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A paradigm shift in the understanding of the exhausted CD8+ T cell (Tex) lineage is
underway. Originally thought to be a uniform population that progressively loses effector
function in response to persistent antigen, single-cell analysis has now revealed that CD8+

Tex is composed of multiple interconnected subpopulations. The heterogeneity within the
CD8+ Tex lineage is comprised of immune checkpoint blockade (ICB) permissive and
refractory subsets termed stem-like and terminally differentiated cells, respectively. These
populations occupy distinct peripheral and intratumoral niches and are characterized by
transcriptional processes that govern transitions between cell states. This review presents
key findings in the field to construct an updated view of the spatial, transcriptional, and
functional heterogeneity of anti-tumoral CD8+ Tex. These emerging insights broadly call for
(re-)focusing cancer immunotherapies to center on the driver mechanism(s) underlying the
CD8+ Tex developmental continuum aimed at stabilizing functional subsets.

Keywords: T cell exhaustion, PD-1/PD-L1, T cell trafficking, tumor immunity, cancer immunotherapy, CXCR3,
co-stimulatory/inhibitory receptors, stem-like CD8+ T cells
INTRODUCTION

T cell exhaustion is a blanket term covering all of the dysfunctional states that exist within antigen-
specific CD8+ T lymphocytes as first described in the framework of chronic viral infection, where
these cells persist but are unsuccessful in clearing a pathogenic threat (1). Blockade of surface co-
inhibitory receptors such as programmed death 1 (PD-1) expressed by CD8+ Tex was shown to
reinvigorate cytolytic cell-mediated immune responses leading to the eradication of some persistent
viruses (2). Later found in cancer, CD8+ Tex are found to be equally hyporesponsive to anti-tumor
immunotherapies (3). Cells expressing PD-1 were thought to be rescued by ICB via simple
unidirectional reversion from the unresponsive, exhausted state (2). In cancer, this was also
believed to involve dysfunctional CD8+ Tex expressing high levels of PD-1, primarily residing in
the tumor microenvironment (TME) (3).

Recent advances in single-cell transcriptomics and genome-wide epigenetic profiling comparing
normal tissue, peripheral blood, and the lymphoid compartment to tumor parenchyma have
challenged this view. New insights have been made regarding the spatial arrangement and
heterogeneity of CD8+ Tex and their modulation by ICB (3). We now understand that PD-1
expression is not an absolute measure of cellular dysfunction and senescence. Instead, PD-1
intensity reflects a complex heterogeneity existing within CD8+ Tex (4). Emergent data now casts
CD8+ Tex as a developmental continuum, where the lineage is comprised of stem-like PD-1loCD8+

Tex precursors/progenitors that ultimately give rise to terminally dysfunctional PD-1hiCD8+ Tex (3).
In cancer, these CD8+ Tex subsets appear to be unevenly spread amongst normal peripheral versus
tumoral tissues and are differentially responsive to ICB (3).
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This review discusses the original works that first identified
CD8+ Tex and more contemporary reports describing this
population as a developmentally distinct lineage using chronic
viral infection. We draw on these data as a basis to further our
understanding of CD8+ Tex function during anti-tumor immune
responses and elucidate the cellular dynamics and molecular
pathways underlying the success and limitations of ICB.
Throughout this review, we highlight fundamental knowledge
gaps regarding the factors underlying control over CD8+

Tex heterogeneity.
TRANSLATING CD8+ T CELL
EXHAUSTION FROM CHRONIC
INFECTION TO CANCER: A COMMON
ROLE OF PERSISTENT ANTIGEN

The origin of the term T cell exhaustion goes back to the notable
decay of T cell responses first documented in human
immunodeficiency virus (HIV)-infected patients (5). It was
speculated that viral persistence was linked with loss of
function observed in these declining T cell subsets. CD8+ T cell
functionality (the ability to rapidly expand after priming,
produce effector cytokines and cytolytic molecules, and
contract to form memory) characterizes acute recognition of
cognate antigen during vaccination or natural, but eventually
cleared, viral/bacterial infections (6, 7). Throughout the
expansion phase, naïve CD8+ T cells differentiate into short-
lived effector cells (SLEC) or memory precursor effector cells
(MPEC) (6). Upon contraction and antigen clearance, most
SLECs die while MPECs survive to form memory CD8+ T cells
for long-term protective immunity (Figure 1A) (6, 8). The
existence of a CD8+ Tex counterpart to the conventional acute
immune response was formally realized at the height of the HIV
pandemic when Zinkernagel et al. exposed mice to acute
(Armstrong and WE) versus chronic (Clone 13 and DOCILE)
strains of lymphocytic choriomeningitis virus (LCMV), a rodent-
borne negative-stranded RNA arenavirus (9). In this seminal
work, Clone 13 and DOCILE strains persisted in infected mice
for greater than 200 days at high inocula while transferred T cell
receptor (TCR) transgenic virus-specific CD8+ T cells
disappeared or crashed without contraction to memory (9).
Initial exposure of select viral strains and doses thus appeared
to scale cellular immunity towards protection or completely
‘exhausted’ the response, as it was coined.

This finding was later examined by two teams [Zajac, Wherry,
and Ahmed et al. (10, 11) along with Gallimore and Rammensee
et a l . (12)] concurrent with the advent of major
histocompatibility complex class I (MHC I) tetramer staining
technology to track endogenous antigen-specific CD8+ T cells. It
was found that initially dominant cytolytic CD8+ T cell responses
against LCMV-derived peptides with high MHC I affinity
(NP396-404 and GP34-42) were rapidly deleted, just as
Zinkernagel initially observed (9). However, functionally
inadequate responses against low/moderate affinity peptides
(GP33-41 and GP276-286) persisted for greater than 60 days post-
Frontiers in Immunology | www.frontiersin.org 2
infection (Figure 1B) (10–12). These results showed that
constantly elevated viral load and peptide affinity for MHC I
strongly correlated with the degree of exhaustion and determined
deletion versus persistence of CD8+ Tex (10, 11). Low avidity
persisting cells exhibited a hierarchical loss of functionality at
relatively low viral loads, which manifested as a dramatic
decrease in proliferation, cytotoxicity, and cytokine production
(2, 10, 11). Interleukin-2 (IL-2) and tumor necrosis factor (TNF)
were lost early, whereas interferon-g (IFN-g) production
persisted longer after infection (2, 10, 11). At elevated viral
doses or with depletion of CD4+ T cell help, these gradual
losses of functionality (or dysfunction) resulted in a nearly
complete reduction in effector function followed by cell death/
deletion (9–11). This process translated to HIV infection and
other chronic or latent viral infections in humans, including
hepatitis B and C viruses (HBV/HCV), herpes simplex virus
(HSV), cytomegalovirus (CMV), human papillomaviruses
(HPV), Epstein-Barr virus (EBV), and others (2, 13).

