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In recent years, systematic genome-wide association studies of quantitative immune cell
traits, represented by circulating levels of cell subtypes established by flow cytometry,
have revealed numerous association signals, a large fraction of which overlap perfectly
with genetic signals associated with autoimmune diseases. By identifying further overlaps
with association signals influencing gene expression and cell surface protein levels, it has
also been possible, in several cases, to identify causal genes and infer candidate proteins
affecting immune cell traits linked to autoimmune disease risk. Overall, these results
provide a more detailed picture of how genetic variation affects the human immune system
and autoimmune disease risk. They also highlight druggable proteins in the pathogenesis
of autoimmune diseases; predict the efficacy and side effects of existing therapies; provide
new indications for use for some of them; and optimize the research and development of
new, more effective and safer treatments for autoimmune diseases. Here we review the
genetic-driven approach that couples systematic multi-parametric flow cytometry with
high-resolution genetics and transcriptomics to identify endophenotypes of autoimmune
diseases for the development of new therapies.
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INTRODUCTION

The human immune system is a magnificent biological network of specialized cells and their
soluble products that can recognize and tolerate “self” and harmless symbionts while mounting
responses to “non-self”, including the panoply of harmful pathogens. Immune cell subtypes
are the pivotal determinant to maintain immunity and minimize the loss of tolerance that can
result in autoimmunity. Because immune cells must orchestrate and mount responses to a variety
of insults, their circulating levels are extensively regulated by exposure to environmental factors,
and in particular by pathogen infection. Nevertheless, in the last 10 years the assessment of
genetic effects on circulating levels of immune cells and their surface proteins (collectively referred
as immune cell traits) has revealed that they are on average ~40% heritable (1, 2), meaning
that a high percentage of variability in their levels is regulated by genetic differences among
individuals. The high heritability of immune cell traits has prompted us and others (1–6) to
assess the genetic contribution to their variability through systematic genome wide association
org August 2021 | Volume 12 | Article 7144611
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studies (GWAS) in general populations. Overall, hundreds of
associated variants have been identified.

More recently, a GWAS-based approach on cytometric data has
also been applied, albeit in a small sample size, to assess the genetic
control of changes in immune cell levels after exposures such as
influenza vaccination (7). This type of analysis is likely to become
increasingly common and performed in much larger sample sets,
for example to assess cellular response to the Sars-Cov-2 vaccine.
There are three key requirements to use the powerful and unbiased
tool of GWAS to understand how the immune cells are genetically
regulated and to identify overlaps with autoimmune disease risk.
The first is a very detailed measurement of a broad spectrum of cell
types, encompassing innate and adaptive immunity, by assessing
their activated, regulatory, inflammatory andmaturation states. The
second is high-resolution characterization of genetic variability in
the same individuals. The third requirement is generating or
obtaining summary statistic data of autoimmune disease GWAS
to establish overlap with immune cell GWAS. The sample size of
immune cell GWAS is pivotal to infer a full range of genetic
associations. Indeed, while a few thousand individuals, like those
assessed in the immune cell trait GWAS performed thus far,
identify genetic associations of common variants with relatively
large effect size, tens of thousands of individuals must be analyzed to
discover genetic associations with rare variants, and those with
smaller effect size (8). Further broadening the spectrum of
associated variants through substantial increases in the sample
size evaluated in immune cell trait GWAS will thus be important
to identify many more overlapping associations with disease.
Frontiers in Immunology | www.frontiersin.org 2
Of particular interest are multiple overlaps with the same immune
trait and disease, strengthening the evidence for a causal relationship
and thereby increasing the power to identify therapeutic targets.

Focusing on immune cell traits, the most common technique to
systematically measure cell subpopulations as well as surface or
intracellular proteins, is flow cytometry. Routinely used for
functional studies, flow cytometry is now becoming the starting
point to identify DNA variants associated with immune traits and,
in turn, those variants that are also associated with risk of disease
(hereafter referred to as “overlapping genetic associations”). This
approach can identify cell types, molecules and pathways
implicated in disease pathogenesis and provide prime candidates
for more specific and efficacious therapeutic intervention
(Figure 1). The potential of the genetic-driven approach in the
research and development of new drugs is supported by the
observation that 73% of studies supported by genetic evidence
targeting the disease pathway were successful in Phase II clinical
trials compared with 43% of studies without such genetic link (9).
Nevertheless, genetic studies provide only a powerful substrate for
experimental elucidation of disease mechanisms. Thus, causality
must be confirmed by functional experiments in vitro and in vivo,
which, in the context discussed here, are essential to clarify the
biological mechanisms underlying the overlapping associations
with specific immune cell traits and disease risk and formulate
robust therapeutic hypotheses that are critical to the success of
new drug research and development programs.

In particular, genetic associations of quantitative cellular traits
and autoimmune diseases are more likely to give rise to biological
FIGURE 1 | Overview of the study approach. The picture summarizes the research of overlapping genetic associations that initially consists in the identification of
genetic signals regulating immune cells in the general population. These signals are then compared with those associated with diseases with the aim to identify the
genetic variants both affecting immune cells and disease risk. The identified immune cells can be considered as potential drug target on which to act
pharmacologically. Being more frequently detectable by more than one antigen expressed simultaneously on their surface, these cells can be targeted by multi-
specific drugs (binding two or more specific antigens).
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investigations that are truly related to the causal biology of diseases
than epidemiological surveys of environmental factors and
observational studies of phenotypic variables that can often
highlight second-order phenomena that are a consequence, and
not a cause, of the disease. In this sense, although epidemiological
evidence clearly indicates that environmental factors should play a
very important role in the regulation of the immune system and
contribute to the risk of autoimmune diseases, their precise
identification is complicated by numerous factors and remains
largely elusive. In contrast, genetics represents a more direct,
powerful, and unbiased tool to generate robust hypotheses about
disease-causing mechanisms that need to be further investigated
with functional studies to identify and validate therapeutic
targets (10).

