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Macrophage polarization to the M1-like phenotype, which is critical for the pro-
inflammatory and antimicrobial responses of macrophages against intracellular
pathogens, is associated with metabolic reprogramming to the Warburg effect and a
high output of NO from increased expression of NOS2. However, there is limited
understanding about the uptake and metabolism of other amino acids during M1
polarization. Based on functional analysis of a group of upregulated transporters and
enzymes involved in the uptake and/or metabolism of amino acids in Mycobacterium
tuberculosis-infected macrophages, plus studies of immune cell activation, we postulate a
coherent scheme for amino acid uptake and metabolism during macrophage polarization
to the M1-like phenotype. We describe potential mechanisms that the increased arginine
metabolism by NOS2 is metabolically coupled with system L transporters LAT1 and LAT2
for the uptake of neutral amino acids, including those that drive mTORC1 signaling toward
the M1-like phenotype. We also discuss the underappreciated pleiotropic roles of
glutamine metabolism in the metabolic reprogramming of M1-like macrophages.
Collectively, our analyses argue that a coordinated amino acid uptake and metabolism
constitutes an integral component of the broad metabolic scheme required for
macrophage polarization to M1-like phenotype against M. tuberculosis infection. This
idea could stimulate future experimental efforts to elucidate the metabolic map of
macrophage activation for the development of anti-tuberculosis therapies.

Keywords: amino acid transporters, arginine metabolism, glutaminolysis, immunometabolism, M1 polarization,
Mycobacterium tuberculosis, redox homeostasis, system L transporters
INTRODUCTION

Macrophage activation, in response to infection by intracellular pathogens or to treatment with
lipopolysaccharide (LPS) and/or interferon-g (IFN-g), results in M1-like or M1 phenotype
characterized by high level-expression of pro-inflammatory and antimicrobial molecules (1–3). One
of the key events accompanying M1 polarization is a programmed metabolic remodeling to the
glycolysis pathway, reminiscent of the Warburg effect in cancer cells, to meet the increasing demand for
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energy, NADPH, and precursors for cell growth, differentiation and
synthesis of effector molecules (4–6). This metabolic reprograming
is an essential part of the defense mechanism of macrophages
against infection by intracellular pathogens, such asMycobacterium
tuberculosis (Mtb) (7–9), the etiological agent of tuberculosis.
Enhanced arginine uptake by the M1-like macrophage and its
metabolism by the inducible nitric oxide synthase 2 (NOS2),
which results in production of large amounts of NO, is
indispensable for controlling many intracellular pathogens,
including Mtb (10–12). Emerging evidence indicates that there is
also an increased need for other amino acids, in particular those
essential, for multiple cellular processes of activating immune cells,
including energy metabolism, protein synthesis, redox balance, and
cell growth and differentiation (13–16). For example, the uptake
and metabolism of the essential neutral amino acids leucine and
methionine are critical for clonal expansion and differentiation of
effector T cells (17, 18). In addition, elevated tryptophan catabolism
in macrophages due toMtb-induced expression of indoleamine 2,3-
dioxygenase 1 represses the ability of host immune cells to control
the infection via inhibition of T cell proliferation (19). Despite this
progress, our overall understanding of amino acid uptake
mechanism and the contribution of their metabolism to the
metabolic reprogramming required for macrophage polarization
remains sketchy.