A common feature of chronic viral infection and cancer is
that both are prolonged diseases characterized by an overt
persistence of antigen (4). CD8+ tumor-infi l trating
lymphocytes (TILs) are similarly hyporesponsive as those
found during chronic viral infection but are instead caught in
an in vivo détente against the progressively growing tumor (14).
Patient TILs are also tumor antigen-specific and MHC-
A

B

FIGURE 1 | Antigen load differentially influences CD8+ T cell memory and
exhaustion fates. CD8+ T cell differentiation during acute infection versus
chronic infection and cancer. (A) Activation of naïve CD8+ T cells during acute
infection leads to SLEC and MPEC differentiation. Upon antigen clearance,
SLECs undergo apoptosis while MPECs survive and differentiate into long-
lived, self-renewing memory CD8+ T cells. (B) With chronic infection and
cancer, SLEC specific to peptides of high MHC I affinity develop and
prematurely die while the MPEC subset does not form. Instead of memory
formation, CD8+ T cells against peptides of low MHC I affinity expand,
exhaust (in a unidirectional PD-1lo to PD-1hi transition), and die in a continued
stalemate against persistent antigen.
July 2021 | Volume 12 | Article 715234
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restricted, supporting the role of chronic antigen persistence in
driving T cell exhaustion (15, 16). Importantly, antigen displayed
in the TME appears to fully drive CD8+ TIL exhaustion towards
completion, whereas the periphery does not, as shown in
preclinical models (17, 18). These data imply that the
periphery may be an active reservoir of functional precursors
to CD8+ Tex (Figures 2A, B) before the physical invasion of
tumors and chronic exposure to tumor-derived antigen
(Figure 2C)—a spatial feature distinct from Clone 13 infection.
Although persistent antigen plays a significant role in sustaining
CD8+ Tex for terminal differentiation in the tumor, other early
events in CD8+ T cell activation may also be critical for the initial
programming of exhaustion in the periphery or specialized
tumor niches, including TCR signal quality/strength (NFAT
versus NFAT/AP-1 signaling, discussed below), co-stimulation,
IL-2 availability (with associated CD4+ T cell helper signals), and
inflammatory cues in the first few divisions (Figure 3A) (1, 10,
19–22).

Contemporary studies comparing chronic viral infection to
cancer have sought to identify common CD8+ Tex transcriptional
signatures. At first glance, both tumor- and chronic virus-specific
CD8+ T cells possess significant enrichment of genes related to
recent TCR signaling (Batf, Egr2, Ezh2, Irf4, Nfatc1, Nfatc2,
Nr4a1, Nr4a2, and Nr4a3) (17, 18, 23–25). This observation
reinforces that constant engagement of persistent antigen is a
dominant driver of exhaustion. These dominant transcriptional
features are notably shared in a direct comparison of CD8+ Tex

isolated from HIV-infected and melanoma patients. They can
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also be recapitulated in CD8+ T cells given repeated cognate
peptide stimulations in vitro (26, 27). However, significant
disparities in CD8+ Tex transcriptional phenotypes also exist
between cancer and viral settings. These appear to be unrelated
to exhaustion per se, where TIL uniquely retain gene ontologies
associated with the suppressive TME and are devoid of pathways
linked with virally-induced inflammation (3, 18, 28).
REVERSING T CELL EXHAUSTION:
LESSONS LEARNED FROM IMMUNE
CHECKPOINT BLOCKADE

The onset of exhaustion coincides with the surface expression of
co-inhibitory receptors, which control CD8+ T cell function (2).
It has been considered that these immune checkpoints, which
include PD-1 (among others), evolved to constrain T cell
activation, preventing excessive adverse inflammatory and
autoimmune events (29, 30). They also seem to function
throughout exhaustion and not merely correlate with loss-of-
function, as blocking interactions between PD-1 and its ligand
(PD-L1) can restore the function and survival of CD8+ Tex (2,
31). With Clone 13 infection, ICB of PD-(L)1 was initially shown
by Barber and Ahmed et al. to reinvigorate CD8+ Tex (31).
Importantly, restoration of the response originated from
PD-1+CD8+ Tex and not from de novo naïve PD-1−CD8+ T cell
priming (31). This early study led to the idea that reinvigoration
A B C

FIGURE 2 | Spatiotemporal organization of early versus late stages of tumor-mediated CD8+ T cell dysfunction. (A) Naïve CD8+ T cell priming against tumor antigen
in peripheral LNs (or intratumoral TLS, not depicted) results in the formation of a stem-like PD-1loCD8+ T cell population with self-renewing properties. (B) This
population represents an active reservoir of cells that can give rise to effector-like PD-1loCD8+ Tex after chemokine-mediated trafficking to and positioning within the
TME via CCL5 and CXCL9. (C) However, persistent antigen load in the TME eventually forces continued differentiation of these cells into terminally dysfunctional
PD-1hiCD8+ Tex. The PD-1hi state is accompanied by heightened co-inhibitory receptor expression (including Tim-3, Lag-3, CD160, 2B4, TIGIT, and CTLA-4) and
progressive loss of effector functions. Once CD8+ Tex enter a PD-1hi state, epigenetic enforcement prevents de-differentiation back to functional stem-like and
effector-like PD-1lo states. Anti-tumoral responses facilitated by ICB (e.g., anti-PD-1) arise from expansion from only lymphoid or intratumoral PD-1loCD8+ Tex
subsets. The functionally inferior, ICB-resistant PD-1hiCD8+ Tex fate ultimately culminates in apoptosis.
July 2021 | Volume 12 | Article 715234
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of CD8+ Tex was practically synonymous with ‘reversal’ of
exhaustion. At this time, ICB was rapidly advanced into the
clinic and established a new paradigm for cancer treatment,
leading to durable responses in a limited set of patients (32, 33).
Despite its early success and first recordings of tails in long-term
endpoint survival curves, the mechanism of action behind ICB
remained elusive.