We turn to an outline of the evolution of flow cytometry; the
proper generation of flow cytometry data; and the application of
GWAS to flow cytometry-based immune profiling to identify
new drug targets.

FLOW CYTOMETRY

The role of flow cytometry (Figure 2) in scientific research and
clinical practice is increasing dramatically and only a marginal
part of its potential is currently being used. However, while this
Frontiers in Immunology | www.frontiersin.org 3
technique is very useful if applied correctly and with appropriate
checks, it can lead to incorrect conclusions if not. We will
dedicate the next two sub-sections to describe this technology
and some tips for using it properly.

Flow Cytometry From Its
Inception to Today
Flow cytometry development (11) was accompanied by
important evolution of its applications in several scientific
fields, including not only immunology but also hematology,
cancer, microbiology, and physics. For instance, flow
cytometric oncology panels are widely used to diagnose
hematologic malignancy, especially B cell lymphoproliferative
disorders, based on disproportion of kappa and lambda
immunoglobulin light chains that are expressed on membrane
surface of B cells. Indeed, a kappa-lambda ratio higher than 3:1
or lower than 1:3 is respectively considered evidence of
monoclonality and diagnostic for B cell lymphoproliferative
disorders (12).

In microbiology, flow cytometry allows the detection of
microbes, their viability and distribution within cells that can
have profound impact in infection diagnosis (13). Furthermore,
in some countries, application of flow cytometry to microbiology
has been routinely applied to water quality analysis (14).
FIGURE 2 | Schematic representation of flow cytometry system. Cells stained with fluorescent-conjugated antibodies are aligned in the fluidic system where they
encounter one or more laser beams which excite the fluorescent dyes bound to the cells. The fluorescent antibodies emit at a specific wavelength and the emission is
proportional to the amount of antigen-antibody complex. The emission arrives to the optical system, consisting of filters, mirrors, and photomultiplier tubes (PMTs), which
enhance and improve the signal. Finally, the electronic system converts the fluorescent emission in electronic signals visualized by histograms or bi-dimensional plots.
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Improving performance and processivity and increasing the
number of parameters measured simultaneously by flow
cytometers is the major challenge for flow cytometry
companies. For instance, to reduce the time of sample
processing and the variability of data acquisition, an acoustic
focusing chamber characterized by high frequency sound
produced by a piezoelectric device were applied to a flow
cytometer (15). This system generates a standing wave in the
sample capillary, which can align cells in the center of the flux
even when the original cell concentration is high.

To increase the number of antibodies assessed simultaneously,
an alternative cytometry-based technique, namely “CyTOF”
(cytometry by time-of-flight), was developed about ten years
ago. Similarly, to flow cytometry, antigens are recognized by
antibodies labeled with heavy metal isotopes (instead of
fluorochromes) which, as in mass spectrometry, are detected
based of on their time-of-flight (16). CyTOF is more expensive
than classical flow-cytometry, require longer period of time to
process each sample, making this method unsuitable for
processing large amounts of samples in a short time, but it can
detect more than 100 parameters per cell simultaneously.

Flow cytometry has also become the starting point for big
data projects such as genetic studies of thousands of immune cell
traits, and single cell transcriptomic and proteomic
measurements. Moreover, the simultaneous assessment of
several fluorochrome-conjugated antibodies (17) (destined to
increase soon) in thousands of individuals allows the
Frontiers in Immunology | www.frontiersin.org 4
identification of very rare cell subsets and of new cell types
never previously described, but at the same time, it increases the
difficulty of analysis of the enormous amount of data generated.
Indeed, to visualize an n-dimensional flow data, 1

2= � n� (n −
1) bi-dimensional plots would be needed, so that, for instance, an
experiment assessing 20 antibodies would require 1

2= � 20�
(20 − 1) = 190 bi-dimensional plots to display all marker
combinations. Thus, data produced by the latest generation
flow cytometry and CyTOF need to be visualized in alternative
ways, departing from the classical bi-dimensional plots and
histograms (Figures 3A, B).

Two of themost popular algorithms to reduce the complexity of
this big amount of data and to identify populations of interest are
SPADE (spanning-tree progression analysis of density-normalized
events) (18) and t-SNE (t-stochastic neighbor embedding) (19).
Both resolve high-dimensional data into a single bi-dimensional
plot, the former visualizing cell clusters through dendrograms and
the latter by scatter plots, so that the closer the cell clusters are, the
more similar they are (Figures 4A, B).

SPADE and t-SNE do not allocate every cell to a specific
cluster, nevertheless, automated clustering algorithms such as
ACCENSE (20), DensVM (21), viSNE (22), to mention only a
few of them, can help to solve this issue. However, these
algorithms do not consider the entire dimension of the dataset;
to address this, PhenoGraph was developed (Figure 4C) (23).

Another algorithms, named Wanderlust (24) is particularly
useful to study temporal developmental cell relationships by
A B

D
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C

FIGURE 3 | Representation of flow cytometry data. (A) Bi-dimensional visualization of data (dot plot) where each axis represents an antigen; (B) histograms
representing the expression level of CD8 on T cells; starting from left to right, the first peak corresponds to CD8 negative T cells, the second peak represents
cells expressing intermediate level of CD8, whereas the third peaks indicates highly positive cells for CD8 expression; (C) normal distribution of CD4 expression
on CD4 positive cells; (D) bimodal distribution of CD4 expression on T cells where the peak on the left corresponds to CD4 negative T cells, while the peak on
the right represents CD4 positive T cells; expression levels of CD3 on (E) a poorly represented cell population (CD4+CD8+ T cells) and (F) a well-represented
cell population (T cells).
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generating a trajectory, for example ranging from hematopoietic
stem cell through the mature status of the assessed cells (Figure 4D).
Both PhenoGraph andWanderlust represent each cell by a node that
is linked to its neighbors by edges; thus, phenotypically similar cell
clusters are visualized by interconnected nodes, namely
“neighborhoods” or “communities” of cells (25).

