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Obesity is a metabolic disease characterized by a state of chronic, low-grade inflammation
and dominated by pro-inflammatory cytokines such as IL-6. Indoleamine 2,3-dioxygenase
1 (IDO1) is an enzyme that catalyzes the first step in the kynurenine pathway by
transforming L-tryptophan (Trp) into L-kynurenine (Kyn), a metabolite endowed with anti-
inflammatory and immunoregulatory effects. In dendritic cells, IL-6 induces IDO1
proteasomal degradation and shuts down IDO1-mediated immunosuppressive effects.
In tumor cells, IL-6 upregulates IDO1 expression and favors tumor immune escape
mechanisms. To investigate the role of IDO1 and its possible relationship with IL-6 in
obesity, we induced the disease by feeding mice with a high fat diet (HFD). Mice on a
standard diet were used as control. Experimental obesity was associated with high IDO1
expression and Kyn levels in the stromal vascular fraction of visceral white adipose tissue
(SVF WAT). IDO1-deficient mice on HFD gained less weight and were less insulin resistant
as compared to wild type counterparts. Administration of tocilizumab (TCZ), an IL-6
receptor (IL-6R) antagonist, to mice on HFD significantly reduced weight gain, controlled
adipose tissue hypertrophy, increased insulin sensitivity, and induced a better glucose
tolerance. TCZ also induced a dramatic inhibition of IDO1 expression and Kyn production
in the SVF WAT. Thus our data indicated that the IL-6/IDO1 axis may play a pathogenetic
role in a chronic, low-grade inflammation condition, and, perhaps most importantly, IL-6R
blockade may be considered a valid option for obesity treatment.

Keywords: experimental obesity, tryptophanmetabolism, indoleamine 2, 3 dioxygenase 1 (IDO1), tocilizumab (TCZ),
white adipose tissue (WAT), IL-6 receptor (IL-6R), high fat diet (HFD)
INTRODUCTION

IL-6 is a pleiotropic cytokine that modulates a diverse array of functions relevant to hematopoiesis,
tissue homeostasis, metabolism, and immunity (1). Its deregulation is associated with several
diseases, including chronic inflammation, autoimmune disorders, and cancer. Inflammatory
arthritis can indeed be successfully treated with tocilizumab (TCZ), a monoclonal antibody
capable of binding and blocking the IL-6R subunit of the IL-6 receptor (2). In cancer, IL-6 drives
proliferation, survival, invasiveness, and metastasis of tumor cells, while strongly suppressing the
anti-tumor immune response (3).
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Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme that
catalyzes the first, rate-limiting step in the kynurenine pathway,
leading to depletion of the essential amino acid L-tryptophan (Trp)
and production of a series of immunoregulatory molecules
collectively known as kynurenines (4, 5). Both effects – namely,
Trp starvation and kynurenine (Kyn) production – are involved in
the generation of regulatory T cells (6). Highest IDO1 expression
is detectable in dendritic cells (DCs), especially in the presence of
IFN-g (4). In contrast, the presence of a microenvironment
dominated by IL-6 favors IDO1 targeting for proteasomal
degradation via recruitment of the E3 ubiquitin ligase complex
(7). Therefore, in contrast to IFN-g, IL-6 reduces IDO1 half-life,
thus interrupting immunosuppressive mechanisms and favoring a
pro-inflammatory phenotype in the DCs. However, in human
cancer [in which IDO1 is often overexpressed (8)], IL-6 sustains
constitutive IDO1 expression (9). Moreover, inhibition of IL-6
production by tumor cells reduces IDO1 expression and tumor-
mediated immunosuppressive effects (9).