Blackburn and Wherry et al. uncovered an underlying
complexity within the presumed homogenous PD-1+CD8+ Tex,
where this population could be further separated into PD-1lo and
PD-1hi subsets (34). A hypothesis emerged from this that
proposed PD-1lo cells differentiate into the PD-1hi subset as
CD8+ T cells exhaust. Inherent in this theory, reinvigoration did
not equate to the reversal of exhaustion (herein defined as a
PD-1hi to PD-1lo/− transition). Beneficial responses rather
arose solely from the mobilization of less exhausted, permissive
PD-1lo cells instead of PD-1hi terminally exhausted counterparts.
After transferring day 30 Clone 13-generated PD-1lo and PD-1hi

sorted cells into naïve mice subsequently re-challenged
with Clone 13 in the presence or absence of anti-PD-L1,
Blackburn and Wherry et al. showed that only PD-1loCD8+ Tex

could proliferate in response to ICB (34). Similar transfer
experiments also revealed that PD-1loCD8+ Tex were more
effective at controlling viral load and remained less apoptotic
compared to PD-1hiCD8+ Tex (34). The PD-1

hi subset was later
associated with expression of additional co-inhibitory receptors,
including T cell immunoglobulin domain and mucin domain
protein 3 (Tim-3), lymphocyte activation gene 3 (Lag-3), natural
killer cell receptor BY55 (CD160), signaling lymphocytic
activation molecule 4 (2B4), cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4), and T cell immunoreceptor with
Frontiers in Immunology | www.frontiersin.org 4
immunoglobulin and ITIM domains (TIGIT), where cells
having heightened co-expression appeared more exhausted
(Figure 2C) (24, 35–38).
DAWN OF STEM-LIKE PRECURSORS
AND PROGENITORS OF EXHAUSTED
CD8+ T CELLS

It also became apparent that heterogeneity existed at a deeper
level than surface PD-1, where CD8+ Tex appeared to use the
same T-box family transcription factors, T-box expressed in T
cells (T-bet) and eomesodermin (Eomes), for SLEC and MPEC
lineage commitment, respectively, but with different expression
patterns, nuclear localization, and developmental connectivity
(4, 39–41). In response to TCR/MHC ligation and orientation of
the immune synapse, a naïve CD8+ T cell will asymmetrically
divide and unequally partition T-bet and Eomes, separately
dictating effector versus memory fates from the first division
(22, 42–45). Distinct from SLECs and MPECs, T-bet and Eomes
were shown to be dually required for CD8+ Tex development
(41). In addition, these transcription factors appeared to arise at
different stages of CD8+ Tex, where PD-1

loT-betloCD8+ Tex were
found to increase Eomes expression and sustain its nuclear
localization, divide, and differentiate into PD-1hiT-bet−/lo/hi

EomeshiCD8+ Tex (Figures 3B and 4A) (40, 41, 46). This
differential usage of T-bet and Eomes also suggested that CD8+

Tex was a distinct lineage.
Ahmed et al., therefore, reexamined the Clone 13 model and

the underlying CD8+ Tex transcriptional heterogeneity at the
A B

FIGURE 3 | T-bet and Eomes partitioning during CD8+ T cell priming and expansion. (A) The orientation and strength of TCR/MHC ligation, co-stimulation (e.g.,
CD28 interaction with CD80 and CD86), CD4+ T cell help (CD40L/CD40 licensing of DCs including up-regulation of MHC I, CD80/CD86, CD70, and third signal
cytokines), autocrine IL-2 exposure, and innate inflammatory stimuli (danger- and pathogen-associated molecular patterns) all influence the activation, survival, and
differentiation of naïve CD8+ T cells. (B) CD8+ T cells integrate these input events at priming and during the first division. The uneven partitioning of T-bet and Eomes
favors SLEC (effector) versus MPEC (memory) differentiation early after activation, respectively. In contrast, the CD8+ Tex lineage requires both transcription factors
and retains some features of memory cells including self-renewal of PD-1lo subsets and expression of memory-associated transcription factors and survival
molecules. The reliance on homeostatic cytokines (predominantly IL-7) versus persistent antigen for development and self-renewal distinguishes memory from PD-1lo/hi

exhaustion lineages, respectively.
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core of the PD-1lo/hi dichotomy (47). Transcriptional analyses of
the PD-1lo population revealed an association with Icos
(inducible T cell co-stimulator; ICOS), Cxcr5 (C-X-C motif
chemokine receptor 5; CXCR5), Bcl6 (B cell lymphoma 6; Bcl-
6), and Tcf7 (T cell factor 1; TCF-1) expression reminiscent of
CD4+ T follicular helper cells (Tfh), which is why CD8+ Tex are
sometimes referred to as Tfh-like (47, 48). TCF-1 acts as the main
transcription factor downstream of Notch receptors as part of the
evolutionarily conserved Wnt signaling pathway, known to be
critical for T cell thymic development and memory formation
(49). TCF-1, together with forkhead box protein O1 (FOXO1),
promotes stemness in CD8+ T cells by inhibiting expression of
effector-associated genes including Prdm1 (B lymphocyte-
induced maturation protein-1; Blimp-1), Runx3 (Runt-related
transcription factor 3; RUNX3), Id2 (inhibitor of DNA binding 2;
ID2) and Tbx21 (T-bet) and favoring central memory by
Frontiers in Immunology | www.frontiersin.org 5
promoting Eomes and Bcl6 expression (50, 51). Blimp-1, in
particular, is known to act as a rheostat balancing the
promotion of cytolytic granzyme B production and terminal
dysfunction in CD8+ Tex—events directly countered by TCF-1
(Figures 4B, C) (49, 51, 52). Other associations of PD-1loCD8+