Membrane amino acid transporters mediate the uptake of amino
acids from the extracellular milieu and/or their transfer between
cellular compartments during immune cell activation (15). Abnormal
expression and function of certain amino acid transporters are linked
to a wide range of pathologies (20). Based on their sequence similarity
or substrate specificity and transport mechanism, amino acid
transporters are classified into various solute carrier (SLC) families
or into various transport systems, respectively (20, 21). Among these,
the SLC7 family comprises cationic amino acid transporters (CATs)
of the y+ system and members of the L-type amino acid transporter
(LAT) system, the y+L system, and the x−c system (22). CATsmediate
sodium-independent transport of cationic L-amino acids, such as
arginine and lysine (23). Transporters of system L, y+L, and x−c all
function with a glycoprotein, 4F2HC, encoded by SLC3A2/Slc3a2,
thereby forming the heteromeric amino acid transporters (HATs)
(24, 25). HATs mediate exchange at a 1:1 stoichiometry with a broad
spectrum of substrates that range from neutral amino acids [in the
case of LAT1 (SLC7A5) and LAT2 (SLC7A8)] to negatively charged
amino acids [in the case of the x−c system xCT (SLC7A11)]. Given
that HATs require intracellularly accumulated amino acids and/or
metabolites as export substrates for the exchange of amino acids from
the extracellular milieu, their upregulation during immune cell
activation suggests a close functional association of HATs with the
metabolic program of activating immune cells. For example, LAT1-
mediated uptake of large, essential neutral amino acids, including
leucine, is required for the metabolic reprogramming of effector T
cells to support their proliferation and differentiation (18). Moreover,
upregulated xCT expression helps maintain redox balance and
prolong the survival of activated macrophages by mitigating
damage caused by oxidative stress (26). However, the expression
and function of amino acid transporters in amino acid uptake and
metabolism during macrophage polarization are still understudied.
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Based on the biochemical properties of amino acid transporters
and emerging evidence from transcriptomics and metabolomics
studies of activation of bone marrow-derived macrophages
(BMDMs), such as by infection with Mtb or with LPS treatment
(27–30), we propose the idea that increased expression of several
types of transporters and enzymes involved in the uptake and/or
metabolism of amino acids are metabolically coordinated to support
macrophage polarization toward the M1-like phenotype. We
discuss potential mechanisms that a functional coupling between
increased arginine metabolism and system L transporters (LAT1
and LAT2) drives the uptake of neutral amino acids, including those
required for M1 polarization. We further discuss the role of
glutamine metabolism in the metabolic reprogramming of M1-
like macrophages, which has usually been associated withM2 rather
than with M1 macrophages.
ARGININE UPTAKE, METABOLISM
AND REGENERATION

As a conditionally essential amino acid, arginine plays an
important role in innate and adaptive immunity. Its uptake
from the extracellular milieu, mediated by cationic amino acid
transporter 2 (CAT2), a member of system y+ (31), functions as a
critical regulator of immunity under inflammatory conditions
(32, 33). Cat2 deficiency is associated with poor macrophage
activation phenotypes, resulting in decreased NO production
fromNOS2 inM1macrophages, as well as reduced production of
polyamines and proline by arginase 1 in M2 macrophages (12,
34). Moreover, during in vivo infection with pathogens that
induce highly polarized Th2 or Th1 responses (33), CAT2 is a
critical factor for the development of protective Th1-dependent
immunity (33, 35), suggesting an important role of extracellular
arginine for expression of host adaptive immunity.

Transcriptomics data from Mtb-infected BMDMs reveals a
robust upregulation in the expression of Cat2 within 4 - 12 hours
of infection (27–29, 36). Since Cat2 upregulation is concurrent with
the timing of M1-like polarization and upregulation of Nos2 (28,
29), as well as with metabolic reprogramming to the Warburg effect
(7, 28, 36–38), CAT2 may have an important role in Mtb induced
M1-like polarization (Figure 1). This notion is supported by NO
production from NOS2 of M1 macrophages or IFN-g–stimulated
BMDMs infected with M. bovis BCG coming predominantly from
arginine taken up by CAT2, and accompaniment of active secretion
of most of citrulline, the product of NOS2, into the extracellular
milieu (39, 40) (Figure 1). During mycobacterial infection in vivo,
the drastic increase of citrulline in infected lungs, which is associated
with the expression of host adaptive immunity (41), is also
consistent with the essential role of NOS2 in the mediation of the
antimycobacterial response.

The importance of arginine in immune cell function is further
supported by the observation that activated immune cells
actively recycle citrulline for the regeneration of intracellular
arginine. Citrulline recycling involves the induction of
argininosuccinate synthetase 1 (ASS1), which catalyzes the
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formation of argininosuccinate from citrulline and aspartate.
Argininosuccinate is further lysed by argininosuccinate lyase
(ASL) for the production of intracellular arginine (13, 39, 42).
Under conditions of low arginine availability in the
microenvironment, such as in infection foci, citrulline recycling
is important for the antimycobacterial response by supporting
effector T cell function and sustaining NO production from
activated macrophages (41, 43). The upregulation of Ass1 in
Mtb-infected BMDMs (27, 29), probably indicates decreasing
availability of extracellular arginine as a consequence of early
Cat2 induction, would thus warrant the supply of intracellular
arginine for sustained NO production by NOS2 in activated
macrophages (39) (Figure 1). This notion is supported by the
observation that Ass1-deficient macrophages fail to salvage
citrulline in arginine-scarce conditions, leading to their
inability to control mycobacteria infection (39).

