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Human genetic control is thought to affect a considerable part of the outcome of infection
with Mycobacterium tuberculosis (Mtb). Most of us deal with the pathogen by
containment (associated with clinical “latency”) or sterilization, but tragically millions
each year do not. After decades of studies on host genetic susceptibility to Mtb
infection, genetic variation has been discovered to play a role in tuberculous
immunoreactivity and tuberculosis (TB) disease. Genes encoding pattern recognition
receptors (PRRs) enable a consistent, molecularly direct interaction between humans and
Mtb which suggests the potential for co-evolution. In this review, we explore the roles
ascribed to PRRs duringMtb infection and ask whether such a longstanding and intimate
interface between our immune system and this pathogen plays a critical role in
determining the outcome of Mtb infection. The scientific evidence to date suggests that
PRR variation is clearly implicated in altered immunity toMtb but has a more subtle role in
limiting the pathogen and pathogenesis. In contrast to ‘effectors’ like IFN-g, IL-12, Nitric
Oxide and TNF that are critical for Mtb control, ‘sensors’ like PRRs are less critical for the
outcome of Mtb infection. This is potentially due to redundancy of the numerous PRRs in
the innate arsenal, such that Mtb rarely goes unnoticed. Genetic association studies
investigating PRRs during Mtb infection should therefore be designed to investigate
endophenotypes of infection – such as immunological or clinical variation – rather than just
TB disease, if we hope to understand the molecular interface between innate immunity
and Mtb.

Keywords: mycobacterium tuberculosis, tuberculosis, pattern recognition receptor (PRR), genetic association
studies (GAS), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), toll-like receptors (TLR), microbe
associated molecular pattern (MAMP)
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INTRODUCTION

Tuberculosis (TB) was the number one cause of death due to a
single infectious agent, Mycobacterium tuberculosis (Mtb), in the
year 2019 according to the WHO. SARS-CoV-2 has surpassed
Mtb in the last year; however, deployment of vaccines and
experience with containment measures should blunt the death
rate from COVID-19 in the years to come, such that TB may
reprise its role as the most important cause of infectious
mortality. Near 40 million people have died from TB in the
last 20 years while treatment has saved 60 million (WHO). Yet,
in the same interval, an estimated 10- to 20-fold more people
were infected but did not progress to disease (1, 2). Together, this
suggests broad host control or tolerance of this pathogen, despite
the important minority who progress to disease each year.

Our time together with Mtb has potentially spurred human
adaptation to allow us as a population to subsist with this
obligate pathogen. Mtb has been evolving to parasitize humans
for millennia and within that time the relationship has possibly
changed us too, when and where Mtb was endemic (3–5).
Current and past abundance of human genetic diversity allows
researchers to test the importance of genetic variation in Mtb
infection outcomes and infer an evolutionary response by our
species to survive the Mtb pandemic. One example where Mtb
has potentially exerted a purifying selection on humans is that of
the TYK2 P1104A variant, which was calculated to have
decreased in western Europeans concomitant with endemic TB
over the last two millennia (6, 7). The TYK2 P1104A variant is
known to disrupt IL-23-dependent IFN-g production (6) and
was associated with a 5-fold increased risk for developing TB in
the contemporary UK biobank (8). We are not aware of any
evidence of positive selection of a TB resistance gene to date.

Is every case of TB a situation where the host genetic
combination is vulnerable to Mtb? We can hypothesize a
genetic combination impervious to Mtb. We may not have to
extend our imagination very far, as there are documented cases
of people who remain TST negative in high-burden settings, such
that it is statistically unlikely that they have never inhaled Mtb
[recently reviewed in (9)]. Therefore, developing TB is, in part, a
result of genetics, and not just being a human exposed to Mtb, a
postulate supported by the 21% heritability estimate for
household contacts in Peru progressing from TST positivity to
TB (10). Environmental parameters can also have an effect (e.g.
level of exposure, lung damage, HIV co-infection) and thus in
theory identical twins could have different outcomes with Mtb
Abbreviations: BCG, Bacille Calmette-Guérin, attenuated M. bovis vaccine
against Mtb; CFUs, Colony-forming units, a measure of the amount of bacteria;
CLR, C-type lectin receptor; Collectins, Soluble CLR; KO, Knockout, removal of a
gene from a genome; LAM, Lipoarabinomannan, mannosylated = ManLAM,
uncapped = araLAM; LPS, Lipopolysaccharide, a.k.a. endotoxin, MAMP from
Gram negative bacteria; MAMP, Microbe-associated molecular pattern,
recognized by host PRR(s); MDP, Muramyl dipeptide; MHC, Major
histocompatibility complex; Mtb, Mycobacterium tuberculosis, causative agent of
TB; NLR, NOD-like receptor; NOD, Nucleotide-binding oligomerization domain-
containing; PIMs, phosphatidylinositol mannosides; PRR, Pattern recognition
receptor, recognize MAMP(s); TB, Tuberculosis, the disease caused by Mtb;
TDM, Trehalose dimycolate; TLR, Toll-like receptor; TST, Tuberculin skin test,
indicates adaptive T-cell response to mycobacterial antigens.
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infection. Mtb also has variation which might contribute to a
different outcome for the bacterium and the host: there are 9
lineages described to date (11–13) with some being deemed more
virulent in experimental models (14).

Genetic variation creates differences that can fine tune a host-
pathogen interaction, or abrogate it completely, resulting in
altered immunity. One modality where there is a direct
opportunity for co-evolution is in physical interactions
between host molecules and Mtb molecules. These interactions
can be placed into a few camps including: 1) between classical T-
cell receptors and MHC molecules presenting microbial epitopes
(15); 2) between antibodies and cognate microbial ligands (16);
3) between donor-unrestricted T cells and their respective
mycobacterial epitopes presented on invariant host molecules
operating analogously to MHC (17, 18); 4) between inborn
sensors of microbial products, otherwise known as pattern-
recognition receptors (PRRs), and their cognate microbe-
associated molecular patterns (MAMPs). By their nature as
structural molecules, MAMPs are subjected to a stronger
purifying selection than many proteins. Unlike T-cell
receptors, PRRs cannot generate diversity within an individual,
yet there is variability amongst human population PRR gene
pools as discussed further below. Most of all, should we even
expect strong selective pressure on host PRRs to recognize Mtb
MAMPs? In this paper, we sought to review what is known about
the relative importance of the MAMP-PRR interaction for the
mammalian host during Mtb infection primarily through two
sources of data: 1) controlled animal experiments using
engineered genetic knockouts (KOs) of PRRs; 2) natural
experiments in humans where genetic diversity permits us to
seek associations between polymorphisms and the course ofMtb
infection. We later place this in perspective with genes known to
have strong effects on animal outcomes and lastly discuss how to
approach human genetic studies of PRRs in the years to come.
PRRS AND THEIR FUNCTIONS AGAINST
MTB AT THE CELLULAR LEVEL

The interactions between many PRRs, Mtb and Mtb MAMPs
have been described over the last few decades and are summarized
in Figure 1. Various mechanisms have been uncovered by which
PRR recognition of Mtb leads to a cellular effect. Immediately
below, we briefly review the molecular functionality of the PRRs
which have been demonstrated to mediate an immune response
to mycobacteria. Whether these molecular and/or cellular effects
translate to protection or pathology in the whole animal is
examined in the subsequent section.