Tex with the high affinity IL-7 receptor chain (IL-7Ra), L-selectin
(CD62L), and mitochondrial b-oxidation (fatty acid metabolism)
pathway enrichment suggested shared common features with
self-renewing CD8+ T memory precursors (47). Moreover, PD-
1hiTim-3+CD8+ Tex did not produce effector cytokines but did
retain cytolytic Gzma (granzyme A), Gzmb (granzyme B),
and Prf1 (perforin) expression (47, 53, 54). Sorting and
transferring PD-1lo/hi subsets into infection-matched hosts
based upon CXCR5 positivity validated that PD-1loTim-
3−CXCR5+CD8+ Tex marked a self-renewing population that
gave rise to PD-1hiTim-3+CXCR5−CD8+ Tex (47). Further and
A B D EC

FIGURE 4 | The CD8+ T cell exhaustion lineage is comprised of a continuum of transcriptionally and epigenetically controlled states. (A) Activation of naïve CD8+ T
cells for SLEC and MPEC/memory differentiation is optimally driven by transcription factors such as NFAT/AP-1 and sufficient co-stimulation (e.g., CD27). Early
development of stem-like CD8+ Tex precursors instead involves partnerless NFAT, lack of co-stimulation/help, constant Nur77 activity, and/or strict dependence on
BACH2. These events appear to be stabilized by TCF-1 activity and PD-1 dampening of chronic TCR ligation. (B, C) TCF-1 further supports stemness (ability to
survive, self-renew, and proliferate) by promoting Eomes, ID3, c-Myb, Bcl-2, and Bcl-6 expression while antagonizing effector-associated transcription factors
including Blimp-1, ID2, RUNX3, and T-bet. Stem-like CD8+ Tex precursors (B) and progenitors (C) are collectively marked by a PD-1loTim-3−Slamf6+ surface profile
and varied expression of CXCR3 and CXCR5 in specific tumor settings. Although equally stabilized by TCF-1, precursors can be distinguished from progenitors as
being quiescent, LN-resident, less reliant on antigen, and having a CD69+KLRG-1+Ki-67− profile. (C, D) TCF-1 down-regulation coupled with ongoing exposure to
persistent antigen drives constant BATF and IRF4 signaling (which positively feedback on partnerless NFAT activity) and T-bet expression. T-bet additionally
overrides a TCF-1 memory-like program by supporting Blimp-1 and ID2 activity leading to an effector-like transitory PD-1loTim-3+ state marked by initiation of
granzyme B production. (D, E) Continued NFAT activity ultimately leads to TOX upregulation within this subpopulation, which epigenetically enforces terminal
exhaustion, inhibits T-bet-mediated effector programming, and promotes heightened PD-1 expression. Transitory cells (D) are discriminated from terminally
dysfunctional cells (E) by a PD-1loTim-3+CD101−KLRG-1+CX3CR1+ surface phenotype, remnant IFN-g and TNF production, and having high proliferative potential.
Terminally dysfunctional PD-1hiTim-3+CD8+ Tex co-express multiple co-inhibitory receptors (not depicted), cannot proliferate, have diminished polyfunctionality, but
retain granzyme-based cytolytic potential. PD-1lo precursors, progenitors, and transitory CD8+ Tex subpopulations are amenable to ICB (B–D), whereas terminally
dysfunctional PD-1hiCD8+ Tex are not (E). Precursors and progenitors may interconvert, whereas differentiation into transitory and terminally dysfunctional subsets
is unidirectional.
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more critical, anti-PD-L1 blockade triggered a proliferative burst
only within the stem-like PD-1loTim-3− subset and facilitated
transitions to the treatment-refractory PD-1hiTim-3+ fate (47).

Since TCF-1 expression was generally known to maintain
stemness in hematopoietic stem cells, its role in the PD-1lo/hi Tex

progenitor/progeny relationship was determined (47). In Tcf7−/−

mice, PD-1loCD8+ Tex fail to develop and cannot seed the
exhaustion lineage (47). In contrast, transgenic overexpression
of Tcf7 was found to stabilize PD-1lo stem-like cells and lead to
more durable CD8+ T cell responses during Clone 13 infection
and within the B16-GP33-41 melanomamodels, implicating TCF-1
as a critical factor for the inception of Tex (55). TCF-1 was later
shown to support the expression of Id3 (ID3), Eomes, Myb
(transcriptional activator Myb; c-Myb), and Bcl2 (Bcl-2),
allowing PD-1loCD8+ Tex to survive negative downstream
signals from PD-1 early after priming (Figures 4B, C) (56, 57).

The factors governing the expression of TCF-1 within stem-
like PD-1loCD8+ Tex have only recently been investigated.
During chronic DOCILE infection of mice, the amount of
antigen but not inflammation rapidly promotes the formation
of the TCF-1+ population (57). Inconsistent with the need for
chronic antigen during its establishment, some elements of the
exhaustion program (maintenance of a PD-1hi dysfunctional
profile) were paradoxically shown to be stable after CD8+ Tex

transfer to antigen-free conditions (58). This suggests that the
CD8+ Tex lineage has some component(s) shared with memory
CD8+ T cells, including slow homeostatic self-renewal by IL-7
and IL-15 (4, 58). In support of this, GP33-41-specific CD8+ T
cells deficient in BACH2 (a transcription factor that promotes
memory cell development by limiting TCR-mediated
transcriptional changes) fail to form any stem-like PD-1loTCF-
1+CD8+ Tex (57, 59). Conversely, the progression of the stem/
memory-like PD-1loTCF-1+ state to the TCF-1−PD-1hi

terminally exhausted fate is halted by deleting BATF and IRF4
(two transcription factors linked with constant TCR signaling
and known to destabilize TCF-1) (Figures 4C, D) (25, 57).
Therefore, T cell-intrinsic TCF-1 expression appears to rely on
a low but brief TCR signaling threshold compromised by
ongoing antigenic exposure.