Increased LAT1 expression has been reported to be associated
with citrulline transport to support the effector function of T cells
(42). However, little is known about the metabolic and physiological
roles of active transport of citrulline across the cell membrane in the
Frontiers in Immunology | www.frontiersin.org 3
context of macrophage polarization. Very interestingly, findings
from a recent study using peritoneal macrophages have revealed
additional roles of arginine metabolism in anti-Mtb macrophage
function, which is related to mechanistic target of rapamycin
(mTOR) activation and independent of NO production (44). In
the following sections, we propose potential mechanisms by which
uptake of essential neutral amino acids that are important for M1
polarization are metabolically coupled with the active production
and secretion of citrulline to supportmacrophage polarization to the
M1-like phenotype. We further discuss the involvement of
glutamine metabolism in the metabolic reprogramming of M1-
like macrophages.
UPTAKE OF NEUTRAL AMINO ACIDS
BY LAT1 AND LAT2

In addition to arginine, immune cell activation requires essential
neutral amino acids for effector functions. Uptake of these amino
acids is usually associated with increased expression of particular
FIGURE 1 | Increased arginine uptake and metabolism during M1-like polarization. In addition to the metabolic reprogramming to glycolysis with increased glucose
uptake (GLUT1 & GLUT6) and lactate formation (LDHA) and secretion (MCT4), M1-like polarization is also accompanied by increased uptake and metabolism of
arginine. Increased expression of cationic amino acid transporter 2 (CAT2) mediates the import of arginine from the extracellular microenvironment. Intracellular
arginine is mainly catabolized by upregulated inducible nitric oxide synthetase 2 (NOS2) to NO and citrulline, and the latter is actively secreted to the extracellular
microenvironment. With the decreasing availability of extracellular arginine, NOS2-derived citrulline is recycled for the regeneration of intracellular arginine via
argininosuccinate synthetase 1 (ASS1) (dashed line), which will sustain the NO production by NOS2. GLUT1, glucose transporter 1; GLUT6, glucose transporter 6;
LDHA, lactate dehydrogenase A; MCT4, monocarboxylate transporter 4 (MCT4). Data were derived from references and/or supplementary files
therein (27–30).
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system L and/or y+L transporters. The system L transporters
LAT1 and LAT2 mediate obligatory Na+-independent neutral
amino acid exchange with a 1:1 molar ratio (Figure 2). They
have overlapping (but not identical) substrate selectivity, and
their affinities for a given amino acid on the intracellular side of
the cell membrane are much lower than those on the
extracellular side (25, 45), thus favoring influx of their
substrates. LAT1 has an apparent specificity for large neutral
amino acids, including essential large, branched neutral amino
acids, such as leucine and isoleucine (46). In contrast, LAT2 has
broad substrate selectivity for both large and small neutral amino
acids (47–49). In addition, these two LAT transporters have quite
different apparent affinities for several amino acid substrates. For
Frontiers in Immunology | www.frontiersin.org 4
example, in contrast to LAT1, LAT2 has an apparent high
affinity for glutamine and a low affinity of histidine (50). These
findings underscore the potentially distinct roles of these two
system L transporters for the uptake of particular neutral amino
acids (Figure 2).