Toll-Like Receptors
Toll-like receptors (TLRs) were the prototypical PRR fitting the
hypothesis proposed earlier by Janeway Jr (19) that there existed
inborn sensors in animals for products common among groups of
microbes but absent from the host, allowing host recognition of
non-self invading microbes – a form of antibody or T-cell receptor
for innate immunity. The discoveries in the 1990s on the Toll gene
June 2021 | Volume 12 | Article 714808
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ofDrosophila, followed by work exploitingmutant forms of TLR4 in
human cells and mice demonstrated that mammalian TLR4 was a
sensor of Gram-negative endotoxin (a.k.a. lipopolysaccharide, LPS)
(20–23). In total there are 10 TLRs in humans (13 in mice), each
with different microbial ligands and slightly varying effects. TLR2
cooperates with TLR1 or TLR6, as well as other PRRs like CD14, to
sense mycobacterial lipoproteins and lipoglycans. Identified
mycobacterial TLR2 ligands include LAM (non-capped araLAM
and not ManLAM) (24, 25), 19 kDa lipoprotein (LpqH), 38 kDa
lipoprotein (PstS1) (26), PIMs (with differing activities) (27, 28), 27
kDa lipoprotein (LprG) (29), and LprA (30) to name a few (31).
Mycobacteria including Mtb shed membrane vesicles containing
TLR2 ligands that are sufficient to generate a TLR2-dependent
immune response (32). More recently Mtb sulfoglycolipids have
been shown to be competitive TLR2 antagonists (33). TLR4’s
mycobacterial ligands are less clear, but Mtb extracts have TLR4-
dependent stimulatory activity; many proteins have been proposed
as TLR4 agonists, with GroEL1 and 2 being examples (34). TLR5,
which recognizes flagellin, does not have a known mycobacterial
ligand (mycobacteria do not swim – they float). TLR3, TLR7 and
Frontiers in Immunology | www.frontiersin.org 3
TLR8 recognize RNA, and recent reports revealed that they may
respond to host and/or mycobacterial RNA during infection (35–
37). TLR9 recognizes CG-rich DNA (i.e. CpG motifs) and has been
shown to contribute to the cellular response to Mtb’s CG-rich
genomic DNA (38, 39). TLR10 has no known ligands,
mycobacterial or otherwise. Murine TLR11, 12, and 13 are not
reviewed here because they have no direct relevance to
human health.

A complete review of TLR signalling, not specific to
mycobacteria, has been recently published elsewhere (40).
Briefly, when TLRs are engaged and oligomerize on the
membrane, adaptor proteins MyD88 or TRIF are recruited to
the cytoplasmic side to form ‘myddosomes’ or ‘triffosomes’,
respectively. These supramolecular platforms direct signalling
events that lead to activation of MAPK and NF-kB pathways, for
example. Such signalling begins an inflammatory response by the
cell which includes upregulation of costimulatory molecules and
antigen presentation by MHC molecules, plus secretion of
soluble factors like cytokines, in the cases of macrophages and
dendritic cells (DCs).
FIGURE 1 | The various host PRR and Mtb MAMP interactions. Representative MAMP-PRR interaction are depicted in their approximate cellular locations
highlighting the numerous ways in which Mtb announces its arrival to a phagocyte.
June 2021 | Volume 12 | Article 714808
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C-Type Lectin Receptors
C-type lectin receptors (CLRs) are a large, diverse category of
receptors of which some members function as PRRs by binding
to MAMPs; other CLRs bind endogenous ligands or non-microbial
exogenous ligands. The etymology of the name originates from
some members requiring calcium (Ca++, hence “C”) to bind their
respective carbohydrate ligands (hence “lectin”). There are both
membrane-bound and soluble forms of CLRs. A full review of this
complex category of PRRs has recently been published and provides
more mechanistic detail than is presented here (41).

The mannose receptor (CD206) expressed on macrophages was
shown to assist these phagocytes in uptake of the tubercule bacillus
(42) with ManLAM being the mycobacterial ligand for CD206 (43).
The ManLAM-CD206 interaction was later demonstrated to
uniquely induce IL-8 and cyclooxengenase expression via PPARg,
while PPARg knockdown was associated with reduced bacterial
growth and increased TNF production during monocyte-derived
macrophage infection (44). Pparg-KO mice had about half the
pulmonary bacterial burden and reduced lung pathology than WT
counterparts when aerosol infected with Mtb (45).

The CLR called DC-SIGN (Dendritic Cell-Specific
Intercellular adhesion molecule-3-Grabbing Non-integrin, a.k.a.
CD209) is a main receptor on DCs for binding to Mtb (46). DC-
SIGN expressed on dendritic cells has been show to interact with
ManLAM (47), PIM6 (48) and capsular alpha-glucan (49). The
DC-SIGN homologues L-SIGN (human) and SIGNR1 (mouse,
one of five homologues), have been shown to interact with
ManLAM too (50). DC-SIGN ManLAM ligation modulated
TLR-induced signalling (e.g. NF-kB pathway) via Raf-1 (51, 52).

MINCLE (Macrophage inducible Ca++-dependent lectin
receptor, encoded by CLEC4E) associates with FcRg to bind
mycobacterial cord factor trehalose-6,6’-dimycolate (TDM) and
TDM is sufficient to induce granuloma formation in murine
lungs if functional MINCLE and FcRg are present (53). MINCLE
signals via the SYK-CARD9 pathway to lead to the production of
proinflammatory cytokines (54). Card9-KO mice succumb more
quickly to Mtb than WT, associated with defective anti-
inflammatory signalling presumably leading to lethal
immunopathology (55). MINCLE expression is low in resting
macrophages, and first requires induction via signalling through
MCL (encoded by Clec4d and not to be confused with MCL-1).
MCL is also a FcRg-coupled and TDM CLR but cannot mediate
the same pro-inflammatory response on its own (56). MINCLE
and MCL expression are co-dependent (57, 58).

Dectin-1 was shown to mediate part of the immune response
of splenic DCs toMtb (59).Mif-KO mice have impaired survival
and immunity compared to WT during aerosol infection with
Mtb HN878 strain, while bacterial killing and cytokine
production were nearly restored when Mif-KO cells were
complemented with Dectin-1 (overexpressed). These results
suggest the MIF defect mostly manifests in defective Dectin-1
signalling (60). The mycobacterial ligand for Dectin-1 remains
unknown. Dectin-2 was reported to recognize ManLAM (61, 62),
but pathogenesis studies have yet to be done with this CLR.

Recently, DCAR (dendritic cell immunoactivating receptor;
encoded by Clec4b1), also a FcRg-coupled CLR, was demonstrated
Frontiers in Immunology | www.frontiersin.org 4
to be a receptor of PIMs. DCAR is expressed on monocytes and
macrophages. Clec4b1-KO mice had partially defective immune
responses and bacterial control during BCG infection (63).

Soluble CLRs
Collectins are soluble, non-cell-bound proteins; they are CLRs in
that they specifically associate with sugars on the surface of
microbes to mediate an effect. Surfactant proteins (SP) are
collectins that exist in pulmonary surfactant. SP-A promoted
attachment and phagocytosis ofMtb by alveolar macrophages by
a mechanism that required mannose receptor but not SP-A
contacting Mtb (64, 65). SP-A supressed nitrite production
from AMs preventing Mtb killing and controlling bacterial
growth (66). SP-A was shown to bind to ManLAM (67) and
APA, the alanine- and proline-rich antigenic glycoprotein (68).
SP-D binds to ManLAM and agglutinatesMtb, but in contrast to
SP-A, SP-D reduced Mtb binding to macrophages (69). Reduced
uptake occurred without agglutination using a modified SP-D
(70). However, SP-D increased phagosome-lysosome fusion, but
did not alter the respiratory burst (71).

The collectin mannan-binding lectin (MBL) and ficolins are
serum-borne receptors that bind to microbes to initiate the
complement cascade. MBL was first demonstrated to interact
withMtb andM. leprae sonicate (72). Ficolins, of which there are
at least three in humans and two in mice, are also part of the
lectin-complement system. Ficolin-2 was shown to bind to Mtb
to play a protective role involving opsonization and
inflammatory signalling in macrophages (73). Another group
suggested ficolin-3 was important for agglutination and
phagocytosis of Mtb (74). MBL and ficolins were suggested to
bind to ManLAM and/or Ag85 (75, 76).