Other studies have oppositely shown that PD-1hiCD8+ Tex

generated from Clone 13 infection are less stable without antigen,
where these cells inevitably decline and cannot mount a recall
response (21, 60). Discrepancies regarding CD8+ Tex stability in
the presence/absence of antigen may be due to the frequency and
quality of TCF-1+ stem-like cells at hand. A unified atlas of 12
studies spanning cancer and chronic viral infection has recently
revealed that bifurcation of memory commitment from a
dysfunctional program occurs early (in less than 7 days
following antigen encounter) (61). With preclinical cancer
models, the time of initial antigen encounter is less controlled
for compared to viral infection. Nevertheless, it has been shown
that PD-1loCD8+ TIL removed early after tumor injection (likely
containing an increased frequency of TCF-1+ cells) followed by
transfer into naïve hosts and infection with Listeria
monocytogenes 3-4 weeks later can mount a memory response
whereas fully exhausted PD-1hiCD8+ TIL isolated at later time
Frontiers in Immunology | www.frontiersin.org 6
points cannot (18). In addition, stem-like PD-1loTCF-1+CD8+

Tex can be divided into CD69+Ki-67− precursor cell and
CD69−Ki-67+ progenitor cell subsets (and are thus
differentiated as such in this review) (Figures 4B, C) (46).
Precursors are lymph node (LN)-resident, speculated to
depend less on antigen for a low baseline level of proliferation,
and remain quiescent compared to a circulating progenitor pool
(46). In healthy human subjects, TCF-1+ precursors specific to
common chronic diseases such as latent EBV and CMV were
shown to be present in the periphery and co-express PD-1,
TIGIT, and granzyme K (62). These precursors are also embedded
within steady-state stem-like/central memory CD8+ T cell
populations traditionally defined as CCR7+CD45RO+/−CD95+

(62). Yet, no known mediator has been identified to date which
controls functional memory versus stem-like PD-1loCD8+ Tex

precursor differentiation (Figures 4A, B) (62). Precursors and
progenitors have also been documented to reside in TIL fractions
of murine B16 tumors and human melanoma (46). However, it
remains to be determined if these small populations are biased in
tumor versus LN organization and if CD69 positivity/negativity
within the bulk TCF-1+PD-1lo population determines true stemness
and reactivity to ICB and/or antigen.
TRANSCRIPTIONAL AND EPIGENETIC
EVENTS CRITICAL FOR THE
ESTABLISHMENT OF TERMINAL
EXHAUSTION

Complementing these approaches, total CD8+ Tex were shown to
possess a fixed chromatin state distinct from effector and
memory cells by ~6,000 open chroman regions before or after
exposure to anti-PD-L1 (21, 63, 64). This reinforces that terminal
CD8+ Tex represents a distinct lineage unable to differentiate into
bona fide memory cells. Second, ICB-mobilized stem/effector-
like PD-1lo populations themselves exhaust and eventually
mirror pre-treatment PD-1hiCD8+ Tex. The unique epigenetic
signature of CD8+ Tex in Clone 13-infected mice was also shown
to be conserved in HIV-infected and melanoma patients (26, 63).
Although both acutely activated CD8+ T cells and CD8+ Tex

generally express PD-1, assay for transposase-accessible
chromatin sequencing (ATAC-Seq) distinguishes these
populations, with CD8+ Tex possessing many unique features,
including de novo accessibility of the region at −22.4 kb upstream
of the murine Pdcd1 (PD-1) locus containing a Nr4a1 (Nur77)
binding motif (17, 63).

Downstream from TCF-1-mediated subsistence of PD-
1loCD8+ Tex, thymocyte selection-associated high-mobility
group (HMG) box protein, TOX, becomes co-upregulated
alongside PD-1 and is associated with the epigenetic signatures
demarcating terminal lineage commitment within PD-1hiCD8+

Tex (24, 56, 65–67). TOX is a nuclear protein that binds DNA in a
structure-dependent manner (not sequence-dependent) (64).
TOX directly interacts with histone acetyltransferase binding to
ORC1 (HBO1) and indirectly coordinates activity with DNA
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methyltransferases 3A (DNMT3A), 3B (DNMT3B), and
enhancer of zeste homolog 2 (EZH2) to epigenetically fix
CD8+ Tex towards terminal exhaustion (64). Ectopic TOX
expression is sufficient to induce a full exhaustion
transcriptional program in effector CD8+ T cells in vitro (65).
In contrast, deletion of Tox in CD8+ TIL prevents exhaustion via
decreased chromatin accessibility and expression of Pdcd1,
Havcr2 (Tim-3), Cd244 (2B4), and Tigit (TIGIT) in the SV40-
Tag-driven autochthonous liver cancer model (65). In the Clone
13 system, Tcf7flox/floxCd4cre and Toxflox/floxCd4cre mice (lacking
TCF-1 and TOX in all T cells, respectively) results in favored
development of effector-like KLRG-1+CD8+ T cells over the
formation of PD-1hiCD8+ Tex (Figures 4A, D) (24, 57, 68).

Recent findings by Ahmed (69) and Wherry (46) jointly
demonstrate that stem-like cells are initially stable during
Clone 13 infection. However, upon ICB treatment, these cells
rapidly enter a T-bet-driven effector-like transitory state marked
as CX3CR1+KLRG-1+CD101−PD-1loTim-3+ (Figure 4D), which
rapidly proliferate, temporarily produce granzyme B, and
eventually digress to fully exhausted CX3CR1−KLRG-
1−CD101+PD-1hiTim-3+CD8+ Tex (Figure 4E) (46, 69). CD101
is not expressed at baseline in CD8+ T cells from healthy humans
(70). Conversely, terminally differentiated CD101+PD-1hiCD8+