In case of comparisons among two or more groups (such as
patients and controls), Citrus is another useful tool to identify
differential cell clusters and response features among the assessed
groups that could be predictive of different experimental or
clinical endpoints of interest (26). For instance, comparing
unstimulated vs stimulated peripheral blood mononuclear cells,
Citrus was able to identify 117 cluster features (out of 465) which
differed between the two conditions.

Guides to Correct Flow
Cytometry Analysis
Before starting data collection and analysis, a strict process of
quality checks and controls is pivotal to obtain reproducible and
robust results. The most important steps can be summarized
as follows.

1) Panel set-up. Increasingly, a number of common antigens are
found to be expressed in cells whose biological role is supposed
to be radically different. For instance, Schuh and colleagues
described the uncommon co-expression of CD3 (receptor
complex characterizing T cells) and CD20 (characterizing B
cells) in a small subset of circulating lymphocytes that are
especially frequent in the cerebrospinal fluid of multiple
sclerosis patients (27). This underlines the need for several cell
antigens simultaneously assessed as mandatory for a
comprehensive immune cell analysis and for the discovery of
rare cell populations that may nevertheless be potentially
relevant in disease predisposition. However, the simultaneous
assessment of many antigens requires a complex panel set-up
that implies careful selection of antigen-fluorochrome
Frontiers in Immunology | www.frontiersin.org 5
combinations. A general role for fluorochrome-antigen
selection is to use weak fluorochromes for highly expressed
antigens and, vice-versa, bright fluorochromes for weakly
expressed antigens. This allows detection of weak signals while
keeping on scale brighter ones and minimizing the spillover of
one fluorochrome into those having close emission wavelength.
The mathematical correction of this spillover is called
compensation and is an extremely important step that must be
done before analyzing data to avoid misleading interpretations
(28).

2) Processing of samples. The protocol to be followed and the
time between sample collection and processing are pivotal to
ensure reproducibility of flow data, especially for specific cells
and antigens. For instance, monocytes are prone to modify
their morphology and the expression of some antigens on
their surface, including the costimulatory molecules CD80
and CD86 (29), while platelets are subject to very fast
modifications and activation. Thus, this blood component
should be processed within minutes after blood collection
(30, 31). Similarly, the stability of antibodies is important: the
Lyotube™ technology, employing lyophilized predefined
cocktails of antibodies, is more stable than corresponding
liquid formats, thus minimizing fluorochrome decay and
allowing reduction of potential operator-dependent
variations (1, 32).

3) Sample freezing. Freezing is known todamage some antigens and
cell types, such as myeloid derived suppressor cells (defined as
CD66b+ and CD15+, HLA-DRdim and CD14−) that are not
detectable in previously frozen peripheral blood mononuclear
cells (33). Special care should be taken to compare fresh with
frozen samples, and as goodpractice it is strongly recommended
to perform preliminary experiments to verify the quality/status
of each antigen of interest before and after freezing.

4) Systematic controls to monitor analyzer performance. Flow
cytometers are subject to laserwear andfluidic instability over time.
A B DC

FIGURE 4 | Main approaches to resolve flow cytometry data complexity. (A) SPADE connects clusters of multidimensional data in a progressive dendrogram.
Cluster sizes correlate with the number of cells within the cluster. The heat map indicates the intensity of each cluster based on the median intensities of a protein
marker in each cell node; (B) t-SNE detects cluster corresponding to cell population, similar cell are placed close together reflecting their proximity in high-
dimensional space; (C) vi-SNE, ACCENSE, DensVM and Phenograph are evolution of t-SNE and similarly visualized; in particular, Phenograph is able to assign each
cell into a specific cluster; (D) Wanderlust orders cells into a trajectory corresponding to their developmental stages.
August 2021 | Volume 12 | Article 714461

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Orrù et al. Flow Cytometry for Therapeutic Intervention
To compare samples acquired in different days, several
controls should be used to ensure the correct and constant
performance of flow cytometer and the consistency of data
collection. Indeed, some analyzers are equipped with a system
that performs daily electronic checks and automatically adjusts
internal parameters.

Furthermore, reference stabilized blood samples with defined
ranges of the main lymphocyte subsets are available to be used as
controls, helping to avoid batch effects.

Once the samples have been acquired and processed in the
proper way, the next step is gating. There are several ways to
gate samples:

-Manual

-Semi-automatic

-Automatic

Each method has advantages and disadvantages; for instance, if, on
the one hand manual gating is time-consuming and operator-
dependent, on the other it allows the analysis of very rare cell
populations that are difficult to identify using automatic strategies.
Automatic methods (briefly described in the previous section) use
algorithms to systematically identify cell populations, thus avoiding
operator-dependent inaccuracies. They can be further divided into
“hypothesis dependent”, if the scientist sets specific cell subtypes tobe
measured, and “agnostic”, which are not based on specific
hypotheses, allowing the identification of previously unknown cell
cluster which could be missed by using manual gating approaches.