Obesity is a metabolic disorder characterized by a chronic,
low-grade inflammatory state and associated with the
development of numerous comorbid conditions, including
insulin resistance and type 2 diabetes (10). The inflammatory
program is activated early in adipose expansion and during
chronic obesity, permanently skewing the immune system to a
pro-inflammatory phenotype characterized by M1 macrophages
and the production of IL-1b, IL-6, IFN-g, and TNF-a (11).
Interestingly, the chronic, low-grade inflammation associated
to obesity also promotes the development of numerous tumors,
such as liver and colorectal cancer (12). Unexpectedly, in a
previous study, mice fed with a high fat diet (HFD) and
lacking IDO1 expression gained less weight, had a lower fat
mass and better glucose tolerance (13). Depletion of IDO1 was
found to increase the production of protective Trp metabolites
by gut bacteria. Consistent with the observation in mice, obese
patients have lower Trp and higher Kyn in plasma (14).

In the present study, we investigated the possible relationship
between IL-6 and IDO1 in obesity. To do so, we resorted to
HFD-fed mice and found that (i) IDO1 and Kyn production
increase in the stromal vascular fraction of visceral white
adipose tissue (SVF WAT) along weight gain, increased fat
mass, and reduced glucose tolerance and insulin sensitivity;
(ii) administration of TCZ abrogates IDO1 expression and Kyn
production in SVF WAT, greatly reduces weight gain and
adipose tissue hypertrophy, increases insulin sensitivity, and
induces a better glucose tolerance. Therefore, our data
indicated the existence of an aberrant interplay between IL-6
and IDO1 in obesity and the possibility to use IL-6R blockers for
therapeutic purposes in obese patients.
MATERIALS AND METHODS

Mice and In Vivo Treatments
Six- to eight-week-old male C57BL/6 mice were obtained from
Charles River Breeding Laborator ies and used for
pharmacological studies. Ido1−/− C57BL/6 mice were obtained
Frontiers in Immunology | www.frontiersin.org 2
from an internal breeding at the Plaisant S.r.l. animal facility. All
animal studies were approved by the Italian Ministry of Health.
Mice were fed with either a standard diet (SD) (Mucedola Srl) or
high fat diet (HFD) containing 42% fat (Mucedola Srl). HFD was
started at 8 weeks of age and continued for 10 wk or less with ad
libitum access to water and food. Daily food intake was
determined at 8 a.m. by weighing the metal cage top, including
the food. The average WAT weight per mouse was determined
by the ratio of the total weight of the visceral WAT isolated from
mice to the number of mice analyzed in each experimental
group. Six to eight mice were used in each treatment or
control group. Impairment of glucose homeostasis was
investigated by intraperitoneal (i.p.) glucose tolerance testing
(IPGTT) at specific time points of HFD feeding. Briefly, 16−h
fasted mice were administered i.p. with 1 g/kg D-glucose. Blood
glucose concentrations were measured before anesthesia by tail
incision using a digital glucometer (Roche). TCZ (Chugai
Pharmaceutical Co.) or saline was administered i.p. at the dose
of 5 mg/kg (15) every other day for 4 wk, in parallel with the diet-
induced feeding, or twice a week for 6 wk, when the drug
treatment was delayed 2 wk later the starting of HFD diet.
Animals were sacrificed after anesthesia by i.p. administration
of Avertin (125 mg/kg) for ex vivo analyses.
Isolation of SVF and Morphometry
of Adipose Tissues
Visceral white adipose tissue (WAT) was excised from mice and
processed for SVF cell isolation as described (16). Briefly, tissues
were cut into small pieces and digested in 1 mg/ml collagenase P
(Roche) in HBSS for 40 min at 37°C. The digested tissues were
passed through a 100-mm cell strainer to remove debris. After
centrifugation, the floating cell layer and supernatant were
removed and the cell pellet was washed with HBSS. Primary
SVF cells were maintained in DMEM plus 10% FCS. For
histology, 3–4 mm of paraffin-embedded sections of WAT were
stained with hematoxylin and eosin and analyzed by light
microscopy. For quantification of adipocyte size, sections were
analyzed by a DM2500 Leica microscope equipped with Leica
DFC420C digital camera (Leica microsystem). Adipocyte
diameters were measured in 30 adipocytes per section (five
sections for each WAT sample), and data analysis was
performed using Leica Application Suite (LAS v3.8, Leica
microsystems) for digital image processing.