Tex have recently been observed to correlate negatively with
tumor grade and regional LNmetastasis within epithelial ovarian
cancer patients (70). Transcriptional analyses of murine and
human TIL corroborate these results linking changes in naïve-
like PD-1−Tim-3−CD8+ TIL before and after ICB (71). ICB
appears to bifurcate PD-1−Tim-3−CD8+ TIL into a self-
renewing stem-like state (expressing Tcf7, Lef1, and Sell) and
an effector-like program (expressing Klrg1, Cx3cr1, Slamf7, and
Ifng) farther downstream along a developmental trajectory to full
exhaustion (71). These phenotypic changes (stem-like > effector-
like transitory > terminal exhaustion) coincide with chromatin
accessibility shifts controlled by multiple transcription factors
including NFAT, Nur77, BATF, IRF4, TCF-1, T-bet, and TOX
that appear to be coordinated with PD-1-mediated TCR
dampening (Figures 4A–E) (25, 46, 69, 72). In other words,
CD8+ Tex seem to represent a lineage with limited differentiation
capacity, existing within a series of fixed sequential epigenetic
landscapes. Although reinvigoration of PD-1loCD8+ Tex can
result in a detectable wave of transcriptionally ‘re-wired’
effector-like activity, the cells appear to be limited because they
eventually exhaust in response to ICB and are unable to de-
differentiate into bona fide effector or memory cells present
during acute infection (21, 46, 63). In the context of tumor
immunity, understanding where these transitions occur in vivo
(LN versus TME) and how to stabilize the transitory effector-like
state is key to maximizing the cytolytic potential of stem-like
CD8+ Tex.

What governs late-stage cell fate decisions of stem-like PD-
1loCD8+ Tex progenitors to commit to a terminally exhausted
PD-1hiCD8+ Tex fate is partially clear at best. Constant TCR
signaling is likely involved as enforced nuclear factor of activated
T cells (NFAT) activity in antigen-specific CD8+ T cells directly
leads to Tox transcription (20, 24). Conversely, lack of Nfatc1
Frontiers in Immunology | www.frontiersin.org 7
(NFAT2) phenocopies loss of TOX (24). Further, TCR-
responsive transcription factors, including BATF and IRF4,
appear to positively feedback on Nfatc1 transcription
promoting PD-1hiTim-3+ Tex development (25). In contrast to
NFAT1, NFAT2 itself is also known to favor the development of
MPECs over SLECs (73). Imbalanced NFAT1 versus NFAT2
may also relate to skewing early T-bet and Eomes segregation in
a primed CD8+ T cell to seed TCF-1+ stem-like progenitors even
before ongoing direct downstream effects on TOX, and other
exhaustion-associated genes are enforced. At a higher level, the
overall balance between NFAT and CD28/AP-1 activity upon
original and/or continued antigen encounter may be critical as
anergic CD8+ T cells and CD8+ T cells primed in the absence of
CD4+ T cell help or co-stimulation mirror many of the major
transcriptional and epigenetic events that occur in PD-1lo/
hiCD8+ Tex in both chronic viral infection and cancer (19, 20,
26, 66, 74–80). Exposure to microenvironmental stressors (low
glucose, high lipid) in the TME may also orchestrate the TOX-
centric epigenetic program that characterizes the PD-1hi

dysfunct ional phenotype by disrupt ing metabol ic/
mitochondrial fitness (81–83). Mitochondria tend to produce
elevated amounts of reactive oxygen species (ROS) in CD8+ Tex,
which was shown to facilitate nuclear entry of NFAT
downstream of a Ca++ flux in both CD4+ and CD8+ T cells
(81–84). How constant PD-1 signaling, TCR engagement, and
altered metabolism control the transition from a TCF-1+ to
TOX+ state via constant NFAT activity in CD8+ Tex is an area
where current knowledge is limited and is only starting to
be investigated.
THERAPEUTIC POTENTIAL OF CD8+

T CELL PROGENITORS IN CANCER

The significance of stem-like TCF-1+PD-1loCD8+ Tex in
governing ICB outcomes may lie in their pre-treatment
frequency and crosstalk between other immune cell types
during cancer. Surveys of TIL heterogeneity using single-cell
RNA sequencing (scRNA-Seq) have indicated that activated,
expanded, and exhausted CD8+ T cell subsets are variably
present in different tumor samples and effectively cluster based
on Tcf7 expression (53, 85). For instance, Sade-Feldman et al.
profiled 48 metastatic melanoma tumor biopsies, comprising 17
responder and 31 non-responder patients receiving ICB (85).
scRNA-Seq phenotyping of CD8+ T cell clusters identified 6
clusters that were putatively annotated as belonging to early-
activated, memory, effector, and exhausted lineages based upon
cell surface marker expression profiles (85). All CD8+ T cell
populations were observed in most patients, albeit to differing
degrees (85). However, the relative frequency of intratumoral
Tcf7hi versus Tcf7lo TIL clusters was predictive of patient
responsiveness to ICB (85). It has since then been confirmed
in preclinical models that small populations of stem-like PD-
1loSlamf6+TCF-1+CD8+ Tex (with Slamf6 being a surrogate for
TCF-1) and PD-1hiTOX+CD8+ Tex indeed exist in the TME (86).
In murine B16 melanoma, TILs retained some features of the
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epigenetic profile seen in CD8+ Tex following Clone 13 infection,
and anti-PD-1 treatment specifically drove stem-like PD-1lo TILs
to divide and convert into terminally exhausted PD-1hi Tex (86).
In humans, stem-like TCF-1+CD8+ Tex progenitors and
terminally exhausted TCF-1−CD8+ Tex have similarly been
observed in multiple tumor indications (71, 86, 87).

