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Chronic lung allograft dysfunction (CLAD) is the main cause of poor survival and low quality
of life of lung transplanted patients. Several studies have addressed the role of dendritic
cells, macrophages, T cells, donor specific as well as anti-HLA antibodies, and interleukins
in CLAD, but the expression and function of immune checkpoint molecules has not yet
been analyzed, especially in the two CLAD subtypes: BOS (bronchiolitis obliterans
syndrome) and RAS (restrictive allograft syndrome). To shed light on this topic, we
conducted an observational study on eight consecutive grafts explanted from patients
who received lung re-transplantation for CLAD. The expression of a panel of immune
molecules (PD1/CD279, PDL1/CD274, CTLA4/CD152, CD4, CD8, hFoxp3, TIGIT, TOX,
B-Cell-Specific Activator Protein) was analyzed by immunohistochemistry in these grafts
and in six control lungs. Results showed that RAS compared to BOS grafts were
characterized by 1) the inversion of the CD4/CD8 ratio; 2) a higher percentage of T
lymphocytes expressing the PD-1, PD-L1, and CTLA4 checkpoint molecules; and 3) a
significant reduction of exhausted PD-1-expressing T lymphocytes (PD-1pos/TOXpos) and
of exhausted Treg (PD-1pos/FOXP3pos) T lymphocytes. Results herein, although being
based on a limited number of cases, suggest a role for checkpoint molecules in the
development of graft rejection and offer a possible immunological explanation for the
worst prognosis of RAS. Our data, which will need to be validated in ampler cohorts of
patients, raise the possibility that the evaluation of immune checkpoints during follow-up
offers a prognostic advantage in monitoring the onset of rejection, and suggest that the
use of compounds that modulate the function of checkpoint molecules could be evaluated
in the management of chronic rejection in LTx patients.
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INTRODUCTION

Lung transplantation (LTx) is a valuable therapeutic choice for
selected patients with end-stage respiratory failure. Unfortunately,
LTx has a relatively poor long-term prognosis, considering that 6.7
years is the median survival of patients transplanted between 2010
and 2017 (1). The most common cause of this high mortality is
chronic lung allograft dysfunction (CLAD), a clinical condition
characterized by progressive and irreversible decline in lung
function, which leads to retransplantation or, more often, death.
CLAD includes at least two well described clinical entities:
bronchiolitis obliterans syndrome (BOS) and restrictive allograft
syndrome (RAS), the latter being associated with the worst
prognosis. BOS and RAS have different functional pictures,
pathological figures, and radiological findings (2); their
pathogenesis is poorly understood and a specific therapy is not
available yet. Although the mechanisms leading to BOS or RAS are
unknown, similar pathways involving innate immunity, antibody-
mediated rejection, and cellular rejection are likely to be responsible
for their pathogenesis.

In solid organ transplantation, lungs are the only grafts that are
open to external environment: air pollution, bacteria, and viruses
can directly damage the recipient alveolar cells and bronchial
epithelium, and activate dendritic cells. Therefore, activation of
the innate and the adaptive immune responsesmakes the lung graft
a peculiar local environment (3, 4). Several studies have addressed
the role of dendritic cells, macrophages, T cells, donor specific
antibody, anti-HLA antibodies, and interleukins in chronic
rejection and CLAD (5–7), but the possible role of immune
checkpoint molecules expression and function in this
phenomenon has not yet been analyzed. Sporadic experiences
with immune checkpoint inhibitor treatments of kidney and
heart transplanted patients suffering from neoplastic diseases
have shown that the use of these molecules results in the rapid
development of severe rejection (8). These observations underline
the need to better understand the possible role of immune
checkpoint molecules in transplantation, and in particular in LTx.
Takahashi andco-workers demonstrated inaLTxanimalmodel the
specific behavior of CD8pos T lymphocytes in inducing tolerance.
The absenceofPD-1onsuch lymphocyteswasobserved to favor the
creation of prolonged interactions between CD8pos T cells and
CD11cpos graft-infiltrating dendritic cells. This favored the
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differentiation of CD8pos T lymphocytes into effector memory
phenotype, resulting in acute graft rejection (9). We conducted
the present retrospective pilot observational study on lungs
explanted during re-transplantation (re-LTx) in patients with
BOS or RAS to gain new insights into the possible role of
immune checkpoint in lung allograft tolerance.
MATERIALS AND METHODS

We conducted an observational pilot retrospective study on lung
grafts explanted during re-LTx for CLAD in our institution
(Foundation IRCCS Ca’ Granda-Ospedale Maggiore Policlinico
of Milan) in eight consecutive recipients between 2014 and 2019
(Table 1). As controls, we used six normal lung parenchyma
from patients surgically resected for lung cancer.