NOD-Like Receptors
Nucleotide-binding Oligomerization Domain-containing
(NOD)-like receptors (NLRs) are a group of cytoplasmic
sensors. Reviews with more detail on their mechanisms of
action than presented here have been published, for example
(77). Its members NOD1 and NOD2 are essential in the detection
of peptidoglycan fragments D-glutamyl-meso-diaminopimelic
acid (iE-DAP) and muramyl dipeptide (MDP), respectively
(78–81). Both NOD1 and NOD2 signal through the adaptor
protein RIPK2 to reach NF-kB and MAPK pathways. Few reports
have been published on an important role for NOD1 during Mtb
infection, one showing NOD1 plays a role in cytokine production
only in the absence of NOD2 or after LPS-pretreatment of
BMDMs (82). Mycobacteria do possess the iE-DAP moiety in
their peptidoglycan (83). In contrast, NOD2 has been well-
studied in Mtb infection [Pubmed searches of “Mycobacterium
tuberculosis AND NOD1” or “…NOD2” yielded 7 and 57 hits,
respectively, at the time of writing (15-2-2021)].

Mycobacteria produce a distinct NOD2 ligand, N-glycolyl
MDP, while most other bacteria produce N-acetyl MDP (84, 85).
N-glycolylated peptidoglycan and MDP were shown to be better
inducers of immune responses compared to the N-acetylated
forms by comparing with mycobacterial KOs and synthetic
MDPs (86–88). The absence of NOD2 during Mtb infection
June 2021 | Volume 12 | Article 714808
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was accompanied by reduced nitric oxide and cytokine
production from mouse macrophages (89, 90) and reduced
iNOS from human macrophages (91). NOD2 signalling has
been called “non-redundant” in that although there are shared
pathways with TLR and CLR signalling (e.g. NF-kB), NOD2
signalling appears to work synergistically with other MAMPs
and little immune response is produced with MDP stimulation
alone (86, 88, 92).

Only one other NLR has been significantly studied in the
context of Mtb infection: NLRP3 (NLR family pyrin domain
containing 3). There is no known mycobacterial ligand for this
NLR – it has been suggested that NLRP3 can sense specific host
products in the context of infection (77). Recently, ESX-1-
mediated membrane damage has been tied to caspase-1
activation, NLRP3 oligomerization, inflammasome formation
and finally IL-1b release (93).

Nucleic Acid Cytosolic Surveillance
Receptors
AIM2 (absent in melanoma 2) appears to play a role in Mtb
infection. This cytosolic DNA receptor was necessary for full
caspase-1 cleavage/activation and IL-1b release during Mtb
infection and Mtb DNA transfection (94). STING (Stimulator
of interferon genes), part of a cytosolic DNA sensing system,
was essential for autophagy targeting of ESAT-6-producing
mycobacteria in mouse bone marrow-derived macrophages
(95) and zebrafish embryos (96). cGAS (cyclic guanosine
monophosphate–adenosine monophosphate (cGAMP)
synthase), a DNA sensor that works with STING, was
required for Mtb autophagy in addition to STING (97). Type
I IFN production during Mtb infection elicited by cGAS-
produced, STING-sensed cGAMP was dependent on RD-1
(98, 99). Mtb-produced c-di-AMP was also shown to
contribute to type I IFN production through STING (100). It
has been suggested that Mtb DNA engagement of the AIM2
inflammasome leads to the inhibition of host cell-protective
STING functions (101).

Scavenger Receptors and Complement
Scavenger receptors (SR) are a diverse and poorly defined group
of cell surface receptors that interact with endogenous and
microbial ligands. Details of these receptors have been recently
reviewed elsewhere (102, 103). Inhibitors of scavenger receptors
reduced Mtb binding to macrophages (104).

MARCO is a scavenger receptor that was suggested to bind
and “tether” Mtb to a macrophage’s surface by interacting with
TDM (105), and zebrafish lacking MARCO expression had
reduced macrophage uptake of M. marinum (106). Similarly,
blocking MARCO on human mesenchymal stems cells reduced
Mtb uptake (107).

KO of the gene encoding scavenger receptor A (SR-A) did not
affect inflammatory gene transcription during Mtb infection
(108). The KO increased TNF and MIP-1a production from
AMs treated with TDM (109). Overexpression of Scavenger
receptor B1 (SR-B1) in immortal cells was associated with
increased BCG and Mtb binding to the cells, but the
Frontiers in Immunology | www.frontiersin.org 5
corresponding KO in murine macrophages had no effect on
BCG binding (110). SR-B1 was essential for EsxA-mediated
transcytosis of Mtb across M cells (111). A related SR-B family
member, CD36, was identified with a Drosophila RNAi screen to
be essential for uptake of M. fortuitum (112). CD36 knockdown
in human monocyte-derived macrophages reduced surfactant
lipid uptake as well as intracellular growth of Mtb, suggesting
CD36 normally promotes intracellular Mtb growth or survival
(113). Another group showed Cd36 KO macrophages control
Mtb, BCG and M. marinum infections better, independent of
phagocytosis rate, nitric oxide and ROS production. Similarly,
mice receiving BCG i.p. had lower bacterial loads with Cd36 KO
vs WT (114). Homologues of SR-BII and CD36 in Dictyostelium
discoideum (a social amoeba) are similarly involved in
phagocytosis of M. marinum (115).
CONSEQUENCES OF PRR KOs IN MICE

The overall importance of individual genes duringMtb infection
is best addressed in two ways: observing what happens to
individuals with diverse expression or functionality of the gene
of interest who perchance become infected withMtb (the natural
experiment); alternatively, individuals of known or controlled
gene status can be intentionally infected with Mtb – unethical in
humans and therefore animal models are necessary. As
mentioned above, many PRRs are important for specific
cellular processes relevant to Mtb infection. It is therefore
hypothesized that in the absence of a PRR, certain aspects of
the host-Mtb interaction are lost, which should result in a
phenotype in the whole animal. We have also assumed that the
animal would suffer most from the aberrant immune response.
This assumption is perhaps too simplistic: Mtb is a professional,
obligate pathogen, and although it is perceived as hard-to-kill, it
might also suffer from a host environment that does not behave
as Mtb has evolved to ‘expect’. Additionally, we have suggested
that the potential coevolution of humans andMtb has shaped the
PRR-MAMP interaction, which clearly would not apply in
infections of animals like mice, which are not natural hosts for
Mtb. However, one can still use mice to generate testable
hypothesis for human studies and validate genetic effects
observed first in humans. Numerous KO mouse studies of Mtb
infection have been performed over the years with hypotheses of
defective immunity in the animal that should manifest as
decreased survival, increased bacterial burden and/or
detectable differences in the immune response (e.g.
bronchoalveolar lavage cytokines or T-cell defects).

Systematic Literature Search of Mtb
and PRRs
To non-biasedly form a conclusion as to the importance of PRRs
during Mtb infection in animal models, we used the Medline
database via Pubmed to repeatedly search every known PRR and
its role in Mtb infection in a living animal with the term below
(where “[PRR]” was changed in each search):

“Mycobacterium tuberculosis AND [PRR]”
June 2021 | Volume 12 | Article 714808
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Where PRR names were ambiguous, we searched multiple times
using the different names. After removing duplicates, this search
produced over 1100 papers, which were screened for data using
KO animals during Mtb infection. The results of this in silico
exercise are summarized in Table 1. We have added a few studies
of which we were aware but that were missed by the screen
(noted in Table 1). It is possible that other appropriate data are
absent; however the non-biased approach reinforces the validity
of our subsequent conclusions.