In Mtb-infected BMDMs, concurrent with the upregulation
of Cat2, the early induction of Slc7a5, Slc7a8 and Slc3a2 (27–29)
suggests increased uptake of neutral amino acids by both LAT1/
4F2hc and LAT2/4F2hc during M1-like polarization (Figure 2).
LAT1-mediated uptake of the essential neutral amino acid
leucine and its signaling are indispensable for activation of
serine-threonine kinase complex mTORC1 and the subsequent
metabolic reprogramming, clonal expansion, and effector
FIGURE 2 | Functional model of LAT1, LAT2 and xCT amino acid transporters during M1-like polarization. During M1-like polarization, increased need for amino
acids, including essential ones, is met by upregulated amino acid transporters LAT1, LAT2 and xCT. LAT1 and LAT2-mediated uptake of neutral amino acids from
the extracellular environment requires an intracellularly accumulated neutral amino acid as export substrate to activate the exchange process with a 1:1
stoichiometric ratio. And such intracellular metabolite could be citrulline, which is abundantly produced by the highly upregulated NOS2 and actively secreted by
M1-like macrophages. The uptake of neutral amino acids, such as leucine and glutamine, drives the activation of mTORC1, which is critical for multiple processes of
M1-like polarization, including synthesis of macromolecules. Alternatively, the apparent differential affinities of LAT1 and LAT2 with certain neutral amino acid
substrates also suggest a potential functional cooperation between the two LAT transporters in which LAT2-mediated accumulation of intracellular glutamine could
serve as an export substrate of LAT1 (dashed line), as seen in cancer cells, to drive the uptake of essential neutral amino acids for which LAT1 has high affinity, such
as histidine. The uptake of cystine by xCT, activated by increased production of glutamate from mitochondrial glutaminolysis with increased GLS (glutaminase) and
the reduction of intracellular cystine to cysteine, participates in glutathione (GSH) synthesis, contributing to the redox homeostasis of M1-like macrophages. Findings
from recent report that arginine metabolism-mediated glycolysis and mTOR activation are required for Mtb control in the absence of NO support the additional role of
arginine metabolism, as reported in (44). AA, amino acids. Data were derived from references and/or supplementary files therein (27–30).
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differentiation of activated T cells (18). Similarly, the LAT1-
mediated uptake of methionine, another essential neutral amino
acid, functions as a main rate-limiting step during T cell
activation for protein synthesis and the methionine cycle,
which supplies methyl donors for the dynamic nucleotide
methylation and epigenetic reprogram (17, 51). Still unknown
are the specific amino acid substrates of LAT2 and their distinct
functions in the metabolic reprogramming of immune cells.
However, the apparent high affinity of LAT2 for certain amino
acids, such as glutamine (50) plus its upregulation in Mtb-
infected BMDMs, suggest a potential role for LAT2 in the
uptake of distinct neutral amino acids that are important for
M1-like polarization. Thus, increased expression of both LAT1
and LAT2 during Mtb infection of macrophages would meet the
demand of M1-like macrophages for various neutral amino
acids, especially essential ones.

An open question regarding the operational mechanism of system
L transporters is the identity of intracellularly accumulated neutral
amino acids that are needed to activate the system L transporters by
serving as their efflux substrate (45). Since LAT1-mediated citrulline
transport is critical for the activation of effector CD4+ and CD8+ cells
(42), it is plausible that citrulline production and its active secretion
across the cell membrane ofMtb inducedM1-like macrophages fulfill
similar important metabolic functions during macrophage activation,
as discussed in the following sections.
xCT FOR REDOX HOMEOSTASIS

Activation of innate and adaptive immune cells to the pro-
inflammatory phenotype is associated with production of reactive
oxygen and nitrogen species, molecules that are important for redox
signaling and regulation of immune responses (52). Maintaining
redox balance of activated immune cells is essential for preventing
the deleterious effects of cytotoxic bioactive molecules. Synthesis of
glutathione (GSH), a key small-molecule intracellular antioxidant,
functions as one of the critical modulators of intracellular redox
homeostasis by countering the increased levels of oxidative stress of
activated immune cells (26, 53, 54). GSH synthesis is associated with
increased expression of xCT, which, together with 4F2hc, mediates
Na+-independent and electroneutral import of extracellular anionic
cystine with high affinity against export of intracellular glutamate
(55) (Figure 2). The exchange is driven by intracellular reduction of
cystine to cysteine and the high concentration of intracellular
glutamate (56, 57). Cysteine, the reduced form of cystine, together
with glutamate and glycine, participates in the synthesis of
GSH (Figure 2).

Mtb infection of BMDMs leads to an increasing demand for
GSH to protect activated macrophages from the cytotoxic
bioactive molecules. Consequently, expression of genes
encoding xCT for cystine import and enzymes involved in
cystine reduction and glutathione synthesis is increased to
meet this demand (36). As for the other substrates for GSH
synthesis, glycine, a small neutral amino acid, can be imported by
LAT2 (49), and it can also be produced from glycolysis
intermediate 3-phosphoglycerate-derived intracellular serine
Frontiers in Immunology | www.frontiersin.org 5
(58). Glutamate can come predominantly from the
glutaminolysis pathway in mitochondria (Figure 2). This is
consistent with the upregulation of Gls/GSL in Mtb-infected
BMDMs or human macrophages (27, 28, 59), whose product
glutaminase catalyzes a key rate-limiting step of glutaminolysis
with the formation of glutamate. We also observed a rapid and
extensive depletion of glutamine from the culture medium
during the early phase of BMDM infection by Mtb (up to 12
hours post-infection, corresponding to the M1-like polarization)
in comparison to a small amount of glutamate secreted into the
culture medium (our unpublished data). The requirement of
glutamine for the macrophage response to Mtb infection is
further demonstrated by findings that human monocyte-
derived macrophages (hMDMs) display decreased cytokine
responses when cultured in medium devoid of glutamine or
with the inhibition of glutamine utilization by glutaminase-
specific inhibitors, such as BPTES and C968 (59).