Following gate positioning, each cell population (both newly
identified and already known) can undergo three types
of measurements:

a) Relative count

b) Absolute count

c) Fluorescence intensity

a) The relative count corresponds to the ratio between cell types
that could be hierarchically dependent (e.g., percentage with
respect to parental and grand parental cell population, such as
percentage of CD4 with respect to T cells) or independent
(e.g., ratio between T and B cells).

b) The absolute or actual count corresponds to the number of
cells per volume (generally expressed as cells/ul or cell/mm3).
In human blood, the necessary condition to obtain absolute
counts is to process fresh non-washed samples and use either
analyzers able to calculate the absolute number of cells based
on sample volume or a fixed number of counting beads to be
added to each sample. In the latter case, it is necessary to
apply a simple proportion between number of beads and cells
acquired to obtain actual counts. Alternatively, it is also
possible to obtained actual counts from frozen samples if
the leukocyte (or lymphocyte) count measured on the day of
the withdrawal is combined with the relative counts obtained
by flow cytometry from frozen material.

c) Generally defined as mean or median fluorescence intensity
(MFI), it represents the expression level of an antigen (such as
Frontiers in Immunology | www.frontiersin.org 6
CD4, CD8, CD40, CD28) on a cell type (Figure 3C). A
necessary condition to properly analyze MFIs is that the
marker measurement in the specific cells follows a normal
(Gaussian) distribution. For instance, CD4 expression
measured in total T cells (which include an important
amount of CD4 negative cells) is inaccurate because a
bimodal distribution would be observed: one peak
corresponding to CD4 negative cells and a second peak
corresponding to positive cells (Figure 3D). In this case, the
bimodal distribution does not mirror the expression level of
CD4 positive cells; rather, it correlates the number of cells
present in the first (negative) peak with respect to the second
(positive) one (Figure 3D). Thus, CD4 MFI should be
assessed only in the CD4 positive cells, where its
distribution is normal. In additional cases, such as CD8
expression in T cells, the presence of three peaks is
frequently observed, corresponding to negative, intermediate
(dim), and high (bright) antigen expression. The negative
peak should be excluded, while the expression of CD8 in the
two positive peaks should be measured separately, especially if
the number of CD8 dim T cells is consistently represented
(Figure 3B). Also, the number of events in which the MFI is
measured is very important to obtain reliable data, as the MFI
of a few events is not very robust. Thus, also in this case, the
general rule is that the more events acquired, the more robust
the MFI data are (Figures 3E, F).
UNDERSTANDING CAUSAL EFFECTS OF
IMMUNE CELL LEVELS IN HUMAN
DISEASE: THE HYPOTHESIS-
GENERATING VS HYPOTHESIS-
DRIVEN APPROACH

The comparison of specific immune cell levels between cases and
controls has been a widely used approach to identify those cells
or derived parameters that are more frequent in cases, and thus
putatively predisposing to the disease, compared to controls. By
contrast, those that are higher in controls are putatively
protective for the disease. However, this case-control,
hypothesis-driven comparison of immune phenotypes is
limited by a priori knowledge and is also affected by second
order effects due to the disease process and the administered
therapy. That can lead to mistaken inference of a consequence of
a disease for a cause (so-called reverse causation).

A more robust and systematic approach to identify immune
cell traits implicated in the disease process relies on correlations
between genetic association signals detected in different sample
sets. This hypothesis-generating approach first establishes, via
quantitative trait locus (QTL) GWAS, the genetic control of as
many immune cell traits as possible in as many general
population individuals as possible. The resulting association
signals for immune cell traits are then evaluated for any
significant overlap with association signals from GWAS on
August 2021 | Volume 12 | Article 714461
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autoimmune disease risk, typically performed with a case-control
design. The increasing availability of autoimmune disease GWAS
summary statistics offers valuable resource data to search for
such overlaps, which can then be formally demonstrated using
specific statistical approaches like co-localizationmethods. These
allow to formally test whether two association signals at the same
locus for two different traits or diseases share the same causal
variant (34). In principle, if a gene variant X is causally related to
both a quantitative immunophenotype Y and an autoimmune
disease Z, it is possible that the immunophenotype Y is involved
in the process leading to the autoimmune disease Z and
represents an endophenotype for that disease.

The route toward unequivocally linking a given immune cell
variable with one or more immune mediated disease is rather
complex and hindered by several factors including pleiotropic
effects, low statistical power and incomplete characterization of
immune cell variation, as follows (Figure 5).

Pleiotropy (Figure 5A), a phenomenon in which one genetic
locus influences two ormore phenotypic traits (35), is an emerging
feature of current GWAS results that can complicate the resolution
of the causal-relationships to a true disease-related intermediate
immune phenotype (3). It is classically divided into biological or
mediated, with the former referring to a genetic variant that has a
direct influence on the regulation of more than one trait and the
latter occurring when a variant directly influences one trait, which
in turn influences another trait. Pleiotropy can also be spurious,
which is due tovariousdesign artifacts that cause a genetic variant to
appear fallaciously associated with multiple traits.
Frontiers in Immunology | www.frontiersin.org 7
During the last decade, 93 loci associated with immune cells
traits have been identified by genomewide association studies (4, 5,
36–38), and abouthalf of these loci overlapwithpreviously reported
disease-associations predominantly for autoimmune disorders.
Most of the detected genetic signals were characterized by
pleiotropy; 61% of these signals regulate protein levels on the cell
membrane (MFIs), whereas only 25% and 14%of themwere found
associated with relative and absolute counts, respectively (3). This
can likely occur either because of the common origin and shared
mechanisms of genetic regulation of different immune cells or
because of the interrelated functions of many immune cell types,
with some cells controlling the level of other cells. And the
complexity of genetic associations detected so far with the genetic
regulationof immune traits goesbeyond thedetectionofpleiotropic
effects and includes several instances of multiple independent
signals in a given gene region affecting the same cell or protein
expression, and in other cases unrelated traits (Figure 5B, also see
the CD25 example in the next section).