In Table 1, we summarized the results of individual
experiments presented in the literature on murine Mtb
infections comparing a PRR KO to the ‘WT’ control animal.
All data found were exclusive to the mouse. We have included
the dose, Mtb strain and route of infection per experiment. Mtb
can establish an infection via the lungs with just a few bacilli
(156, 157), and therefore models using large doses and atypical
routes may represent different aspects of Mtb disease but not
necessarily follow the normal mode of infection. The magnitude
of disease in mice also changes with the strain of Mtb, where for
example the H37Rv strain is expected to be less virulent than the
related Erdman strain and the HN878 strain. It is possible that
some of the different outcomes across different studies
addressing the same PRR knockout were due to differences in
the infection model. However, our review of the data did not
reveal an obvious effect of dose, strain nor route (Table 1).

Where survival data were present, it was clear that PRRs can
have an effect on survival, although in most cases there was either
no significant difference in survival from WT to KO, or it was
quantitatively small. There were two instances where KO mice
survived longer than WT [CD14 (135) and SR-A (152)],
demonstrating that some host systems are detrimental to
Mtb tolerance.

TLR KOs Resulted in Small and
Inconsistent Effects on Survival and
Mtb Burden
For TLR2, two of four experiments showed reduced survival in
KOs. A single Tlr6-KO study did not show a difference in
bacterial burden nor immune response (117). For TLR4, two
of seven experiments showed reduced survival in KOs. Note that
many TLR4 studies took advantage of the C3H/HeJ mouse
(having a spontaneous Tlr4 loss-of-function mutation)
employing other only somewhat related C3H strains as
wildtype control. The maximum difference in pulmonary
bacterial burden observed in most of these papers was
approximately one log more in Tlr2 or Tlr4 KOs vs WT.
Defects in immune responses were observed in a majority of
Tlr2 KO experiments and a minority of Tlr4 KO experiments.
Two experiments with Tlr9 KO from one study showed more
rapid death with high dose infection compared to low dose, and
only the high-dose resulted in a statistically significant increase
in pulmonary bacterial burden (158). No survival data for other
TLRs have been published. Interestingly, most experiments with
combination KOs of Tlr2, 4 and/or 9 resulted in no differences in
bacterial burden nor immunologic responses. Two of seven
experiments (Tlr2/9 double KOs) resulted in shortened survival
Frontiers in Immunology | www.frontiersin.org 6
times, but with small or unreported differences in bacterial
burden. Together, mutations in TLRs, even multiple, had only
modest or negligible effects on the host’s survival and bacterial
control but were frequently associated with altered immune
responses. In particular, TLR2 and 9 stood out.

Of note,Myd88-KO mice succumbed rapidly (all dead within
1-2 months) toMtb infection, despite TLRs seeming to be largely
dispensable. This was attributed to the necessity of MyD88 for
IL-1R signalling (Il1r1 KO mice are equally susceptible) and
intrinsic macrophage function requiring MyD88 (121, 159, 160).
An earlier report with Myd88-KO mice showed a nearly 2-log
increase in pulmonary colony-forming units (CFU) compared to
WT but mice survived at least 12 weeks with limited
immunological changes; no survival was presented (161).

Few CLR KOs Resulted in
Small Reductions in Survival and
Bacterial Control
For CLRs, only MCL and Dectin-1 were found by us to have been
disrupted in Mtb survival challenges. In one report, MCL
(Clec4d)-KO caused a significant difference in survival, but
specifically this was 20% mortality by 6 weeks, after which no
Clec4d-KO mice died to week 10 (when the experiment was
ended) (143). However, in the same study, pulmonary bacterial
burden was less than half a log higher in the KO at four months
(no significant difference at 2 months). Proinflammatory
immunologic responses were elevated in the KO. Thus, MCL
might play a role early in infection to control the immune
response, but not so much for bacterial control.

Another lone report showed Dectin-1 (Clec7a)-KO mice did
not have changed mortality after infection with Mtb, and in fact
had slightly lower bacterial burdens compared to WT at 2 and 4
months post infection (144). Therefore, Dectin-1 is likely not
required by the host during Mtb infection. No survival data was
found for murine DC-SIGN homologues, mannose receptor, nor
MINCLE. Only one of three studies reported a difference in
bacterial burden with SIGNR1 (Cd209b)-KO at one- and nine-
months post infection, but by scoring Ziehl-Neelsen-stained lung
sections rather than directly counting CFUs (140). When
assessed, altered immunity was consistently observed with this
KO. A single study found a difference in bacterial burden and
immunological response with a SIGNR3 (CD209d)-KO but not a
SIGNR5 (Cd209a)-KO (139). Another lone study addressing the
mannose receptor showed no bacterial or immunologic effect
with KO (140). Two studies on MINCLE presented opposing
data on pulmonary bacterial burden (more or less a half log
compared to WT) and only one identified significant
immunological changes with KO. Double KO of the genes
encoding mannose receptor plus SIGNR1 showed no bacterial
or immunologic differences. KOs of other membrane-bound
CLRs have not been tested during in vivo Mtb infection.

KOs of genes encoding collectins SP-A and SP-D had no
long-term effect on bacterial burden during Mtb infection –
survival was not tested/presented. Immunologic responses were
similar to WT but with decreased neutrophil numbers in the
lung. Double KO for SP-A and SP-D genes was similar to the
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TABLE 1 | Results of KO mouse studies in Mtb infection.

PRR KO(S) DOSE, CFU STRAIN ROUTE D SURVIVALA D MTBB D IMMC NOTESD SOURCE

TLR2 100 H37Rv aero - N N Reiling et al. (116)
2,000 H37Rv aero Y (60/150) – Y Reiling et al. (116)
100 Kurono aero - Y (1) Y Sugawara et al. (117)
100 H37Rv aero N Y (1) – Drennan et al. (118)
500 H37Rv aero Y (100/>155) Y (1) Y Drennan et al. (118)
75 H37Rv aero N N N manual Bafica et al. (119)
20 H37Rv aero - Y (<1) Y Tjärnlund et al. (120)
100 H37Rv aero – N – Hölscher et al. (121)

100,000 H37Rv i.t. - Y (1) Y Carlos et al. (122)
150 H37Rv i.n. – – Y Teixeira-Coelho et al. (123)

10,000,000 H37Rv i.v. - - Y Choi et al. (124)
75 Erdman aero – Y (1) – McBride et al. (125)
10 Erdman aero - Y (2) - McBride et al. (126)
100 Erdman aero – Y (2) Y McBride et al. (126)
150 Erdman aero - Y (1) - McBride et al. (126)
100 Erdman aero – Y (<1) Y chimera Konowich et al. (127)
20 HN878 aero Y (3) Y Gopalakrishnan et al. (128)

RP105 200 H37Rv aero – Y (<1) Y Blumenthal et al. (129)
TLR4 100 H37Rv aero Y (180/>250) Y (1) Y HeJ/HeN Abel et al. (130)

100 H37Rv aero – N N HeJ/HeN Reiling et al. (116)
2,000 H37Rv aero N - N HeJ/HeN Reiling et al. (116)
144 Erdman aero N N – HeJ/other C3H Kamath et al. (131)
472 Erdman aero N N N HeJ/other C3H Kamath et al. (131)
75 H37Rv aero N Y (-1) N HeJ/OuJ Shim et al. (132)

100,000 H37Rv i.n. Y (90/>110) Y (<1) Y HeJ/HeN Branger et al. (133)
500,000 H37Rv i.n. N – – HeJ/HeN Branger et al. (133)

20 H37Rv aero - Y (<1) Y Tjärnlund et al. (120)
100 H37Rv aero – N – Hölscher et al. (121)
150 K strain aero - Y (2) Y HeJ/HeN and B6 Park et al. (134)

CD14 100 H37Rv aero – N N Reiling et al. (116)
100,000 H37Rv i.n. Y (>224/210) N Y Wieland et al. (135)

LBP 100,000 H37Rv i.n. N N Y Branger et al. (136)
TLR6 100 Kurono aero - N N Sugawara et al. (117)
TLR9 75 H37Rv aero Y (90/>150) N Y manual Bafica et al. (119)