The pathologists (SF, GC, and VV) were blinded to the
clinical course of patients. The Hospital Institutional Review
Board approved the study (ref. 1693/2018), and all patients
signed a written consent for biobanking of blood and tissues
samples. At the enrollment in the present study, all the clinical
cases were carefully reviewed by checking functional parameters,
medical history, and pathological reports: two different
clinicians, blinded to each other and to the patients’ identity,
confirmed the diagnosis of RAS in four patients and grade 3–4
BOS in the remaining four according to pulmonary function and
ISHLT radiological criteria (10, 11). The patients’ clinical history
included treatment with pulse steroid and/or steroid taper on
whenever any grade of acute rejection was found on
transbronchial biopsy at CLAD onset; subsequently, they all
underwent antiproliferative switch (i.e., from azathioprine to
mycophenolate), and all but one started extracorporeal photo-
pheresis (ECP; the only exception was a patient who was too
fatigued to be treated with ECP). Finally, these patients were
considered for re-LTx when gas exchange deteriorated both on
exertion and at rest; one patient was bridged with extracorporeal
membrane oxygenation support and two patients were
prioritized due to respiratory failure with high oxygen flow at
rest and non-invasive ventilation dependency.

Representative 4-mm-thick sections were cut from each block
from explanted lungs (two blocks per case) and stained as
previously described (12). Positive and negative controls were
TABLE 1 | Clinical characteristics of lung re-transplant recipients1.

Patient Sex Age (years) Disease at 1st LTx Freedom from
CLAD (months)

Time from 1st
LTx (months)

CLAD grade RAS (Yes/No)

Re-LTx #1 F 23 CF 13 38 3 Y
Re-LTx #2 M 38 CF 23 74 4 Y
Re-LTx #3 F 25 CF 14 24 4 Y
Re-LTx #4 M 36 LCH 14 19 4 Y
Re-LTx #5 F 34 CF 25 34 4 N
Re-LTx #6 F 31 CF 10 32 4 N
Re-LTx #7 F 27 CF 46 27 4 N
Re-LTx #8 F 32 CF 33 150 3 N
Augus
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1BOS, Bronchiolitis Obliterans Syndrome; CF, Cystic Fibrosis; CLAD, Chronic Lung Allograft Disease; LCH, Pulmonary Langerhans Cell Granulomatosis - Histiocytosis X; RAS, Restrictive
Allograft Syndrome.
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included in each experiment. Single staining was revealed using
DAB as chromogen, whereas for double immunohistochemistry
the antibodies were colored as previously described (13). All
slides were counterstained with hematoxylin and digitalized
using Aperio scanner at 40x magnification (Leica Microsystems).
Presence of staining for all antibodies was evaluated only in the
lymphocytic infiltrates. Forkhead box P3 (Foxp3), programmed
cell death protein 1 (PD1), and CD4-, CD8-, or Pax5-expressing
cells were quantified using a nuclear (Foxp3) or a cytoplasmic
specific algorithm (Genie Histology Pattern Recognition software;
Leica Microsystems). Programmed death-ligand 1 (PDL1),
cytotoxic T-lymphocyte antigen 4 (CTLA4), and T-cell
immunoglobulin and ITIM domain (TIGIT) scoring was
performed manually. Positivity for thymocyte selection-
associated, high-mobility group box (TOX) was only scored in
conjunction with CD4, CD8, Pax5, or PD1 in double
immunohistochemical (IHC) staining. Detail of the antibodies is
provided in Supplementary Table 1.

Briefly, three pathologists (VV, GC, and SF) independently
analyzed the slides from all patients and selected the two most
representative per case. Then, four regions per slide were
analyzed for markers presence. The mean number of counted
cells per each marker is indicated in Supplementary Table 2.

The digital algorithms used to score the immunophenotypic
markers (CD3, CD4, CD8, and Pax5) as well as FOXP3 and PD1
were previously validated (12). For the remaining antibodies for
which a digital scoring was not possible because of high
background/weak signal, the three pathologists (VV, GC, and SF)
independently reviewed the slides and agreed on a dichotomous
score (positive or negative) using as threshold at least 5% of
positive lymphocytes.