In the presence of strong pleiotropy, approaches that exploit
Mendel’s second law of inheritance to search for multiple
independent genetic associations associated with both the same
intermediate immune phenotype and autoimmune disease
outcome provide a route to somewhat restrict the number of
coincident associations to those most likely involved in disease
pathogenesis. Indeed, if twoormore independent genetic signals are
simultaneously associatedwith the same disease predisposition and
a specific quantitative trait, with a coherent reduction or increase in
the trait levels, it ismoreprobable that the trait is causally implicated
A B

DC

FIGURE 5 | Complexity in identifying overlapping association between immune trait and diseases. The four quadrants summarize the layer of difficulties that must be
considered when the overlapping association approach is applied. (A) Pleiotropy: a specific variant can regulate several traits; (B) the identification of the causal
variant is often not immediate due to the high LD among variants. Each dot represents a genetic variant, LD among variants (expressed as r2) is color coded and
specified in the legend, the significance of the association, expressed as −log10[P value], is indicated in the left y axis, and the genomic positions in the x axis;
(C) the identification of several independent genetic variants associated with the same immune cell X and the same disease Y (multiple overlapping genetic
association) requires thousands of deeply immune profiled individuals, both from general populations to dissect immune cell genetic regulation, and from case-
control studies to identify genetic regulation of diseases; (D) the genomic information of each individual is very deep being at single-base resolution, whereas the
knowledge of all the proteins expressed on cell surface is far from being complete.
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in the disease predisposition (Figure 5C) (1, 3). This approach can
help identify the most promising association signals to follow up
with downstream functional studies; however, it does not reveal the
presence of confounding factors regulating both trait and disease,
because it is based on a simple comparison among a few association
statistics. For these reasons,Mendelian randomization (MR) is now
the approach most frequently applied to infer a causal relationship
between a quantitative trait (defined as exposure) and a disease
(outcome). The genetic variants associated with a quantitative trait
are used as instrumental variables (Ivs) to test the causal
relationship between exposure and outcome. Critically, because
they are constant, they are not affected by reverse causation and/or
confounders. Like the methods previously described, this approach
is essentially based on the summary statistics for a set of Ivs chosen
tosatisfy specifichypotheses, suchas theassociationwithexposures,
to which appropriate statistical regression methods are applied
(39–41). The increasing availability of large datasets and the
consequent increasing number of variants that can be tested are
facilitating the application of the MR approach.

Another limiting factor in making causal inferences about the
involvement of a given immune cell in a particular autoimmune
disease is the relatively small sample size of the immune cell
GWAS performed to date, which constrains the generation of
robust instrumental variables for Mendelian randomization
approaches. Furthermore, the true disease-related cell type may
not even have been assessed in immune cell trait GWAS! The
latter limitations can be overcome thanks to the development of
more advanced cytofluorimeters and the implementation of
automation methods to permit considerable enlargement of the
immune-phenotypic space (Figure 5D) examined in an
increasingly larger number of individuals.
THERAPEUTIC TARGETS, MULTI-
SPECIFICITY, AND PERSONALIZED
MEDICINE

After establishing co-localized association signals between
immune cell traits and autoimmune disease risk that are likely
to share a causal variant pointed by Mendelian randomization
approaches, a critical step toward the identification of the right
therapeutic targets is to identify the DNA variant, and establish/
infer the protein product, underpinning such overlapping
associations that could be modulated therapeutically.

In short, an initial strategy commonly applied to statistically
exclude all but ideally one or a few polymorphisms as causal
variants in GWAS-associated regions encompasses several
methods known collectively as “fine mapping” (42). This
strategy requires an unbiased, and as comprehensive as
possible, ascertainment of genetic variation -through large-
scale DNA sequencing and the use of informative imputation
panels- to split the genetic contributions of individual variants in
an associated region, allowing prioritization of those with the
highest probability of being causal. The most plausible causal
polymorphisms present in the so-called “credible set” are then
Frontiers in Immunology | www.frontiersin.org 8
ranked using several metrics, including sequence conservation
across species and functional genomic data (such as transcription
factor binding), which produce a score predicting functional
relevance. Unfortunately, even after these methods have been
applied, the genetic resolution of association signals to a single-
variant, single-gene may still be limited by several factors. These
include the strong linkage disequilibrium (non-random
association of alleles at different loci in a given population)
(43) between several candidate variants that in extreme cases
may be so closely related as to be genetically indistinguishable
(because they always co-occur in the same individuals). An
additional difficulty which hampers variant functional
annotation, arises from the fact that the vast majority (~80%)
of lead variants of association signals with immune traits are
localized in “non-coding regions” of the genome with only a
fraction of them altering known sequence motifs of transcription
factors (3, 10, 44), thus not easy to interpret, even though they
must play a very relevant role in gene expression regulation.
Most importantly, even statistical refinement of the association
signal to a single putative causative DNA variant does not in
itself indicate that the gene harboring is causative. In fact, there
are multiple examples of long-range control of gene expression
by variants located in neighboring genes detected through
technologies such as promoter capture with “Hi-C” (45).

Still, despite these difficulties, the identification of the causal
genes highlighting their products as therapeutic targets can be
often achieved through expression quantitative trait loci (eQTLs,
based on the analysis of the influence of genetic variation on
RNA levels) and/or protein QTLs (pQTLs, based on the analysis
of the influence of genetic variation on protein levels), which in
the cytofluorimetric studies are represented by the expression
level of immune cell protein levels (MFIs). In addition to cis
effects, these analyses can reveal trans effects, i.e., trans pQTL and
eQTL associations that highlight protein targets for therapeutic
intervention encoded by genes located far away, and even on
different chromosomes, from the variant/gene underlying the
primary association signal but whose expression is affected by it
or its protein product or a nearby genetically related variant.

The utility of pQTL and eQTL analyses extends to the
determination of the effective direction of the association. This
is inferred from the direction of change in levels of gene products
associated with disease risk – for example, evaluating whether a
disease-protective allele (whose effect we want to therapeutically
reproduce) decreases or increases transcript levels of a gene or
corresponding protein. This is thus a critical step because it
informs the direction (inhibition/stimulation) of therapeutic
modulation of the target.