Determination of Insulin Sensitivity in
Primary Hepatocytes
Insulin sensitivity was evaluated in primary hepatocytes isolated
from mice euthanized at the end of the experiment. Specifically,
the liver was cut into small pieces and perfused with a digestion
medium containing 0.8 mg/mL of collagenase type IV (Sigma-
Aldrich) in HBSS for 40 min at 37°C. Hepatocytes were dispersed
in the medium using a pipette and filtered through a 100-mm cell
strainer. After centrifugation, cells were washed with HBSS and
kept in a serum-free medium for 1 h at 37°C before insulin
stimulation. Hepatocytes were treated with 100 nM of insulin
(Sigma-Aldrich) and incubated at 37°C for 5, 15, 30, and 60
July 2021 | Volume 12 | Article 713989
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minutes. Cells were then washed with ice-cold PBS and lysed
with ice-cold RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM
NaCl, 1% Nonidet P-40, 0.25% Na-deoxycholate) supplemented
with Halt Protease inhibitor and Halt Phosphatase Inhibitor
Cocktail (Thermo Scientific™). Cell lysates were immediately
analyzed by immunoblot.

Western Blot Analyses
These procedures were done as described (17–19). Briefly, protein
lysates were subjected to SDS-PAGE and electro-blotted onto 0.2
mm nitrocellulose membranes (Bio-Rad). Membranes were
blocked with 5% non-fat dried milk in TBS and probed with a
primary antibody specific for the protein of interest in
combination with an appropriate horseradish peroxidase-
conjugated antibody (Millipore), followed by enhanced
chemiluminescence (ECL) (Bio-Rad). IDO1 was investigated
with a rabbit monoclonal anti-mouse IDO1 antibody (cv152)
(20) in SVF WAT cells. Akt and its phosphorylated form were
revealed by specific anti-Akt and -pAkt (Ser 473) antibodies (Cell
Signaling) in primary hepathocytes. Anti-b-tubulin (Sigma-
Aldrich) was used as a normalizer.

Kynurenine and Cytokine Determinations
IDO1 activity was measured in terms of the ability to metabolize
Trp to Kyn. Briefly, SVF WAT cells, at the concentration of 1.5 x
106 cells/ml, were mantained in DMEM plus 10% FCS at 37°C in
a humidified 7% CO2 incubator. Kyn concentration in
the culture supernatants was measured by high performance
liquid chromatography after 24 h of incubation (21, 22).
Mouse cytokines (IL-1b, IL-4, IL-6, IL-10, IL-17A, IFN-g,
TGF-b, and TNF-a) were measured in 24−h SVF WAT
culture supernatants by ELISA using specific kits (eBioscience
and Thermo Fisher Scientific) and according to the
manufacturer’s recommendations.

Real-Time PCR
Real-Time PCR (for mouse Ido1, Ucp1, and Gapdh) analyses
were carried out as described (17–19). Briefly, total RNA was
extracted from SVF cells by TRIzol (Invitrogen) and reverse
transcribed to cDNA with QuantiTect Reverse Transcription Kit
(Qiagen). Real-time PCR was performed using SYBR Green
detection and the following specific primers were used: Ido1,
5’- GATGTTCGAAAGGTGCTGC-3’ and 5’-GCAGGAG
AAGCTGCGATTTC-3 ’ ; Ucp1 , 5 ’ -TCAGGATTGG
CCTCTACGAC-3’ and 5’-TGCCACACCTCCAGTCATTA-3’;
Gapdh, 5’-CTGCCCAGAACATCATCCCT-3’ and 5’-ACT
TGG CAG GTT TCT CCA GG-3’. Values (means ± SD of
triplicate determination) were expressed as the ratio of Gapdh-
normalized transcript expression in SVF cells from HFD-fed
mice to Gapdh-normalized transcript expression in SVF cells
from SD-fed mice (calibrator, in which the fold change = 1;
dotted line).