500 H37Rv aero Y (45/>90) Y (<1) Y (not shown) manual Bafica et al. (119)
100 H37Rv aero – N – Hölscher et al. (121)
75 Erdman aero - N N Gopalakrishnan et al. (137)

SIGNR1 100,000 H37Rv i.n. – N Y Wieland et al. (138)
1,000 H37Rv i.n. - N - Tanne et al. (139)
200 H37Rv i.n. – Y (score) Y Court et al. (140)

SIGNR3 1,000 H37Rv i.n. - Y (1) Y Tanne et al. (139)
SIGNR5 1,000 H37Rv i.n. – N – Tanne et al. (139)
CD206(MR) 200 H37Rv i.n. - N N Court et al. (140)
MINCLE 100 H37Rv aero – Y (>-1) N Heitmann et al. (141)

100 Erdman aero - Y (<1) Y Lee et al. (142)
MCL 100 H37Rv aero Y Y (<1) Y N>30 for survival Wilson et al. (143)
DECTIN-1 100 H37Rv aero N Y, (>-1) N Marakalala et al. (144)
FICOLIN-A/2 1,000,000 H37Rv i.v. Y (10/22) – – Luo et al. (73)
SP-A 50 Erdman aero - N Y Lemos et al. (145)

6,000 Erdman aero – Y (<1) – Lemos et al. (145)
SP-D 50 Erdman aero - N Y Lemos et al. (145)

6,000 Erdman aero – Y (<1) – Lemos et al. (145)
NOD2 35 1254 aero - N N Gandotra et al. (89)

1,500 H37Rv aero – N N Gandotra et al. (89)
400 H37Rv aero Y (200/>230) Y (<1) Y Divangahi et al. (90)

NLRP3 300 H37Rv aero N N Y McElvania TeKippe et al. (146)
100 H37Rv aero - N Y Walter et al. (147)
300 H37Rv aero – N N Dorhoi et al. (148)

NLRP12 300 H37Rv aero N N N manual Allen et al. (149)
NLRC3 200 H37Rv aero – Y (-1) Y manual Hu et al. (150)
NLRC4 300 H37Rv aero N - - McElvania TeKippe et al. (146)

(Continued)
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SP-A single KO (145). KO of the gene encoding ficolin-A
(homologue of human ficolin-2 and/or 3) decreased the
survival of mice given one million CFU H37Rv strain i.v.
compared to WT, but survival was enhanced compared to WT
when KO mice were given a plasmid containing ficolin-A or
ficolin-2 by i.m. electroporation on the day of infection (73). This
suggests ficolins might help control systemic or bloodborneMtb.
Thus, as with TLRs, CLRs are generally dispensable for Mtb
immunity. The few exceptions seem to suggest an early, minor
role in Mtb infection for CLRs like MCL and SP-A/D.

KOs of Certain Cytosolic PRRs Worsened
Mtb Infection Outcome
NOD2 disruption produced a late survival phenotype: KO mice
died faster than WT near 6 months post Mtb infection. Bacterial
burden was slightly higher and immunological responses were
also reduced in KO mice in this study (90). A separate study did
not find significant differences in bacterial burden nor
immunological responses with Nod2-KO nor Nod2-Tlr2-
double KO, but survival was not evaluated (89). In contrast,
Nlrp3-KO had no effect on bacterial burden in three studies.
Immunological responses with Nlrp3-KO can be altered, but
survival did not change.

Aim2-KO mice succumbed rapidly to infection with one
million CFU H37Rv strain delivered i.t. compared to WT. The
KO had greater bacterial burden and pathology and altered
immunity (94). However, no other independent studies were
found besides this one, and the high dose delivery makes the
result difficult to compare to other PRR-KO survival studies with
Frontiers in Immunology | www.frontiersin.org 8
the more physiological low-dose aerosol infection. The
importance of AIM2 during mycobacterial infection is
supported by data with BCG, where repeated infection of WT
and Aim2-KO mice vial the tail vein showed KO mice were
defective in controlling bacterial burden which was associated
with altered immunity (enhance type I IFN, reduced type II IFN)
(101). Additionally, the adaptor protein ASC (a.k.a. PYCARD)
was also shown to be important for survival in at least two
separate studies (146, 155). This supports the importance of
AIM2 and/or another inflammasome sensor for Mtb infection,
with NLRP3 seemingly dispensable.

Pulmonary burden of Mtb in Cgas-KO and Sting1gt/gt mice
was unchanged from WT at 3 and 6 weeks post aerosol infection
of 200 CFU of the Erdman strain, although Cgas-KO mice had
late reduced survival (deaths between 100 and 200 days p.i.)
while the STINGmutant did not differ fromWT (97). In another
study, an Erdman-strain aerosol experiment running 100 days
did not reveal a difference between WT and Cgas-KO mice in
terms of survival and bacterial burden, but less type I IFN was
present in the lungs and serum (99). In a third study with i.n.
infection with 1000 CFU H37Rv strain, cGAS and STING
mutations did not affect survival past 250 days (no mice died
as with WT), although Cgas-KO mice did not maintain weight as
well. Bacterial burden and immunology were the same asWT too
(151). Together, these studies suggest cGAS plays a minor role
during Mtb infection (that emerged as a death phenotype late in
one study), while STING is dispensable. These findings are
difficult to reconcile with the proposed model where cGAS
functions upstream of STING as the mycobacterial DNA
TABLE 1 | Continued

PRR KO(S) DOSE, CFU STRAIN ROUTE D SURVIVALA D MTBB D IMMC NOTESD SOURCE

cGAS 200 Erdman aero Y (150/210) N – Collins et al. (97)
100 Erdman aero N (100) N Y manual Watson et al. (99)
1,000 H37Rv i.n. N N N Marinho et al. (151)

STING 200 Erdman aero N N - gt/gt STING Collins et al. (97)
1,000 H37Rv i.n. N N N Marinho et al. (151)

AIM2 1,000,000 H37Rv i.t. Y (45/>56) Y (1) Y Saiga et al. (94)
Marco 200 H37Rv i.n. – Y (score) Y Court et al. (140)
SR-A 200 H37Rv i.n. - N N Court et al. (140)

75 H37Rv aero Y (>430/230) Y (-1, ns) Y Sever-Chroneos et al. (152)
SR-B1 100 H37Rv aero - N N Schafer et al. (110)

1,000 H37Rv aero – N Y Schafer et al. (110)
CD11b(CR3) 200,000 Erdman i.v. N N - 3 backgrounds Hu et al. (153)

100,000 Erdman i.v. – Y (<1, ns) – Melo et al. (154)
TLR-2/4 60 H37Rv aero - N N Shi et al. (108)

600 H37Rv aero – N N Shi et al. (108)
100 H37Rv aero - N - Hölscher et al. (121)

TLR2/4/9 100 H37Rv aero – N N Hölscher et al. (121)
TLR2/9 75 H37Rv aero Y (90/>150) Y (<1) Y manual Bafica et al. (119)

75 H37Rv aero Y (120/>280) – – manual Mayer-Barber et al. (155)
75 Erdman aero - N N Gopalakrishnan et al. (137)

NOD2/TLR2 100 H37Rv aero – N – Gandotra et al. (89)
CD206/SIGNR1 200 H37Rv i.n. - N N Court et al. (140)
SR-A/CD36 200 H37Rv i.n. – N N Court et al. (140)
SP-A/D 50 Erdman aero - N Y Lemos et al. (145)

6000 Erdman aero – Y (<1) – Lemos et al. (145)
June 2021
A, change in survival (Yes/No) (median survival KO/median survival control). B, change in pulmonary Mtb CFU burden (Yes/No) (maximum log KO/control). C, change in immune response
observed (Yes/No). D, any irregularities from other studies (manual means source was not found in systematic search and was added manually afterwards).
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sensor; accordingly a STING mutant should be defective for
cGAS functions. Furthermore, Mtb CDC1551 mutants that
either lack their own c-di-AMP production, or overexpress it,
significantly decreased and increased survival relative to WT,
respectively (100), contributing further confusion regarding the
importance of STING. It is possible that the importance of cGAS
during mouse survival of Mtb infection is related to a STING-
independent function of cGAS, and that the STING phenotype
with mutantMtb is more valuable as a mechanistic lesson than a
biologically relevant one.

