /
Improve mitochondrial homeostasis ‘¢

M2, anti-inflammatory subtypes of microglia.

parameter of MSC transplantation and to further evaluate the
potential of cellular therapy in MS.

Limitations

The conclusions from our systematic review were limited by
several factors. Firstly, because of a lack of rigor in study design
or methodology in parts of a particular study, our conclusions
are tempered by the low quality of the studies included in our
analysis. Secondly, all data were extracted from the eligible
studies that published as original research; therefore, we did
not gain access to unpublished results including conference
abstract, and this may contribute to the obvious publication
bias. Thirdly, there was considerable heterogeneity in statistical
analysis across studies.

CONCLUSION

In summary, our systematic review and meta-analysis provide a
comprehensive, up-to-date evaluation of the available data
concerning the efficacy of MSC therapy for MS in preclinical
settings. MSC administration demonstrated a considerable
beneficial effect with regard to functional outcome and
histopathological outcome. Future preclinical studies should
consider the study design and methodological rigor. A well-
designed study will contribute to a better determination of the
effect regarding MSC therapy in MS treatment.
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