Statistical Analyses
Data are expressed as means, and error bars indicate standard
deviation. At least three biological replicates were used for each
Frontiers in Immunology | www.frontiersin.org 3
measurement. The exact number of biological replicates for a
specific experiment is indicated in the figure legends. A
‘‘biological replicate’’ is a mouse for in vivo studies. A single
value for a biological replicate could be the average of values
from technical replicates of the same biological replicate, but
statistical comparisons were made for averages of values from
biological replicates. All statistical analyses were performed using
Prism version 6.0 (GraphPad Software). Data were analyzed by
two-tailed unpaired Student’s t test or 2-way ANOVA followed
by post hoc Bonferroni’s test, when three or more samples were
under comparison, respectively. Differences were considered
significant with p < 0.05. Data are representative of two-three
independent experiments.
RESULTS

We first examined HFD-fed mice in our setting in terms of
several parameters typical of obesity, such as weight gain, daily
food intake, and glucose tolerance. Mice fed with SD were used as
control. We focused the analysis on WAT in terms of adipocyte
hypertrophy and weight. Moreover, we measured the production
of cytokines by SVFWAT cells [mainly containing macrophages,
hematopoietic progenitor cells (21), and adipocyte precursor
cells (22)]. Starting from 2 wk of feeding, mice on HFD
showed significantly higher weights, which further increased
over time reaching a gain of approximately 18 g in 10 wk
(Figure 1A). At 10 wk of feeding, obese mice were
characterized by a significant higher daily food intake
(Figure 1B), WAT adipocyte diameter (Figure 1C), and
weight (Figure 1D). Moreover, at the same time, obese mice
exhibited higher blood glucose concentrations when challenged
with the glucose tolerance test (Figure 1E). The cytokine profile
of SVF WAT cells revealed a significantly higher release of pro-
inflammatory IL-1b, IL-6, IFN-g, and TNF-a but not of IL-4, IL-
10, IL-17A, and TGF-b in HFD-fed mice (Figure 1F).

In order to evaluate IDO1 expression and activity in our
setting, levels of IDO1 transcript and protein as well as release of
Kyn, the main IDO1 product, were evaluated in SVF WAT cells.
Results showed that, at 10 wk of feeding, obese mice expressed a
6-fold increase in Ido1-encoding transcripts (Figure 2A) and 2-
fold in IDO1 protein expression (Figures 2B, C). Kyn release
also increased 3-fold in the same SVF WAT cells (Figure 2D).
We next compared the obesity parameters in wild-type (WT)
and Ido1−/− mice, both fed with HFD. In agreement with
previous data (13), results showed that IDO1-deficient mice
gain significantly less weight (Figure 2E), and have a better
glucose tolerance (Figure 2F), but a reduced adipocyte
hypertrophy could not be observed (Figure 2G).

Because IL-6 is a cytokine widely recognized to play a major
role in obesity and is also known to exert dichotomic effects on
IDO1 expression (7, 13), we investigated the possible effect of the
cytokine on IDO1 expression and activity in the WAT of diet-
induced obese mice. To do so, we resorted to TCZ, a monoclonal
antibody blocking the activation of the IL-6 receptor already used
by us in nonobese diabetic mice (15). More specifically, WT mice
July 2021 | Volume 12 | Article 713989
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on HFD were administered i.p. with TCZ at the dose of 5 mg/kg
every other day for 4 wk (15). Saline injection and TCZ treatment
of SD fed mice were used as controls. We observed that TCZ
treatment completely abrogated IDO1 expression in terms of
transcripts (Figure 3A), protein (Figures 3B, C), and Kyn release
(Figure 3D) in SVFWAT cells of HFD-fed mice at the end of the
Frontiers in Immunology | www.frontiersin.org 4
feeding. No IDO1 modulation was observed in the SVF WAT
cells of the TCZ-treated mice on SD, thus suggesting a dominant
role of IL-6 in upregulating IDO1 in the adipose tissue of obese
animals. Perhaps most impressively, TCZ administration
rendered the effects of HFD similar to those of a standard diet.
Indeed, no weight gain (Figure 4A) and adipocyte hypertrophy
A B C