For double IHC, the two signals were split using the Aperio
ePathology Image Quality (IQ) color processing; cells stained with
the first antibody were identified (circled) and analyzed for the
presence of the second marker. Data are expressed as percentage of
double-positive cells/percentage of cells that expressed the first
protein. For each section, at least 1,000 lymphocytes were analyzed.

Clinical data were summarized as absolute and percentage or
median and range or 95% confidence interval, as appropriate.
IHC data are presented as percentages of positive cells and
summarized using individual value plots with median and
interquartile range (IQR), unless otherwise specified. Samples
were compared using the two-sided non-parametric Mann-
Whitney U test. For categorical analyses, the number of
patients in each category is shown, and data were analyzed
using Chi-square or Fisher exact test as appropriate. Analyses
were performed using MedCalc (MedCalc Software Ltd, Ostend,
Belgium) or R studio (version 3.2.2), and charts were generated
with GraphPad Prism software (San Diego, CA, USA).
RESULTS

Table 1 summarizes the clinical parameters of re-LTx recipients
included in the current case series. Briefly, six of the patients were
female, median age was 31.5 years (95% C.I. from 24.6 to 36.4
Frontiers in Immunology | www.frontiersin.org 3
years), and the median free-from-CLAD time was 18.5 months
(95% C.I. from 12.4 to 35.5 months).

Data obtained upon analyzing lymphocyte subpopulationswere
compared using non-parametric Mann-Whitney U tests. Results
showed that, as compared to BOS grafts, RAS grafts were
characterized by a reduced CD4 pos T lymphocytic infiltrate (BOS
vs. Ras: p = 0.02; Figures 1A, B) and a predominant presence of
CD8pos T lymphocytes (BOS vs. Ras: p = 0.02; Figures 1C, D) that
resulted in the inversion of the CD4/CD8 ratio (BOS vs. Ras: p =
0.003; Figure 1E). These quantifications of the lymphocytic
infiltrates were similar in the stromal or alveolar compartments of
BOS and RAS lungs (Supplementary Figure 1). These differences
were not related to a different number of lymphoid follicles present
in the lung parenchyma of BOS and RAS lungs, since neither the
number nor the area of the lymphoid follicles was different in the
two CLAD types (Supplementary Figure 2).

RAS grafts were also characterized by a higher percentage of
Foxp3pos lymphocytes (BOS vs. Ras: p = 0.03; Figures 1F, G) and
by increased amounts of B-cells (Pax5pos-cells; Figures 1H, I),
even if this difference approached but did not reach statistical
significance. On the contrary, CD57-expresssing NK cells were not
detected in the lymphocytic infiltrates of either BOS or RAS lungs
(data not shown). Analysis of these markers in normal lungs
showed that, in physiologic conditions, these factors are poorly
present within the lung parenchyma (Supplementary Figure 3).

Co-expression analyses of cell lineages markers showed that
RAS grafts were enriched in exhausted CD8pos T cells (BOS vs.
Ras: p = 0.008), whereas a higher amount of exhausted CD4pos T
cells and B cells (Pax5pos/TOX pos) was seen in BOS grafts (BOS
vs. Ras: p = 0.008; Figures 2A, B and Supplementary Figure 1).
In contrast with these results, the percentage of Tregs (CD4 pos/
Foxp3 pos) lymphocytes was comparable in the two CLAD
phenotypes (Figures 2A, B and Supplementary Figure 4)

Notably, the lymphocytic infiltrate of RAS grafts was
characterized by higher presence of PD1-positive cells
(Figures 3A, B) compared to BOS grafts (BOS vs. Ras: p =
0.02). A more frequent expression of the other immune
checkpoint molecules PDL1 and CTLA4 (Supplementary
Figures 5A–D) was seen in the same RAS grafts. In control
lung parenchyma, no PD1 expression could be detected except
for histiocytes (Supplementary Figure 6).