As the most abundant and versatile amino acid in the body,
glutamine is consumed by immune cells at a rate similar to or
higher than glucose. Glutamine has been reported to be mainly
associated with M2 macrophages based on transcriptional and
metabolic profiling and analysis (60). However, the sampling and
analysis that were carried out at or after 24 hr-treatment of
BMDMs by LPS and IFN-g (for M1) or IL-4 (for M2) could
have skewed the conclusion of glutamine metabolism toward an
association with M2 polarization. This is because, as shown by
transcriptional (28, 36) and metabolomics studies [supplemental
data file of dynamic changes of metabolites during macrophage
polarization in (30)], macrophage polarization to the M1-like
phenotype, either induced by pathogen infection or by ligand
signaling, such as by LPS and/or IFN-g, occurs at up to 12 hrs
post-treatment or infection. Thus, analyses carried out at or
beyond 24 hrs post-treatment may not fully represent the
immunometabolic state of M1-like but rather a transitioning
state toward M2 macrophages, as evidenced by the expression of
M2 markers (60). The different signaling pathways involving Mtb
or LPS that resulted in differential immunometabolic properties of
hMDMs, as reported (37), could be a contributing factor for the
differential response in these cells. Involvement of glutamine in
M1-like polarization is shown by increased enrichment of the
tricarboxylic acid (TCA) cycle intermediate 13C4 succinate from
13C5 glutamine metabolomics study in LPS-activated BMDMs at 3
hrs post treatment (4); and glutamine-derived succinate functions
as signaling molecules to promote the HIF-1a-mediated metabolic
reprogramming of macrophages to glycolys i s and
proinflammation (4, 61). In proliferating cells, glutamine fulfills
pleiotropic functions, including anaplerotic TCA cycle substrates,
nucleotide synthesis, and synthesis of aspartate, to support cell
growth and cellular redox homeostasis (62, 63). The observed
increased dependence on glutamine in Mtb-infected hMDMs or
THP1 cells at 18 hrs p.i supports the involvement of glutamine in
macrophage activation, while the contribution of glutamine to
macrophage polarization to the M1, M2 or both was not clearly
defined (64). The specific pathways involving glutamine
metabolism contributing to the M1 and/or M2 polarization can
be further dissected in future studies using therapeutic
July 2021 | Volume 12 | Article 711462
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compounds, such as small molecule inhibitors BPTES, C968 and
CB-839 targeting glutaminase (59, 62), and 13C and 15N glutamine
isotope tracing metabolomics.
METABOLIC INTERPLAY BETWEEN
ARGININE METABOLISM AND SYSTEM
L TRANSPORTERS DURING M1-LIKE
POLARIZATION

Uptake of amino acids by various membrane transporters has been
postulated to be a coordinated process in response to the metabolic
and physiological demands of the cells. It is well known that apart
from glucose, essential neutral amino acids are indispensable for cell
growth and duplication during cell proliferation (65). Their uptake
from the extracellular milieu is usually associated with increased
expression of membrane transporters, including system L
transporters and a neutral amino acid transporter SLC1A5 (66,
67). Functional coupling between LAT1 and SLC1A5 has been
identified as a critical process for the unidirectional uptake of
essential neutral amino acids required for cell growth and
proliferation in cancer cells. Specifically, SLC1A5 mediates the
influx of glutamine, which then activates the uptake of large
essential amino acids, including leucine, by LAT1 by serving as its
intracellular efflux substrate (67, 68). Consequently, the influx of
large essential amino acids, such as leucine, together with glutamine,
drives the mTORC1 activation and the metabolic reprogramming
required for cell growth (68–70).