No Other PRR KOs Were Detrimental to
the Host During Mtb Infection
No data was found showing scavenger receptor KOs were
detrimental to Mtb control. A difference in bacterial burden
during Mtb infection of Marco-KO mice was only detected by
scoring Ziehl-Neelsen-stained lungs, not by CFU enumeration,
at 6 and 9 months post infection (140). KOs for SR-A and SR-B
genes did not result in increased bacterial burdens nor were they
consistently associated with immunological changes. Two
independent studies examining the complement receptor CR3/
Cd11b KO duringMtb infection found no evidence that they play
a role in Mtb control nor survival (153, 154).

In summary, most PRR KO experiments presented did not
show reduced survival compared to WT. Control of bacterial
burden was either unaffected or just slightly increased by PRR
KOs in most experiments. We suspect that publication bias
against negative data would also mean that PRR KO effects
are, if anything, over-represented in the literature. In contrast,
altered immunity was found often in PRR KOs during Mtb
infection. It is possible that the effects on immunity with some
PRR KOs are not large or relevant enough to result in changes in
survival and bacterial burden that are sufficiently robust to be
statistically detectable with a practical number of animals.
PRR DIVERSITY IN HUMANS AND
OUTCOMES OF MTB INFECTION

Selective pressure caused by human-microbe interactions
coupled with population admixture has helped shape the
response of modern humans to pathogens (162). A recent
example is a locus controlling COVID-19 severity in modern
humans that can be traced to Neanderthal introgression (163).
Mtb and humans have coexisted for an estimated 2,000 – 6,000
years (3, 4) and purifying selection of human genes by Mtb was
traced to the bronze age for the TYK2 P1104A mutation.
Similarly, as members of the first line of host innate immune
defense PRRs have been subjected to purifying selection (164).
PRR diversity in humans may explain, at least in part, the
variable susceptibility to Mtb across populations.

For example, humans express 10 functional TLRs which are
subdivided in two categories: cell surface (TLR1, 2, 4 – 6 and 10)
and intracellular endolysosomal (TLR3, 7 – 9). The intracellular
TLRs underwent strong purifying selection and have poor
tolerance to loss of function mutations (165). Conversely, cell
Frontiers in Immunology | www.frontiersin.org 9
surface TLRs are more permissive to genetic variation across
human populations (166). This difference may be attributed to
the nature of ligands. Bacterial antigens detected by cell surface
TLRs are clearly distinct from host molecules while nucleic acids
detected by intracellular TLRs (RNA or DNA with CpGs) can
resemble host endogenous factors. It has been proposed that
mutations in intracellular TLRs are less tolerated to prevent
“autoimmunity” (167–169). Mtb is detected by heterodimers of
TLR1, 2 and 6, therefore presenting redundancy in the host
response. Interestingly, mutations in the TLR1 (S248N, I602S),
TLR6 (P249S) and TLR10 (I775V) genes clustered on
chromosome 4p14 have shown signs of recent positive
selection in Europeans (165). It has been suggested, although
not confirmed, that tuberculosis and leprosy epidemics in
Europe have played a role in this selective pressure (170). Of
particular interest is the TLR1 I602S mutation which has been
associated with both TB and leprosy (171–175). The TLR1 602S
amino acid was shown to impair NF-kB activity in response to
Mtb and decrease IL-6 production (174). Studies evaluating
TLR2 mutations in TB have provided inconsistent results,
which limited the interpretation of its role in TB pathogenesis
(176, 177). Moreover, TLR4 and TLR9 have also been suggested
to contribute to TB susceptibility (178–180).

NLR is another group of PRRs that shows signs of diversity
between populations. NLRs encompass three families of cytosolic
PRRs (NOD receptors, NLRPs and IPAFs) involved in viral and
intracellular bacterial pathogen recognition. An excess of rare
NOD1 non-synonymous variants segregating in the human
population provided evidence for weak negative selection
against these variants (181). In contrast, there was evidence
among Asians and Europeans of positive selection for rare
variants in NOD2 (181). In a meta-analysis, the NOD2 R702W
amino acid change was associated with protection from TB (182,
183). Curiously, the same NOD2 R702W mutation is one of the
strongest known genetic risk factors for Crohn’s disease,
suggesting a pivotal role for NOD2 in balancing host
inflammatory responses (184). Most NLRPs shows signs of
strong selective constrains emphasizing their essential function
in the human innate immune response (181). Macrophages
challenged with Mtb or M. marinum in vitro showed a
NLRP3-dependent increase in IL1b production (176). In a
small population of cases with HIV/Mtb co-infection a non-
coding variant in NLRP3 had a weak association with early
mortality (185).

DC-SIGN (CD209), a member of CLR family, is a major
dendritic cell receptor of Mtb (46). In ancient humans a
duplication of CD209 gave origin to the CD209L gene.
Interestingly, natural selection has prevented accumulation of
amino acid changes in CD209 while the closely related CD209L
gene was permissive (186). This discrepancy in selective
pressures highlights the importance of function for CD209
while diversity in CD209L might have benefitted human
adaptation to pathogens. Two promoter variants in CD209 are
associated with TB in multiple African populations (187–189),
South Asians (190) and Brazilians (191). Other PRRs, such as
ficolins, have been evaluated for association with TB (192, 193),
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while studies with genes encoding proteins of the complement
and PRRs for the RIG-1 family have not yet been reported.
HOW SOME NON-PRR KOs COMPARE

Through animal experimentation, certain genes and associated
pathways have been shown to be major determinants of the host
outcome uponMtb infection. Here, we define how some of these
pathways compare to PRR pathways at the molecular level, and
the level of importance to Mtb infection, as internal positive
controls to our review.

For the sake of controls, similar systems to the PRR-MAMP
interaction would include endogenous receptor-ligand systems.
Receptor-cytokine interactions are an example which includes
mechanisms that are even functionally related to PRR signalling
pathways (e.g. the IL-1R/IL-1 system, which uses MyD88 like the
TLRs as mentioned above).

IL-1R deficient mice were more susceptible to Mtb after
intranasal infection with 105 CFU H37Rv strain, with a median
survival of around 110 days, while no WT had died by 140 days;
the remaining KO mice had 4 logs more pulmonary CFU than
WT at 140 days post infection (194). Another study by a different
group showed that with 100 CFU Kurono strain aerosol infection
Il1r1 KO mice had died after 45 days (KO mice had 3 logs more
pulmonary CFU than WT at 35 days) (195). During another
H37Rv strain infection (200 CFU i.n.), Il1r1 KO mice
phenocopied Myd88 KO mice (died around 4 weeks post
infection) (159). There have been variable phenotypes with IL-
1a and IL-1b deficiency: in one study Il1b KO was sufficient to
phenocopy Il1r1 KO (155); in another study the double cytokine
KO only reduced pulmonary Mtb CFU control (196); in a third
study only double cytokine KO, not single, shortened survival
like Il1r1 KO (197). Lastly, heterozygous deficiency of IL-1R
antagonist, overexpressed in mice carrying the Sst1 (super
susceptibility to tuberculosis 1) locus, almost completely
rescued these mice from their type-I IFN driven early mortality
and excessive pulmonary CFU burden during Mtb Erdman
strain infection, again highlighting the protective effect of IL-
1R signalling (198). Thus, MyD88-dependent cytokine-receptor
systems can be critical for Mtb control in mice.