As noted, Ahmed initially found that stem-like PD-1loCD8+

Tex express CXCR5; however, these cells co-express high
amounts of Ccr7 transcripts, migrate in response to a CCL19/
21 gradient in vitro, and localize to the splenic T cell zone in vivo
after Clone 13 infection (47). In this system, CXCR5 is expressed
by both stem-like CD69+Ki-67− precursors and CD69−Ki-67+

progenitors (46). The function of CXCR5 is less well known in
cancer immunology but may relate to stem-like CD8+ Tex

positioning. Stem-like PD-1loCD8+ TILs have been found to
sporadically express CXCR5 depending on the tumor type (86,
88). In murine and human melanomas, CXCR5 positivity has
thus far not tracked with stem-like PD-1loCD8+ TIL (86). In
contrast, CXCR5+ TILs can be found in non-small-cell lung
carcinoma (NSCLC) tumors and may uniquely associate with
intratumoral tertiary lymphoid structures (TLS) (88). More work
is needed to understand any potential association between
CXCR5+ TILs and tumoral TLS. It is tempting to speculate
that CXCR5 facilitates localization within these structures,
similar to the role of CXCR5 in positioning CD4+ Tfh within
secondary LNs (48). While only a minority of intratumoral stem-
like cells express CXCR5, TCF-1+PD-1loCD8+ Tex also seem to
localize as crude clusters in the TME, implying that there may be
additional niche microenvironments within the tumor that
support anti-tumor immunity (87). In a histological analysis of
prostate, bladder, and kidney cancer biopsies, TCF-1+CD8+ TILs
were predominantly observed within MHC II dense regions,
whereas the presumably exhausted TCF-1−CD8+ TIL appeared
to be dispersed (87). Little is known about the role of these MHC
II dense niches, which may influence stem-like T cell recruitment
and/or dendritic cell (DC) Wnt signaling, thereby maintaining
TCF-1 expression and stemness. Stem-like PD-1loCD8+ Tex are
also preferentially found within tumor-draining secondary LNs
over non-draining LNs (89). In contrast, terminally exhausted
PD-1hiCD8+ Tex are predominantly confined to the TME (89).
Regardless, if TCF-1+PD-1loCD8+ Tex infiltrate or expand locally
within tumors after systemic delivery of ICB, the intratumoral
frequency of these cells can serve as a valuable biomarker to
discriminate responders against non-responders (and/or survival
within the responder cohort) (85, 90).
TISSUE DISTRIBUTION AND
INTRATUMORAL POSITIONING OF
EXHAUSTED CD8+ T CELLS

Tumor PD-L1 expression would logically seem to be a relevant
prognostic factor to rationalize the usage of PD-(L)1-based ICB.
PD-L1+ tumors tend to respond more frequently to anti-PD-(L)
1; however, there is only a weak correlation with overall
Frontiers in Immunology | www.frontiersin.org 8
treatment efficacy (33, 91, 92). A significant number of PD-L1+

tumors do not respond to ICB, and durable responses are
observed in PD-L1− tumors (33, 91). In other analyses, ICB
was found to closely align with the raw amount of neoantigens
broadly amongst cancers regardless of PD-L1 expression (91, 93–
95). Following the completion of The Cancer Genome Atlas
(TCGA), a strong correlation was observed between ICB-
responsiveness and a Th1/IFN-g inflammatory signature, tumor
mutational burden (TMB), and leukocyte infiltration (96). Thus,
a combination of a T cell-inflamed gene signature with TMBmay
currently be the best predictor of ICB-responsiveness (91).
PD-L1 expression in the tumor (known to be upregulated by
IFN-g) may reflect tumor inflammation status and thus rather
passively indicate an overall immune system status rather than
mechanistically predict the response of the tumor to ICB (91).

If inflammation and TMB underlie the response, does ICB act
directly in the TME or periphery (97)? Immuno-positron emission
tomography (immuno-PET) coupled with blockade of LN egress
shows a large portionof effector-likeCD8+TIL are derived from the
periphery in mice bearing MC38 colorectal tumors systemically
treated with anti-PD-1 (98). In the AC29 mesothelioma preclinical
model, blockade of LN egress likewise severely compromises the
number ofCD8+TIL after systemic anti-PD-L1 (89). In the absence
of ICB and irrespective of primary tumor PD-L1 expression,
enhanced PD-1/PD-L1 contacts between stem-like PD-1loCD8+

Tex and migratory PD-L1+ DCs entering the paracortex of tumor-
draining LNs negatively correlates with survival of mice exposed to
AC29 tumors and non-metastatic melanoma patients following
resection (89). Localized delivery of anti-PD-L1 to tumor-draining
LNs is sufficient to block these interactions and mobilize stem-like
CD8+ Tex from the lymphatics for proliferation, migration to the
TME, and preservation of stemness, leading to an increase in host
survival comparable to systemic delivery (89). Further, LN-primed
CD8+ Tex seem better able to respond to model antigen and
proliferate upon ex vivo re-stimulation than systemically primed
cells (89). These data suggest that LN-primed stem-like CD8+ Tex

are a critical component of the response to ICB.
Additional studies involving scRNA/TCR-Seq have allowed a

more in-depth look at the intratumoral versus peripheral
counterparts of immune responses underlying ICB in patients.
In a study by Yost et al., scRNA/TCR-Seq analysis of metastatic
basal/squamous cell carcinoma patient TIL before and after ICB
indicated that clonal replacement dominated the response where
upwards of 84% of CD8+ T cell clonotypes (having a single TCR
specificity) present after treatment were novel (i.e., not present in
the tumor before treatment) (72). Intratumoral stem-like TCF-
1+CD8+ Tex did contribute a minor fraction to the population of
ICB-activated, tumoricidal clonotypes; however, all cells that
attacked tumors again eventually became exhausted (72).
Therefore, ICB seems to predominantly mobilize functional
CD8+ T cells from the periphery into the tumor. A comparison
of tumors to normal adjacent tissue (NAT) and peripheral blood
via scTCR-Seq corroborated these findings across various
cancers (99). Patients displaying extratumoral-intratumoral
linked clonal expansion across blood/NAT and tumor
responded more favorably to ICB (99). However, the action of
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ICB on stem-like or effector like CD8+ Tex inside the tumor
cannot be dismissed. Despite the lack of a significant correlation
between intratumoral PD-L1 expression and survival, PD-1/PD-
L1 interactions in the tumor as measured by immune-Förster
resonance energy transfer (iFRET) is more predictive of survival
in metastatic melanoma and NSCLC patients receiving ICB, in
line with findings in draining LNs (89, 100).