D

F

E

FIGURE 1 | Obesity and inflammatory parameters of HFD-fed mice. (A) Body weight (g) of 6-wk male mice fed with high-fat diet (HFD, n = 10) for 10 wk compared
with gender- and age-matched controls fed with a standard diet (SD, n = 10). (B) Average food intake (g) per mouse per day (n = 10, from two independent
experiments). (C) Hematoxylin and eosin staining of visceral WATs (left panel, scale bars of 100 mm.). Analysis of adipocyte diameter (right panel). (D) Average WAT
weight (g) per mouse (n = 5, from two independent experiments). (E) Intraperitoneal glucose tolerance test (IPGTT) after 10 weeks of HFD (n = 5, from two
independent experiments). Glycaemia (mg/dl) was measured at different time points (0, 15, 30, 60, and 120 min) from the administration of glucose. (F) Levels of
cytokines secreted by SVF WAT cells in 24-h culture supernatants. Results are represented as means ± S.D (n = 3 biological replicates, from two independent
experiments). *p < 0.05, **p < 0.01, ***p < 0.001 HFD versus SD, two-tailed unpaired Student’s t test and multiple Student’s t test per row, corrected by post hoc
Sidak-Bonferroni’s method.
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(Figure 4B) could be observed in TCZ-treated obese mice as
compared to untreated obese mice. Likewise, glucose tolerance of
TCZ-treated mice on HFD was indistinguishable from that of
mice on standard diet (Figure 4C). TCZ effects could also be
observed when the drug administration was delayed at 2 wk of
feeding with HFD, when obese mice had already gained weight
(Figures 4D–F). To confirm the glucose tolerance induced by
TCZ treatment as a surrogate marker of insulin responsiveness,
we also evaluated the insulin-induced AKT phosphorylation
(pAKT) (23) in primary hepatocytes from the experimental
groups shown in Figure 4D. In contrast to control mice, very
low levels of pAKT could be induced in the cells from HFD-fed
Frontiers in Immunology | www.frontiersin.org 5
mice. However, the TCZ treatment completely restored insulin
sensitivity by significantly increasing the ratio pAKT/AKT
(Figures 4G, H). In order to see whether TCZ could also have
an impact on browning, i.e., the process by which some
adipocytes within WAT acquire properties of brown
adipocytes (“beiging” effect), the transcript expression of
uncoupling protein-1 [UCP-1; i.e., provoking energy
dissipation by uncoupling respiration from ATP synthesis
(24)] was evaluated. Results showed that the Ucp1 gene
expression was significantly upregulated by TCZ treatment in
WAT of HFD-mice as compared to untreated animals
(Figure 4I). Differently from HFD-fed mice, both insulin-
A B C D

F

G

E

FIGURE 2 | IDO1 expression and activity in diet-induced obesity. Expression of IDO1 gene (A) and protein (B) in SVF WAT cells of HFD versus SD mice after 10
weeks of diet. (C) Quantitative analysis of immunoblots from two independent ex vivo experiments, one of which represented in (B). Data (mean ± S.D., n = 3
biological replicates) represent the ratio of tubulin-normalized IDO1 protein in SVF WAT from mice on HFD to that expressed in SD control counterparts. (D) Levels of
Kyn (mean ± S.D., n = 3 biological replicates) secreted by SVF WAT cells in 24-h culture supernatants. *p < 0.05, **p < 0.01, HFD versus SD (two-tail unpaired
Student’s t test for C, D). (E) Body weight gain of WT and Ido1−/− mice throughout 9 wk of high-fat diet (HFD, n = 10) treatment compared with gender- and age-
matched controls fed with a standard diet (SD, n = 10). *p < 0.05, HFD WT versus HFD Ido1−/− mice, ANOVA followed by post hoc Bonferroni’s method. (F)
Intraperitoneal glucose tolerance test (IPGTT) after 9 wk of HFD (n = 5, from two independent experiments). Glycaemia (mg/dl) at different time points (0, 15, 30, 60,
and 120 min) from the administration of glucose. (G) Hematoxylin and eosin staining of visceral WAT (left panel, scale bars are 100 mm.). Analysis of adipocyte
diameter (right panel). **p < 0.01, ***p < 0.001 HFD versus SD mice per genotype (ANOVA followed by post hoc Bonferroni’s method for F, G).
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induced phosphorylation of AKT in primary hepatocytes and
induction of the Ucp1 gene resulted to be insensitive to TCZ
treatment in mice fed with SD (Supplementary Figure 1).
DISCUSSION