Double IHC staining with PD-1 and CD4 or CD8 showed that
PD-1pos/CD8pos T lymphocytes were more abundant in RAS than
in BOS lungs (BOS vs. Ras: p = 0.01; Figures 3C, D and
Supplementary Figure 7). Further, co-expression analysis of PD1
with the transcription factors Foxp3 or TOX indicated that PD-1pos

lymphocytes (i.e., exhaustedTcells)were reduced inRAScompared
to BOS grafts (BOS vs. Ras: p = 0.003; Figures 3C, E and
Supplementary Figure 7). This observation was further
supported by analysis of TIGIT; indeed, TIGIT expression was
predominantly detected in RAS grafts infiltrates, and TIGIT-
positive cells were in the same area of CD8- and TOX-expressing
lymphocytes (Supplementary Figures 5E, F). These data indicate
that RAS grafts are characterized by a significantly reduced
population of exhausted (PD-1pos/TOXpos), in particular, of
exhausted Treg (PD-1pos/FOXP3 pos) T lymphocytes.
August 2021 | Volume 12 | Article 714132
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Taken together, these data suggest that the RAS form of CLAD is
characterized by a higher cytotoxicT-cell response (PD-1pos/CD8pos)
and by a reduced presence of Treg lymphocytes. Conversely, a
predominant CD4pos T-cell infiltrate and increased amounts of
exhausted and exhausted Treg cells are seen in BOS lungs.
Frontiers in Immunology | www.frontiersin.org 4
DISCUSSION

Since 1992, researchers have analyzed the effects of programmed
death 1 receptor and its ligands in balancing T-cell activation and
tolerance (14). The current observational study reports the first
A B

D

E F G

IH

C

FIGURE 1 | Immunophenotype of lungs explanted for re-transplantation (re-LTx). Lymphocyte subsets were analyzed in BOS and RAS re-LTx (n = 4 cases per
condition). (A–D) CD4pos (A, B) and CD8pos (C, D) T lymphocytes were identified and scored as the percentage of positive cells in that area using Aperio algorithm
(digital score mask). Each dot is a case, and lines indicate median with IQR. *p = 0.02 by Mann-Whitney U test. (E) The CD4/CD8 ratio was calculated for RAS and
BOS re-LTx. Data are expressed as box-plot with whiskers indicating min to max values. **p = 0.003 by two-sided Mann-Whitney U test. (F–I) Foxp3-positive
(F, G) or Pax5-positive (B cells; H, I) lymphocytes were identified and scored in RAS or BOS lungs. Each dot is a case, and lines indicate median with IQR. *p = 0.03
by Mann-Whitney U test. Scale bars, 100 mm. Green lines within graphs indicate the mean value of the marker measured in normal lungs (see also Supplementary
Figure 3 for details).
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results obtained by analyzing immune checkpoints expression in
chronic lung rejection.

Main result herein is that the immune cell infiltrates of BOS
and RAS are different. Thus, PD-1-, PD-L1-, and CTLA4-
expressing T lymphocytes were significantly increased in
explanted lungs of patients who developed the RAS type of
CLAD. Notably, PD-1pos/TOXpos (exhausted) and PD-1pos/
FOXP3pos (exhausted regulatory) T lymphocytes were
significantly reduced as well in RAS compared to BOS grafts.
Taken together, these results allow the speculation that
tolerance-inducing mechanisms are particularly defective in
RAS, offering a possible immunological explanation that
justifies the severity of this CLAD phenotype.

Moreover, we found a pathological inversion of the CD4/CD8
ratio in the lymphocytic infiltrate of RAS grafts. The inversion of
the CD4/CD8 T lymphocyte ratio was shown to be associated
with higher rejection grade and shorter survival in the setting of
kidney and cardiac allograft, but has never been described in LTx
(15, 16).
Frontiers in Immunology | www.frontiersin.org 5
Recent results obtained by reviewing the outcome of 608 LTx
recipients who were transplanted between 2001 and 2015
showed that, out of 268 patients who developed CLAD, 47 had
RAS, whereas 215 had BOS. Median survival for RAS and BOS
cohort was 1.2 and 7.2 years, respectively (17). Our data indicate
that the immune scenario that characterizes these two CLAD
phenotypes is clearly different and could offer an explanation for
the diverse outcomes associated with RAS and BOS CLAD. Thus,
we suggest that the peculiar reduction of exhausted T
lymphocytes, together with the increased presence of
checkpoint-expressing cells, justifies the worst prognosis that
characterizes the RAS phenotype of CLAD.