Such analyses are facilitated by the rapidly growing number of
large datasets annotating information that can systematically help
to bridge GWAS associations to expression levels. One key
resource is the Genotype-Tissue Expression (GTEx) catalogue,
providing eQTL analysis for 49 human tissues in 838 individuals
(46). Additional sources to help assess the impact of regulatory
variants include databases, such as the Human Induced
Pluripotent Stem Cell Initiative (HipSci) (47) reporting
mutations in reprogrammed induced pluripotent stem cell and
August 2021 | Volume 12 | Article 714461
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LINkage Disequilibrium-based Annotation, LinDA brower
(http://linda.irgb.cnr.it) that provides annotations and statistics
for the query variant and for variants in linkage disequilibrium
with the query. While these comprehensive public resources to
study tissue-specific transcription and expression are essential to
identify target genes and direction of effects of associations signals
with immune cells and other trait types, GWAS results may in
turn give rise to more targeted studies of transcription and
regulation to elucidate the fine mechanisms of gene expression
at specific loci. As an example, in a GWAS analysis it was
uncovered the association of multiple sclerosis and systemic
lupus erythematosus with a genetic variant in the 3’UTR of the
TNFSF13B gene, which encodes the cytokine B-cell-activating-
factor (BAFF) (10). The same signal also correlated with increased
circulating B cell and immunoglobulin levels, giving a potential
mechanistic explanation for the disease association. The causal
variant underlying these associations was found to be an insertion-
deletion (GCTGT > A, [GCTG/-] where the minor risk-associated
alleleA (referredas ‘BAFF-var’)waspredicted tocreate anupstream
alternative polyadenylation site (APA). This APA was
experimentally demonstrated and the resulting shorter transcript,
BAFF-var mRNA, was more actively translated than the long wild-
typemRNA(BAFF-WT)partly because it lacked a site of repression
by microRNA miR-15a (10). Subsequent analyses showed that the
short 3’UTR lacked also a binding site of repression by the RNA
Binding Protein (RBP) NF90 and revealed that, in the BAFF-WT
mRNA, NF90 suppresses BAFF production by promoting the
interaction of miR-15a with BAFF-WT mRNA. As a consequence
of this lack of repression of BAFF expression due to BAFF-var,
soluble BAFF is produced at higher levels determining a cascade of
immune events leading to increased risk for systemic lupus
erythematosus and multiple sclerosis (48). It is expected that this
type of fine analysis of the regulation of gene expression will
increasingly contribute to a detailed understanding of the
molecular mechanisms of genetic associations with immune traits.

The obvious next critical step toward the therapeutic
modulation of a protein target identified with genetic approaches
is the assessment of its druggability – that is, its susceptibility to be
potentially modulated in its effects by drug-like small molecules
(typically targeting hydrophobic pockets) or by so called
“biologicals” (more commonly targeting extracellular domains
such as those of receptor proteins or soluble molecules) or by new
molecular approaches, such as those based on small interfering
RNA, antisense oligonucleotides,mRNAdelivery, gene editingwith
CRISPR–Cas9, andPROteolysis-TArgetingChimaeras (PROTAC)
(49–51).

In particular, the protein target identification approach
presented here, built on the results of flow cytometry coupled
with genetic data, offers an obvious opportunity for therapeutic
intervention through the generation of biological products,
specifically, as we detailed below, through a new class of poly-
specific antibodies. In contrast, many current monospecific
antibody-based therapies aimed to block, or in few cases
enhance, the activity of a single antigen generally expressed on
the cell surface membrane, such as anti-CD28, CD40, and CD25.
Nevertheless, these mono-specific drugs are affected by poor cell
Frontiers in Immunology | www.frontiersin.org 9
specificity causing reduced efficacy and predisposition to side
effects like increased risk of other autoimmune diseases. Indeed,
targeting broadly expressed markers such as CD25 or CD27,
which are expressed in both T and B cells, or CD28, expressed in
both CD4 and CD8 T cells, could cause unspecific blocking of
this marker in cells that are not involved in a specific disease (3).

For instance, IL2RA, also known as CD25, encodes the alpha
chain of IL-2 receptor and is expressed in regulatory T cells
(Tregs), activated effector T cells, but also in B cells. In 2013,
measuring CD25 in T cells only and using about 8.2 million
variants, an overlapping association between CD25hi effector T
cells and type 1 diabetes was found in the IL2RA region (1). More
recently, by increasing both the cell types where CD25 has been
assessed and the number of interrogated variants, seven
independent signals in the IL2RA locus (all regulating CD25
expression) were identified (3) (Figure 6). Some signals were T
cell specific; others were B cell specific, still, others involved both
T and B cells. Four out of the seven independent signals detected
in this region were associated with immune-diseases and pointed
to different traits, in some cases with opposite direction of effect,
potentially leading to adverse therapeutic complications
(Table 1). In more details, the inhibition of T cells expressing
high levels of CD25 may be efficacious in Crohn’s disease, but
harmful in type 1 diabetes and juvenile rheumatoid arthritis for
which a stimulation of the same cells is likely to be effective. These
data also suggest that reduction of CD25 on naive effector helper
T cells could be an effective therapy in multiple sclerosis and
alopecia areata. But inhibition of CD25 on a specific subset of
memory B cells called late memory B cells (identified as positive
for CD19, but negative for IgD and CD38) could be useful in
vitiligo and autoimmune thyroiditis therapies (Figure 6).

Overall, the genetic associations observed in the IL2RA region
can predict the efficacy and potential adverse effect of the broad
blocking of CD25 that causes a reduction of CD25 activity in cells
not implicated in disease predisposition (e.g., Tregs).