Low-grade, chronic inflammation has also been termed
metaflammation, i.e., an inflammatory state orchestrated by
metabolic cells in response to excess nutrients and energy (25). In
metabolic organs including the liver, pancreas, and adipose tissue,
the interaction of metabolic cells with the stromal components
represents an important determinant in the maintenance of tissue
homeostasis, thus preventing metaflammation.

Apart from its function as an energy storage, WAT is a large
metabolically and immunologically active endocrine organ
Frontiers in Immunology | www.frontiersin.org 6
composed of mature adipocytes in addition to adipose-derived
stem cells, fibroblasts, endothelial cells, and a wide range of
immune cells (i.e., mainly macrophages) that overall constitute
the SVF WAT (26). Depending on the microenvironmental
conditions, adipose-derived stem cells can differentiate into
either white or brown-like adipocyte phenotypes (27). When
caloric intake exceeds caloric expenditure, WAT becomes
hypertrophied and heavily infiltrated by immune cells with a
pro-inflammatory phenotype, causing metaflammation and
obesity often associated with insulin resistance.

In animal models, it is well documented that HFD induces
metaflammation (25), with the production of pro-inflammatory
cytokines such as TNF-a, IL-1b, and IL-6 by the adipose tissue
(28). By using HFD-fed mice as an experimental model of
obesity, we indeed found increased levels of those cytokines as
well as of IFN-g in the culture supernatants of SVF WAT cells
A B

C D

FIGURE 3 | TCZ inhibits IDO1 expression in SVF WAT. (A) Gene transcription of Ido1 in SVF WAT cells after 9 wk of diet. Data (mean ± S.D., n = 3 biological
replicates, from two independent experiments) represent the fold change expression of Gapdh-normalized transcripts in which the calibrator is represented by SVF
WAT from SD-fed mice (fold change = 1; dotted line). (B) IDO1 protein expression in SVF WAT cells and quantitative analysis (C) of immunoblots from two
independent ex vivo experiments, one of which shown in (B). Data (mean ± S.D., n = 3 biological replicates, from two independent experiments) represent the ratio
of tubulin-normalized IDO1 protein expression in SVF cells from HFD-fed mice to that expressed in SVF from animals on SD (n=3 mice per group). (D) Levels of Kyn
(mean ± S.D., n = 3 biological replicates, from two independent experiments) secreted by SVF WAT cells in 24−h culture supernatants. *p < 0.05 (ANOVA followed
by post hoc Bonferroni’s method for A, C, D).
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A B