Emergent data suggest that the CCR5 and CXCR3 chemokine
receptor pathways are needed for anti-PD-(L)1-mediatedCD8+Tex

tumor recruitment and/or intratumoral positioning (101–104).
Heightened dual expression of the ligands for CCR5 and CXCR3
(CCL5 and CXCL9, respectively) positively correlates with the
amount of tumor CD8a transcripts and patient survival in
cancers of the ovary, breast, lung, colon, as well as melanoma
(103). CCL5 from tumor cells or tumor-associated myeloid cells
appears to license CXCL9 production almost exclusively from
inflammatory CD68+ macrophages and CD11c+ DCs within the
TME (98, 103, 105, 106). Genetic deletion or antibody-mediated
blockade of either CCL5 and CXCL9 significantly compromises
CD8+ T cell recruitment to the TME; however, only CXCL9
correlates with ICB efficacy in multiple preclinical models (102–
105). Revisiting CD8+ Tex CCR5 and CXCR3 progenitor/progeny
expression patterns in the Clone 13 and preclinical tumor models
may clarify this. In both settings, CXCR3 is predominantly
expressed on stem-like PD-1loCD8+ Tex (Figures 4B, C), whereas
CCR5 is oppositely elevated on terminally exhausted PD-1hiCD8+

Tex (Figure 4E) (46, 69, 102). These axes may be necessary for the
positioning and stability of stem-like PD-1loCD8+ Tex in the
previously mentioned intratumoral MHC II dense clusters by
undescribed mechanisms or serve as markers for recent PD-1lo

versus PD-1hiCD8+TexCXCR3-mediated trafficking (87, 107, 108).
With LN egress blocked, anti-PD-1 was shown to directly increase
the expansion of intratumoral wild type but not Cxcr3−/− CD8+

T cells, which may be related to localization of these cells within
the TME or intrinsic effects (102). CXCR3 itself is known to
support T-bet expression and favor SLEC differentiation during
acute infection and may play a direct role in dictating stem-like
to transitory CD8+ Tex differentiation (109, 110). Therapies
centered on CXCR3 agonism may augment CD8+ T cell
trafficking, positioning, and priming/expansion depending on the
exact intersection with the Tex lineage.
CLINICAL PERSPECTIVES

Despite the undisputed success of ICB in the clinic, it may one day
be replaced or combined with other immunotherapies due to its
inherent failure in preventing exhaustion. Our increasingly
granular understanding of CD8+ Tex and the underlying
regulatory mechanisms may present novel therapeutic avenues
that include alternative ways to stimulate and stabilize stem/
effector-like states along the exhaustion continuum or enhance
memory cell lineage commitment. Simple amplification of CD8+ T
cell responses bymodulating trafficking and tumorpositioningmay
stabilize stem-like and effector-like transitory CD8+ Tex. Durable
responses may also be possible if effector-like CD8+ T cells can
Frontiers in Immunology | www.frontiersin.org 9
instead be directly coerced to persist in the transitory cytolytic state,
for instance, by pharmacologically antagonizing TOX or related
mediators of exhaustion. In addition, as stem-like PD-1loCD8+ Tex

exhibit heightened expression of several members of the
immunoglobulin and tumor-necrosis factor receptor (TNFR)
superfamily, including Tnfrsf4 (OX40) and Tnfrsf9 (4-1BB),
combining ICB with TNFR superfamily member agonism may
further support long-lived CD8+ T cell reinvigoration by
preferentially targeting the stem-like subset (47). Inhibiting other
known or unknown transcriptional components or downstream
effector pathways of the exhaustion program may offer other
therapeutic avenues.

If maintaining stabilized anti-tumoral CD8+ T cells is
impossible, maximal amplification of the response via focused
neoantigen vaccination or repetitive infusions of adoptive cellular
therapies (ACT) may be warranted. Today, it is possible to
administer autologous CD8+ T cells genetically engineered to
express neoantigen-specific TCRs or chimeric antigen receptors
(CARs) (111, 112). This may allow for an unlimited source of
artificially generated anti-tumoral CD8+ T cells, thus bypassing the
challenge that exhaustion may be unavoidable. ACT may also be
designed to be exhaustion-resistant or to maintain stemness
through gene-editing technologies (112). Alternatively,
neoantigen vaccination might be a more promising strategy,
either as part of a patient-shared or fully personalized therapeutic
approach (113, 114). Neoantigen vaccines carrying both CD4+ and
CD8+T cell epitopes as longpeptides, RNA/DNAvectors, orwithin
viral constructs may better support robust, helper-primed CD8+ T
cell responses able to resist exhaustion upon repeated antigen
encounter (115–121). Neoantigen vaccination can also
strategically address tumor immunoediting. Even if persistent
antigens are effectively cleared, some residual tumor cells can
unavoidably become resistant to first-line ICB and/or neoantigen
vaccination by altering MHC I-displayed tumor antigens via
deletion or mutation (122). Neoantigen vaccination can solve this
byapplyingbooster regimensmodified in real-timeagainst resistant
tumor cell clonal outgrowth.
CONCLUSION

Understanding how tumors shape CD8+ T cell exhaustion is
needed to effectively program the immune system to destroy
cancer—the professed ‘emperor of all maladies’ (123). An
exciting parallel journey between chronic viral infection and
cancer has thus been embarked upon to bypass exhaustion and
identify the causative molecular cues, new cell types/
lineages permissive to ICB, and innovative paths for
immunotherapeutic strategies. It is currently clear that
reversing exhaustion in PD-1hiCD8+ Tex is unlikely. Selective
mobilization of stem-like CD8+ Tex is instead called for and lies
at the crux of generating functional and stable anti-tumor
immune responses. Besides re-shaping the CD8+ Tex

developmental continuum, scientists are dually challenged
with directing specificity of the responding population as ICB
also relies on the endogenous immune system for spontaneous
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recognition of select neoantigens from an initially broad TCR
repertoire (90, 124, 125). Can stem-like and effector-like CD8+

Tex fates be stabilized to act as a continuous source to deliver an
unending supply of tumoricidal CD8+ T cells? Can exhaustion
itself be prevented in response to ICB? Can chemokine receptor
pathways be exploited to control TME positioning and
differentiation status of intratumoral CD8+ Tex? Or should
immunologists accept the demise of CD8+ Tex and deploy
patient-tailored neoantigen and ACT strategies? The answers
to these outstanding questions undoubtedly lay forth the path
of future clinical trials.
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