A similar scenario was observed for several antigens, such as
CD32, CD28, and CD40, whose increase is associated with
predisposition to some diseases, but also with protection from
others (Table 1). But if the targeted antigen can be addressed in
specific cells (for instance either B or T cells in the case of CD25),
the adverse effects should be minimized. Thus, the generation of
multi-specific drugs, able to recognize more than one antigen
simultaneously, can provide an optimal way to ensure specificity
and reduce adverse effects.

Multi-specific drugs are in clinical trials especially for cancer
treatment, where an antibody binds immune cells such as CD3-
positive, while another antibody binds cancer cells, thereby
redirecting T-cell cytotoxicity to malignant cells (52, 53).
However, the same approach can be useful to engage two
molecules on the membrane of one cell (in-cis binding). For
instance, MGD010 is a dual-affinity retargeting (DART) protein
which simultaneously binds the B cell surface proteins CD32B
and CD79B to deliver a co-inhibitory signal that dampens B cell
activation (54). The intended mechanism of MGD010 is to
modulate the function of human B cells while avoiding their
depletion and could be useful for treatment of rheumatoid arthritis
August 2021 | Volume 12 | Article 714461
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and other autoimmune and inflammatory diseases .
Notwithstanding, only few bispecific antibodies have been
approved and marketed, namely blinatumomab (55),
simultaneously targeting B cell CD19 antigen and T cell CD3
antigen against B cell malignancies, and emicizumab (56, 57),
targeting coagulation factors IXa and X against hemophilia A.
Finally, catumaxomab, approved in Europe for the intraperitoneal
treatment of malignant ascites, binds to the epithelial cell adhesion
molecule (EpCAM), T cells (via CD3), and to accessory cells,
including dendritic cells, macrophages, and natural killer cells
through its Fc-fragment (58). Approved in 2009, catumaxomab
was however withdrawn from the US market in 2013 and from
European market in 2017 when the company became insolvent.

More recently, tri-specific drugs have been developed. Among
them, a single molecule designed by Xu and colleagues is able to
bind three HIV-1 envelope determinants: the CD4 binding site,
the membrane proximal external region, and the V1V2 glycan
site, showing higher potency and breadth compared to
previously used antibodies and complete immunity against a
mixture of simian-human immunodeficiency viruses (SHIVs) in
nonhuman primates (59).

The reason why few multi-specific drugs have been created
and approved is that they are not easy to generate due to their
instability, low solubility, unwanted inter-subunit associations,
and enhanced immunogenicity (60). The evaluation of these
therapeutic properties as well as manufacturability and safety
profile is called developability.

Another relevant consideration is the choice of the most
appropriate dose. Several studies demonstrated that even when a
drug is able to ameliorate a disease condition, its administration at a
wrong concentration can cause potentially deadly side-effects. This
happened in 2006 when six healthy young males were enrolled in
the first phase 1 clinical trial of the CD28 super-agonist TGN1412,
which can activate T cells, particularly regulatory T cells, thus
potentially efficacious against autoimmunity where a reduced
function of Tregs is expected. All volunteers had an unpredicted
multiple cytokines release syndrome and underwent intensive
Frontiers in Immunology | www.frontiersin.org 10
cardiopulmonary support, dialysis, and administration of both a
high-dose of anti-inflammatory drugs such as methylprednisolone
and an anti–interleukin-2 receptor antagonist antibody.
Fortunately, all six volunteers survived (61). It was clear that the
drug activated effector T cells instead of Tregs. Some years later, the
reasons for the preclinical study failure of TGN1412 were found
(62). Firstly, only about 2% of T cells circulate in the peripheral
blood (63), thus human T cells used for in vitro studies (which
derive from that 2%) respond differently compared to those in vivo,
which include also the remaining 98%ofT cells. Secondly, inmouse
models living inagerm-free animalhouseused to test thedrug,CD4
effector memory cells are much lower in numbers and easily
controllable by TGN1412-activated Tregs compared to humans.
Thirdly, in cynomolgus macaques, also used to test the drug, CD4
effectormemory cells down-regulate CD28, and thus it cannot bind
TGN1412; this does not occur in humans. In 2014, Tabares and
colleagues (64) demonstrated that a strong reduction of TGN1412,
now renamed TAB08, accompanied by the administration of
corticosteroid drug (such as methylprednisolone), activates Tregs
without a cytokine storm, thus making it useful in rheumatoid
arthritis and other autoimmune therapies.

The TGN1412 results exemplify the need to identify the
correct dose for the correct target. Notably, the proper dose
could also depend on our genome, indeed, differences in our
DNA sequence that affect the levels of the drug target (such as
specific cell type or protein) could modify the efficacy of the
pharmacological treatments, thus an individual could need a
different drug concentration compared to another individual - a
type of personalized medicine.
CONCLUDING REMARKS

Flow cytometry combined with systematic GWAS of immune
traits in general population cohorts and case-control GWAS data
on autoimmune disease risk is a powerful strategy to identify
specific proteins, cells, and pathways involved in the
FIGURE 6 | Association signals at IL2RA region. Representation of IL2RA gene (green) and about 100 kb upstream to the gene (grey line). The association signals
with immune cell traits are depicted by «hills» which are colored in orange or light blue if overlapping or not overlapping with disease-association signals, respectively.
Disease is in red if the predisposing allele is associated with increase of immune cell traits, whereas it is in blue if the predisposing allele is associated with decrease
of immune cell traits. Disease acronyms: T1D, type one diabetes; RA, rheumatoid arthritis; PSC, primary sclerosis cholangitis; ALL, allergy; CRO, Crohn’s disease;
SLE, systemic lupus erythematosus; VIT, vitiligo; AT, autoimmune thyroiditis; AA, alopecia areata; PSO, psoriasis; MS, multiple sclerosis.
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TABLE 1 | Immune traits associated with diseases via overlapping genetic association and having opposite direction of effect in different diseases. Extracted from Orrù et al., 2020 (3).