C D
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I

FIGURE 4 | TCZ effects in diet-induced obesity. (A, D) Body weight (g) of HFD-fed mice receiving TCZ 5 mg/Kg (HFD TCZ, n = 8) or saline (HFD, n = 8)
administered i.p. compared with gender- and age-matched controls fed with a standard diet (SD, n = 8). TCZ treatment started with HFD (A) or 2 wk later (D) and
ended after 4 and 6 weeks, respectively, in A and D (grey box). (B, E) Hematoxylin and eosin staining of visceral WAT (left panel, scale bars of 100 mm.). Analysis of
adipocyte diameter (right panel). (C, F) Intraperitoneal glucose tolerance test (IPGTT) at the end of TCZ treatment. Glycaemia (mg/dl) was measured at different time
points (0, 15, 30, 60, and 120 min) from the administration of glucose. (G, H) Immunoblot and quantitative analysis of insulin-driven AKT phosphorylation in ex vivo
hepatocytes from mice represented in (D). Data from two independent experiments (means ± S.D., n = 3 biological replicates per group) represent the fold change
of the pAKT/AKT ratio in hepatocytes stimulated with insulin at the indicated times in which the calibrator is represented by pAKT/AKT ratio at time 0. (I) Gene
transcription of Ucp1 in SVF WAT cells from mice represented in (D). Data (mean ± S.D., n = 3 biological replicates per group) represent the fold change expression
of Gapdh-normalized transcripts in which the calibrator is represented by samples from SVF WAT from SD-fed mice (fold change=1; dotted line). *p < 0.05,
**p < 0.01, ***p < 0.001; HFD TCZ versus HFD (ANOVA followed by post hoc Bonferroni’s method).
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from obese animals as compared to their counterparts on SD. In
the same cells, such pro-inflammatory profile was accompanied
by high expression and activity of IDO1, an immunometabolic
enzyme involved in Trp metabolism and endowed with potent
anti-inflammatory and immunoregulatory properties when
expressed in DCs (5, 29). As hypothesized previously (13),
high IDO1 expression in WAT of obese mice could be caused
by higher local levels of IFN-g, the potent inducer of the enzyme
(30). Lack of IDO1 expression ameliorated the disease in terms of
weight gain and glucose tolerance but not of adipocyte
hypertrophy, suggesting that Trp metabolism exerts
pathogenetic rather than protective effects in obesity.
Mitigating effects of IDO1 depletion have been ascribed to a
rewiring of host to microbiota Trp metabolism producing a
protective indole derivative and not to the absence of Kyn (13),
the IDO1 product known to promote arterial vessel relaxation
and thus pro-inflammatory effects (31). Therefore, our data
would sustain the importance of the microbiota Trp
metabolism in obesity.

In addition to IFN-g, IDO1 expression can also be
upregulated in macrophages by combinations of TNF-a, IL-1b,
and IL-6 but not by the single cytokines (32). However, in human
tumor cells, IL-6 alone can significantly upregulate the enzyme
expression (9). Because remarkable similarities between adipose
expansion and growth of solid tumors have been observed (22),
we evaluated the in vivo IL-6 dependency of IDO1 expression
and activity in obesity. Administration of TCZ, an IL-6R blocker,
to HFD-fed mice brought the levels of IDO1 transcript and
protein expressions as well as Kyn production to those of control
animals, thus suggesting a major role of IL-6 rather than IFN-g in
upregulating Trp metabolism in the obese adipose tissue.
Perhaps most importantly, the TCZ treatment, either
commenced at 0 or 2 wk of HFD, profoundly changed all the
parameters examined by us for obesity so far, such that HFD-
mice were indistinguishable from their counterparts on SD. Of
note, the monoclonal antibody significantly increased the
expression of Ucp1, suggesting a beiging effect on the adipose-
derived stem cell component of SVF WAT of obese animals that
may greatly contribute to the overall therapeutic effect of TCZ.
Because the TCZ treatment but not IDO1 depletion also reduced
adipocyte hypertrophy, our data suggested that the pathogenic
role of IL-6 in the disease goes beyond IDO1 and other IL-6
−driven mechanisms may be at work.

The incidence of obesity and its serious complications,
particularly cardiovascular and metabolic diseases, is steadily
increasing worldwide. Unfortunately, no truly effective and safe
therapeutic options are available yet. Targeting specific
molecules of metaflammation with biologic drugs in the
adipose tissue may provide novel opportunities of drug
Frontiers in Immunology | www.frontiersin.org 8
treatment. However, blockade of either IL-1b (33) or TNF-a
(34) has shown limited success in obese patients. Besides a few
number of studies in patients with rheumatoid arthritis aimed at
evaluating the effects of obesity on drug effectiveness (35, 36), no
clinical trial has been performed with TCZ in obese patients yet.
In addition to provide the evidence for the existence of a
pathogenetic IL-6/IDO1 axis in obesity, our data suggested that
IL-6 blockade by TCZ may represent a promising therapeutic
option for obese patients.
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