T-cell exhaustion is the result of chronic, prolonged antigenic
stimulation and is characterized by the loss of cytokine production
and by apoptotic T-cell death. This phenomenon plays a
deleterious role in chronic infections and cancer, where disease
progression is associated with the waning of immune responses
(18, 19). On the other hand, T-cell exhaustion results in self-
tolerance and such T-cell condition is associated with transplant
A

B

FIGURE 2 | Co-expression analysis of lymphocytic lineage markers. (A) Double IHC was performed with the lineage-specific transcription factor (TF) Foxp3 or TOX
and the membrane antigens CD4, CD8, or Pax5. Representative images of the indicated staining are shown for RAS and BOS lung explants. Scale bars, 100 mm.
See also Supplementary Figure 1. (B) The percentage of lymphocytes positive for the indicated membrane antigen was calculated from the total number of cells
expressing Foxp3 or TOX. Bars represent median ± IQR. **p = 0.008 by two-sided Mann-Whitney U test.
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tolerance (20–22). The observation that exhausted Treg (PD-1pos/
Foxp3pos) lymphocytes were greatly reduced in RAS lungs could
thus provide a preliminary immunological explanation for the
clinical observation that RAS is the worst CLAD phenotype. On
the other hand, PD-1 is a membrane protein involved in the
induction of cell death and in the inhibition of cell proliferation
and cell cycle progression. By controlling the magnitude of T-cell
responses, PD-1 protects against self-reactivity, leading to
Frontiers in Immunology | www.frontiersin.org 6
induction of tolerance (23–26). PD-1 binds to PDL1, and the
PD1/PDL1 pathway was shown to be involved in the regulation of
immune responses in pathological and physiological scenarios
(27–32); CTLA-4 has a similar dampening effect on immune
responses upon binding CD80 and CD86. We observed that PD-1
as well as PD-L1- and CTLA-4-expressing T lymphocytes were
increased in RAS lung. This could be explained as a futile attempt,
possibly rendered even more helpless by the simultaneous
A B

D E

C

FIGURE 3 | RAS lungs have fewer exhausted PD1-positive T cells than BOS lungs. (A, B) PD1-positive lymphocytes were analyzed in BOS and RAS re-LTx and
scored as the percentage of positive cells in that area using Aperio algorithm (digital score mask). Each dot is a case, and lines indicate median with IQR. §, p = 0.02
by two-sided Mann-Whitney U test. (C–E) Double IHC staining was performed in RAS and BOS re-LTx with PD1 and either CD4 or CD8, the transcription factor
Foxp3, or TOX. The percentage of lymphocytes positive for the membrane antigens (CD4, CD8; D) or the nuclear antigens (E) was calculated from PD1-positive
cells. See also Supplementary Figure 3. Bars represent median ± IQR. *p = 0.01; **p = 0.0007 in (D) and **p = 0.003; ***p = 0.0005 in (E); #p = 0.006 by
two-sided Mann-Whitney U test. Scale bars, 100 mm.
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reduction of Treg lymphocytes and the increase of cytotoxic
T-lymphocytes, to prevent organ rejection via the inhibition of
cell-mediated immune responses in RAS CLAD. Notably, our
preliminary results offer support to recent data showing that the
presence of PD-L1-expressing T lymphocytes in heart
transplanted biopsies is predictive of organ rejection (33), and
raise the possibility that modulation of PD-1 activity could be
useful in preventing graft rejection. It is worth noting that an
indirect confirmation of this possibility comes from heart-
transplanted recipients who developed malignancies: in these
patients, immune checkpoint inhibitor-based therapies resulted
in rejection (8).

Generalization of our results is limited by the single center
nature of our study and by the limited sample size: this limitation
is nevertheless difficult to overcome because re-transplantation is
a scarcely practiced procedure (less than 5% of total LTx
worldwide). These considerations notwithstanding, we
underline that all the consecutive patients that received re-LTx
for CLAD in a 6-year period were analyzed to avoid any selection
bias. More analyses on ampler cohorts of patients, as well as
analyses performed on lung biopsies and fresh specimens, will be
needed to lend support to our preliminary results. As far as the
diagnosis of rejection is concerned, it would be extremely useful
to analyze whether the immune proteins related to CLAD could
be early markers of rejection in lung graft biopsies. Further, in
the future, the potential of analyzing PD1-positive lymphocytes
in the BAL fluids may represent an additional tool for the clinical
follow-up of LTx patients.

Cancer therapy has been revolutionized by the use of
checkpoint antagonists; the clarification of the role of these
molecules in organ transplantation could lead to the design of
novel therapeutic options to improve the prognosis of solid
organ transplantation. Result herein could offer initial support
to the hypothesis that the modulation of immune checkpoint
molecules might be useful to reach such objective.
Frontiers in Immunology | www.frontiersin.org 7
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