y
Expected increased risk for other autoimmune
disease (side effect)

SLE
CRO, IBD, KD, AS, UC
MS
UC, CEL
MS
CEL, UC
SLE
CEL, BD
VIT, AA
CEL, Allergy, MS, Cutaneous squamous cell carcinoma
CRO, IBD, Allergy
CEL
RA
MS, Allergy
Allergy, CRO

T1D, PSC, JIA

Allergy, CRO
T1D, PSC, JIA
Allergy, CRO
T1D, PSC, JIA
Allergy, CRO
T1D, PSC, JIA
SLE
IgAN
T1D
CRO, IBD, Ob
CC, CRO, PBC, RA, T1D, UC, Bronchial
hyperresponsiveness in asthma, Selective IgA deficiency,
Liver biliary cirrhosis
Allergy, Asthma, ALL, AM

RA, Depression, KD

HBVI, CRO, IBD, MS, SLE

RA, KD
HBVI, CRO, IBD, MS, SLE
RA, KD
HBVI, CRO, IBD, MS, SLE
RA, KD
HBVI, CRO, IBD, MS, SLE
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Cell trait name Primary drug
targets

Disease Proposed therapeutic
modulation of primar
drug targets

CD32 on monocyte CD32 CRO, IBD, KD, AS, UC inhibition
CD32 on monocyte CD32 SLE activation
CD28 on CD39+ CD4+ CD28 UC, CEL activation
CD28 on CD39+ CD4+ CD28 MS inhibition
CD28 on CD4+ CD28 UC, CEL activation
CD28 on CD4+ CD28 MS inhibition
CCR2 on monocyte CCR2 BD, CEL activation
CCR2 on monocyte CCR2 SLE inhibition
HLA DR on CD14- CD16+ monocyte HLA DR CEL, Allergy, MS, Cutaneous squamous cell carcinoma inhibition
HLA DR on CD14- CD16+ monocyte HLA DR VIT, AA activation
CD80 on myeloid DC (especially CD62L+) CD80 CEL inhibition
CD80 on myeloid DC (especially CD62L+) CD80 CRO, IBD, Allergy activation
CD45RA on naive CD4+ CD45RA Allergy, MS inhibition
CD45RA on naive CD4+ CD45RA RA activation
CD25hi%CD4+ (especially CD25hi CD45RA- CD4
not Treg %CD4+)

CD25, CD4,
CD3

T1D, PSC, JIA activation

CD25hi%CD4+ (especially CD25hi CD45RA- CD4
not Treg %CD4+)

CD25, CD4,
CD3

Allergy, CRO inhibition

CD25 on CD45RA- CD4 not Treg CD25 T1D, PSC, JIA activation
CD25 on CD45RA- CD4 not Treg CD25 Allergy, CRO inhibition
CD25 on CD4+ CD25 T1D, PSC, JIA activation
CD25 on CD4+ CD25 Allergy,CRO inhibition
CD25++ CD8br%Tcells CD25, CD8 T1D, PSC, JIA activation
CD25++ CD8br%Tcells CD25, CD8 Allergy, CRO inhibition
CD11c on myeloid DC CD11c IgAN activation
CD11c on myeloid DC CD11c SLE inhibition
CD19 on B cell (especially sw mem IgD-CD27+) CD19 IBD, CRO, Ob activation
CD19 on B cell (especially sw mem IgD-CD27+) CD19 T1D inhibition
IgD+ AC IgD, CD19/

CD20
Allergy, Asthma, ALL, AM inhibition

IgD+ AC IgD, CD19/
CD20

CC, CRO, PBC, RA, T1D, UC, Bronchial
hyperresponsiveness in asthma, Selective IgA deficiency,
Liver biliary cirrhosis

activation

Unsw Mem (IgD+CD27+) %lymphocyte IgD, CD27,
CD19/CD20

HBVI, CRO, IBD, MS, SLE inhibition

Unsw Mem (IgD+CD27+) %lymphocyte IgD, CD27,
CD19/CD20

RA, Depression, KD activation

CD27 on memory B cell (especially IgD-CD38dim) CD27 HBVI, CRO, IBD, MS, SLE inhibition
CD27 on memory B cell (especially IgD-CD38dim) CD27 RA, KD activation
CD40 on B cell (especially IgD-CD27-) CD40 HBVI, CRO, IBD, MS, SLE activation
CD40 on B cell (especially IgD-CD27-) CD40 RA, KD inhibition
IgD- CD27- %B cell CD19/CD20 HBVI, CRO, IBD, MS, SLE activation
IgD- CD27- %B cell CD19/CD20 RA, KD inhibition
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etiopathogenesis of immune related diseases. After appropriate
validation with functional studies, this strategy will be
increasingly relevant to identify therapeutic targets and
reinforce causal relationships as the technology will evolve to
permit a considerable expansion of the number of markers
assessed simultaneously by flow cytometry and of the sample
size of the studies. Corresponding advances in the generation of a
new class of in-cis, multi-specific antibodies to engage these
targets will progressively increase efficacy and minimize the
potential side effects in the treatment of autoimmune diseases.

In summary, from flow cytometry data collection to drug
therapy development, four main steps are relevant:

• coupling flow cytometry data to genetics in the general
population sample set to identify the genetic component
driving the interindividual immune variability;

• systematically searching for overlapping association between
immune trait-associated variants (from population-based
datasets) and disease-associate variants (from case-control
datasets);

• causality confirmation of identified disease risk variants
through functional studies;

• drug development in a cell-specific context.
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