In mice lacking TNF receptor, or treated with anti-TNF
antibodies, mice succumbed to uncontrolled Mtb Erdman
strain i.v. infection in about a month while WT controls all
survived past 125 days (199). This result has been replicated in
Tnf KO mice in numerous studies over the years (118, 160, 197).
TNF receptor deficient mice died approximately as rapidly as Tnf
KO, even if the receptor KO was only on myeloid cells; lymphoid
cell receptor KO did not differ from WT (200). Thus, the TNF
pathway is critical forMtb control in mice to prevent rapid death.
The importance of TNF with Mtb infection in humans was
demonstrated when anti-TNF treatment was associated with the
emergence of TB in patients receiving this treatment for other
reasons (201).

Similarly, IFN-g signalling has been known to be critical
for control of Mtb in animal models for decades (202, 203).
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IFN-g from CD4+ T cells in particular is necessary for survival,
and animals lacking IFN-g from just CD4+ T cells succumb after
two months post aerosol infection; however IFN-g’s role was
mostly extrapulmonary with a limited role in the lungs (204). IL-
12p40, upon which IFN-g is partly dependent, has also been
knocked-out in mice and resulted in uncontrolled replication of
Mtb (Erdman strain, administered i.v.) and mortality within 1.5
months compared to WT mice which lived “to old age” (205).
Human mutations in IFN-g or IL-12 pathway genes causing
impaired IFN-g-mediated immunity result in Mendelian
Susceptibility to Mycobacterial Disease, which manifests as
chi ldhood BCG disseminat ion or non-tuberculous
mycobacterial infection, and occasionally Mtb infection later in
those who live (206).

Cytokine and PRR signalling on their own do not have direct
bactericidal effects – they are thought to modulate innate defense
mechanisms and instruct adaptive immunity. The endgame of
bacteriologic control are the host’s killing mechanisms, which in
macrophages include low phagosomal pH, digestive enzymes like
lysozymes, and reactive oxygen species. As an example, the well-
studied nitric oxide is produced by NOS2 to attack Mtb. Mice
lacking NOS2 all died within 50 days of i.v. infection with 105

CFU Erdman strain while WT median survival was about 150
days (207). In a separate study, aerosol infection with 100 CFU
H37Rv strain similarly resulted in death before day 50 associated
with increasedMtb burden (208). Thus, effectors like nitric oxide
are irreplaceable for control of Mtb and host survival.
WHY HAVE GENETIC STUDIES OF TB IN
HUMANS BEEN UNDERWHELMING?

Genetic epidemiology studies have provided only a handful of
PRR and non-PRR genes as global risk factors for TB. This lack
of success is in striking contrast to leprosy, the second most
common mycobacterial disease in humans (209). Strain diversity
ofMtb compared toM. lepraemight have played a role; however,
the most likely cause for the lack of consistent results is
phenotypic heterogeneity among TB cases. Most studies define
TB as a single entity combining cases regardless of their clinical
and biological characteristics. While this approach has worked
for leprosy (210, 211), in other instances combining all leprosy
cases has proven troublesome due to the presence of well-defined
endophenotypes (212, 213). Common endophenotypes in
leprosy are excessive host inflammatory responses, so-called
lepra reactions, that sub-divide the overall group of patients.
Endophenotypes can result in misclassification of genetic effects
(213, 214). Indeed, the genetic associations can be in opposite
direction between endophenotype and disease per se (212, 215).

Genetic modulators with opposing effects on unrecognized
endophenotypes and clinically defined TB might be difficult to
detect even in studies with very large sample sizes. This raises the
question if similar, perhaps more complex endophenotypes,
underlie the disappointing results from TB genetic studies.
Specifically, considering the impact of PPR genes on
intermediary immune phenotypes in the mouse, it is
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conceivable that PPR polymorphism may yet have a role to play
in the genetics of TB pathogenesis. Heterogeneity among cases
appears to be predominant in large scale genetic studies in TB
and the existence of TB endotypes has been proposed (216).
Recent advances in molecular and analytical techniques have
allowed the identification of at least two TB endotypes through
unbiased clustering of transcriptional changes in distinct
molecular pathways (217). One endophenotype presented
immune exhaustion resulting in poor prognosis compared to
the second endophenotype.

What remains unclear is to what extent TB endophenotypes
represent the continued progression of TB pathogenesis or if
they are distinct forms of the same disease. More studies will be
necessary to settle this question. Such future studies need to focus
on defining endophenotypes with the full weight of omics
approaches, keeping in mind that these better-resolution
phenotypes may represent kinetic entities. Such a ‘systems-
medicine ’ definition of TB, in excess of clinical and
microbiological data, is expected to improve power for efficient
mapping of endophenotypes. Molecular (RNA, proteins and
metabolites) and immune (cellular) phenotyping using blood
can provide information for dissociating TB cases into
endophenotypes. This is a two-step approach, where first
identification of interindividual molecular/cellular similarities
is done prior to the genetic study. How to deal with the
genetic study in the second step would depend on the groups,
but could be either a continuous phenotype or stratified by
endophenotype. Using an omics signature would overcome the
limitations where patients are clinically similar but the genetic
cause of TB is not the same. Clinical heterogeneity with Mtb
infection that is ambiguous (e.g. placement on a spectrum from
TST positive to active TB) can be better-defined or bypassed with
non-biased omics data. However, independently of the nature of
TB endotypes, it is now clear that heterogeneity may impact on
genetic studies of TB and perhaps shed new light on the role of
PPR polymorphisms.
FINAL THOUGHTS AND CONCLUSION

PRRs appear to be important for immunologic responses but
have a more subtle role in control of Mtb and the course of TB.
We hypothesize that this is partly due to the redundancy of
many PRRs sensing different Mtb MAMPs. Amongst this
redundancy, however, there may be unique immunological
adjustments performed by specific PRRs. In contrast, genes
that produce products mediating distinct effects, like IFN-g, IL-
12, nitric oxide and TNF are clearly essential to the host’s
Frontiers in Immunology | www.frontiersin.org 11
survival. Although we can consider PRRs ‘less important’ than
effectors, this prompts an interesting question: Is this a
situation of reduced selective pressure, which explains human
PRR diversity? It is imaginable that the immunological
outcome performed by an orchestra of PRRs can be quite
varied as individual PRR activities are tuned differently by
genetics. By contrast, altering the potency of an effector like
IFN-g would directly correlate with Mtb control, and therefore
selection would be purifying.

Human genetic association studies of TB have yielded but a
few promising leads. Animal and cellular human data clearly
demonstrate that PRRs affect immunity during Mtb infection,
despite small and/or delayed survival and bacteriologic
phenotypes in PRR KO mice. Thus, PRR mutation in humans
might manifest in endophenotypes of Mtb infection – states of
altered immunity wherein the progression of TB may possess
subtly different parameters. Defining such endophenotypes of
Mtb infection through molecular and immunological profiling of
patients may provide a roadmap on which to trace the effects
of PRR variation on the course of TB.
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et al. Early Progression to Active Tuberculosis is a Highly Heritable Trait
Driven by 3q23 in Peruvians. Nat Commun (2019) 10(1):3765. doi: 10.1038/
s41467-019-11664-1

11. Napier G, Campino S, Merid Y, Abebe M, Woldeamanuel Y, Aseffa A, et al.
Robust Barcoding and Identification of Mycobacterium Tuberculosis
Lineages for Epidemiological and Clinical Studies. Genome Med (2020) 12
(1):114. doi: 10.1186/s13073-020-00817-3

12. Ngabonziza JCS, Loiseau C, Marceau M, Jouet A, Menardo F, Tzfadia O,
et al. A Sister Lineage of the Mycobacterium Tuberculosis Complex
Discovered in the African Great Lakes Region. Nat Commun (2020) 11
(1):2917. doi: 10.1038/s41467-020-16626-6