During Mtb infection, the downregulation of Slc1a5/SLC1A5 in
both murine and human (27, 59) suggests that SLC1A5 may not be
the major transporter for the uptake of glutamine in M1
macrophages. Instead, the increased expression of Slc7a8/Lat2 at
early stage of macrophage infection from our analysis, the high
affinity of LAT2 for glutamine (50), and the critical role of LAT2 in
glutamine-dependent mTOR activation for the metabolic
programming of cancer cells (71), suggest that LAT2 could be a
main player in glutamine uptake by Mtb induced M1-like
macrophages. Since LAT2 function requires an intracellularly
accumulated neutral amino acid as an efflux substrate for the
uptake of glutamine and other neutral amino acids, an ideal and
metabolically suitable candidate that meets the criteria could be
citrulline. This compound is made in abundant quantity by
upregulated NOS2 and actively secreted to the extracellular milieu
by M1 or M1-like macrophages (39, 40) [also refer to supplemental
data in (30)]. The uptake of glutamine via LAT2-mediated
citrulline/glutamine exchange could also activate LAT1 for the
uptake of other large essential amino acids, especially those for
which LAT1 has high affinity, by serving as its efflux substrate
(Figure 2). This model of amino acid uptake via antiporters, such as
system L transporters involving abundant glutamine for the uptake
of essential amino acids, is consistent with the notion that glutamine
serves as the cellular currency for the exchange (72). Another
probable functional coupling scenario between arginine
metabolism and system L transporters is that citrulline can also
serve directly as the export substrate of LAT1 for the uptake of
essential amino acids, given that citrulline has been identified as a
Frontiers in Immunology | www.frontiersin.org 6
substrate of LAT1 (42) (Figure 2). Thus, the working model for the
functional coordination between arginine metabolism and system L
transporters specifies that the activation of both LAT1 and LAT2
transporters by NOS2-derived citrulline, as an exchange substrate,
results in the uptake of neutral amino acids, especially essential ones.
This in turn leads to the activation of the mTORC1 pathway, such
as by leucine and glutamine (68, 69) and metabolic reprogramming
of M1-like macrophages (Figure 2). Indeed, the observations that
arginine metabolism-mediated glycolysis and mTOR activation are
required for Mtb control in the absence of NO support the
additional role of arginine metabolism (44), as proposed in our
model (Figure 2). Future studies combining genetics,
metabolomics, and pharmacological approaches will be necessary
to validate the proposed functional coupling of LAT transporters
and arginine metabolism during M1 polarization. Since activated
macrophages vigorously recycle citrulline when extracellular
arginine level is low (43), it also will be interesting to investigate
the specific role of these transporters in citrulline import in order to
generate intracellular arginine.
CONCLUDING REMARKS

Our analyses suggest that functional cooperation among various
aminoacid transporters in theuptake andmetabolismof aminoacids
constitutes an integral component of themetabolic remodel program
ofM1-likemacrophages. In particular, the involvement of glutamine
in the metabolic reprogramming during macrophage activation
underscores the important role of glutamine as an important
carbon and nitrogen source in M1-like macrophages. This
immunometabolic switch accompanying M1-like polarization at
early phase of host-pathogen interaction is in agreement with
reduction of Mtb CFU in infected BMDMs (73). Thus, our
understanding offers novel mechanistic insights into the broad
metabolic remodeling program required for macrophage-mediated
immunity, in addition to the known importance of the Warburg
effect. However, our analysis doesn’t address the mechanism by
whichMtbmodulates the immunometabolic switch required for the
pro-inflammatory and antimicrobial response of macrophages to
survive and/or persist in host cells, as shown in a recent study (74),
given the limited studies in this rapidly evolving area of research.
Further, given that different types of macrophages, in particular
recruited vs. resident macrophages, are known to show variable
degrees of immunometabolic responses to Mtb infection and/or
stimuli (8, 74–78), and that macrophage response to infection and/
or stimuli show a dynamic defending and resolution/adaptation
process (28, 36, 64, 79, 80), cautions are warranted to interpret the
immunometabolic programs of different macrophages at different
stages of the infection and/or in responding to different stimuli. A
similar metabolic coupling scenario in the uptake andmetabolism of
amino acids likely exists in in vivo settings, given that a similar set of
genes, including Cat2, Nos2, Ass1, Lat1, Lat2, xCT and Gls was also
upregulated in Mtb-infected mouse lungs, along with the onset of
host adaptive immunity (ourunpublishedobservations). Suchnotion
can be dissected in future studies in the context of the complex
microenvironment ofMtb-infected lungs. In particular, the necessity
for glucose and other nutrients, including amino acids, required for
July 2021 | Volume 12 | Article 711462
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theexpressionofantimicrobial andpro-inflammatoryresponse likely
varies among different immune cell types/subtypes in the
microenvironment at different stages of the infection, which may
manifest a fine-tuning of coordination and/or competition among
nitrogen and carbon metabolic pathways of activated immune cells.
These considerations should be taken into account to define the
immunometabolic features of different immune cells in the in vivo
settings. A better understanding of metabolic strategies of immune
cell activation will lead to the development of immunometabolic
therapeutics with enhanced efficacy againstMtb infection.
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