13. Coscolla M, Gagneux S, Menardo F, Loiseau C, Ruiz-Rodriguez P, Borrell S,
et al. Phylogenomics of Mycobacterium Africanum Reveals a New Lineage
and a Complex Evolutionary History. Microb Genom (2021) 7(2):000477.
doi: 10.1099/mgen.0.000477

14. Bottai D, Frigui W, Sayes F, Di Luca M, Spadoni D, Pawlik A, et al. TbD1
Deletion as a Driver of the Evolutionary Success of Modern Epidemic
Mycobacterium Tuberculosis Lineages. Nat Commun (2020) 11(1):684.
doi: 10.1038/s41467-020-14508-5

15. Ernst JD. Antigenic Variation and Immune Escape in the MTBC. Adv Exp
Med Biol (2017) 1019:171–90. doi: 10.1007/978-3-319-64371-7_9

16. Kroon EE, Kinnear CJ, Orlova M, Fischinger S, Shin S, Boolay S, et al. An
Observational Study Identifying Highly Tuberculosis-Exposed, HIV-1-
Positive But Persistently TB, Tuberculin and IGRA Negative Persons With
M. tuberculosis specific antibodies in Cape Town, South Africa.
EBioMedicine (2020) 61:103053. doi: 10.1016/j.ebiom.2020.103053

17. Joosten SA, Ottenhoff THM, Lewinsohn DM, Hoft DF, Moody DB,
Seshadri C. Harnessing Donor Unrestricted T-Cells for New Vaccines
Against Tuberculosis. Vaccine (2019) 37(23):3022–30. doi: 10.1016/
j.vaccine.2019.04.050

18. Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The Role of Donor-
Unrestricted T-Cells, Innate Lymphoid Cells, and NK Cells in Anti-
Mycobacterial Immunity. Immunol Rev (2021) 301(1):30–47. doi: 10.1111/
imr.12948

19. Janeway CA. Approaching the Asymptote? Evolution and Revolution in
Immunology. Cold Spring Harb Symp Quant Biol (1989) 54:1–13. doi:
10.1101/SQB.1989.054.01.003

20. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The
Dorsoventral Regulatory Gene Cassette Spätzle/Toll/cactus Controls the
Potent Antifungal Response in Drosophila Adults. Cell (1996) 86(6):973–
83. doi: 10.1016/s0092-8674(00)80172-5

21. Medzhitov R, Preston-Hurlburt P, Janeway CAJr. A Human Homologue of
the Drosophila Toll Protein Signals Activation of Adaptive Immunity.
Nature (1997) 388(6640):394–7. doi: 10.1038/41131

22. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective
LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4
Gene. Science (1998) 282(5396):2085–8. doi: 10.1126/science.282.5396.2085

23. Qureshi ST, Larivière L, Leveque G, Clermont S, Moore KJ, Gros P, et al.
Endotoxin-Tolerant Mice Have Mutations in Toll-Like Receptor 4 (Tlr4).
J Exp Med (1999) 189(4):615–25. doi: 10.1084/jem.189.4.615
Frontiers in Immunology | www.frontiersin.org 12
24. Means TK, Lien E, Yoshimura A, Wang S, Golenbock DT, Fenton MJ. The
CD14 Ligands Lipoarabinomannan and Lipopolysaccharide Differ in Their
Requirement for Toll-Like Receptors. J Immunol (1999) 163(12):6748–55.

25. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ.
Human Toll-Like Receptors Mediate Cellular Activation by Mycobacterium
Tuberculosis. J Immunol (1999) 163(7):3920–7.

26. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR,
et al. Host Defense Mechanisms Triggered by Microbial Lipoproteins
Through Toll-Like Receptors. Science (1999) 285(5428):732–6.
doi: 10.1126/science.285.5428.732

27. Jones BW, Means TK, Heldwein KA, Keen MA, Hill PJ, Belisle JT, et al.
Different Toll-Like Receptor Agonists Induce Distinct Macrophage
Responses. J Leukoc Biol (2001) 69(6):1036–44.

28. Gilleron M, Quesniaux VF, Puzo G. Acylation State of the
Phosphatidylinositol Hexamannosides From Mycobacterium Bovis
Bacillus Calmette Guerin and Mycobacterium Tuberculosis H37Rv and
its Implication in Toll-Like Receptor Response. J Biol Chem (2003) 278
(32):29880–9. doi: 10.1074/jbc.M303446200

29. Gehring AJ, Dobos KM, Belisle JT, Harding CV, BoomWH. Mycobacterium
Tuberculosis LprG (Rv1411c): A Novel TLR-2 Ligand That Inhibits Human
Macrophage Class II MHC Antigen Processing. J Immunol (2004) 173
(4):2660–8. doi: 10.4049/jimmunol.173.4.2660

30. Pecora ND, Gehring AJ, Canaday DH, Boom WH, Harding CV.
Mycobacterium Tuberculosis LprA is a Lipoprotein Agonist of TLR2 That
Regulates Innate Immunity and APC Function. J Immunol (2006) 177
(1):422–9. doi: 10.4049/jimmunol.177.1.422

31. Drage MG, Pecora ND, Hise AG, Febbraio M, Silverstein RL, Golenbock DT,
et al. TLR2 and its Co-Receptors Determine Responses of Macrophages and
Dendritic Cells to Lipoproteins of Mycobacterium Tuberculosis. Cell
Immunol (2009) 258(1):29–37. doi: 10.1016/j.cellimm.2009.03.008

32. Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R,
Veeraraghavan U, et al. Mycobacteria Release Active Membrane Vesicles
That Modulate Immune Responses in a TLR2-Dependent Manner in Mice.
J Clin Invest (2011) 121(4):1471–83. doi: 10.1172/jci44261

33. Blanc L, Gilleron M, Prandi J, Song OR, Jang MS, Gicquel B, et al.
Mycobacterium Tuberculosis Inhibits Human Innate Immune Responses
via the Production of TLR2 Antagonist Glycolipids. Proc Natl Acad Sci USA
(2017) 114(42):11205–10. doi: 10.1073/pnas.1707840114

34. Cehovin A, Coates AR, Hu Y, Riffo-Vasquez Y, Tormay P, Botanch C, et al.
Comparison of the Moonlighting Actions of the Two Highly Homologous
Chaperonin 60 Proteins of Mycobacterium Tuberculosis. Infect Immun
(2010) 78(7):3196–206. doi: 10.1128/iai.01379-09

35. Bai W, Liu H, Ji Q, Zhou Y, Liang L, Zheng R, et al. TLR3 Regulates
Mycobacterial RNA-Induced IL-10 Production Through the PI3K/AKT
Signaling Pathway. Cell Signal (2014) 26(5):942–50. doi: 10.1016/
j.cellsig.2014.01.015

36. Keegan C, Krutzik S, Schenk M, Scumpia PO, Lu J, Pang YLJ, et al.
Mycobacterium Tuberculosis Transfer RNA Induces IL-12p70 via
Synergistic Activation of Pattern Recognition Receptors Within a
Cell Network. J Immunol (2018) 200(9):3244–58. doi: 10.4049/
jimmunol.1701733

37. Pawar K, Shigematsu M, Sharbati S, Kirino Y. Infection-Induced 5’-Half
Molecules of Trnahisgug Activate Toll-Like Receptor 7. PloS Biol (2020) 18
(12):e3000982. doi: 10.1371/journal.pbio.3000982

38. Matsumoto S, Matsumoto M, Umemori K, Ozeki Y, Furugen M, Tatsuo T,
et al. DNA Augments Antigenicity of Mycobacterial DNA-Binding
Protein 1 and Confers Protection Against Mycobacterium Tuberculosis
Infection in Mice. J Immunol (2005) 175(1):441–9. doi: 10.4049/
jimmunol.175.1.441

39. Ruiz A, Guzmán-Beltrán S, Carreto-Binaghi LE, Gonzalez Y, Juárez E. DNA
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