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In the light of the success and the expected growth of its arsenal, immuno-therapy may
become the standard neoadjuvant procedure for many cancers in the near future.
However, aspects such as the identity, organization and the activation status of the
peri- and intra-tumoral immune cells would represent important elements to weigh in the
decision for the appropriate treatment. While important progress in non-invasive imaging
of immune cells has been made over the last decades, it falls yet short of entering the
clinics, let alone becoming a standard procedure. Here, we provide an overview of the
different intra-vital imaging approaches in the clinics and in pre-clinical settings and
discuss their benefits and drawbacks for assessing the activity of the immune system,
globally and on a cellular level. Stimulated by further research, the future is likely to see
many technological advances both on signal detection and emission as well as image
specificity and resolution to tackle current hurdles. We anticipate that the ability to
precisely determine an immune stage of cancer will capture the attention of the
oncologist and will create a change in paradigm for cancer therapy.
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INTRODUCTION

The success of immune checkpoint blockade has initiated a shift in the way we view the relationship
between the immune system and cancer. The immune system is no longer seen as the underdog in an
unequal duel with cancer but increasingly as a powerful system, potentially capable of fighting and even
eradicating tumor cells. While formerly relatively little attention has been paid to the immune system in
cancer therapy, it has now been recognized to provide precious information regarding tumor staging and
to present a serious therapeutic option, in particular when amplified after releasing it from immune-
checkpoint blockades. This raises the question of preserving rather than resecting the local immune
tissues, especially the sentinel lymph node, where many critical immune-stimulatory and modulatory
processes take place. Along the same lines, preserving and amplifying existing intra-tumoral immune
cells, structured or not as tertiary lymphoid tissue may benefit patients in the long run. However, this
depends on an accurate means to non-invasively estimate the activity of the immune system in order to
make the right choice between resection, chemotherapy and/or immune stimulatory treatment. Over the
last decade, efforts to image precisely and specifically tissue and tissue-resident single cell-types have
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greatly accelerated so that the capacity to accurately visualize
immune cells in vivo becomes reality (1). These technologies have
seen applications to observe lymph nodes, especially its architecture
and the presence of micro-metastasis, with further clinical
applications including pre-operative guidance for selected lymph
node resection. Intra-vital imaging techniques are being refined for
direct antitumor therapy and will provide the basis for further
development towards pre-operative immune cell imaging (2). Here,
we review the current approaches for in vivo imaging in clinical and
pre-clinical settings and how these technologies and methods could
pave the way to intra-vital imaging of immune cells to guide
oncologists in the choice of the best treatment option.
LYMPH NODE IMAGING IN THE CLINICS

The spatial resolution of standard imaging modalities does not
enable the direct visualization of immune cells. However, a variety
of conventional imaging techniques (e.g., lymphography,
ultrasound, computed tomography, magnetic resonance imaging
and positron emission tomography) may be used to detect and
visualize normal and pathological human lymph nodes (Table 1).
For instance, lymphography has been widely used to image the
lymph nodes and the lymphatic system (3). This technique bears
the unique ability to demonstrate changes in the internal
architecture of lymph nodes (with normal nodes appearing
homogeneous with a fine granularity owing to the opacification
of the sinus and the non-opacification of the lymphoid follicles)
especially useful in pathological nodes such as in hemopathies (e.g.
lymphomas) and/or genitourinary cancers. Similarly, ultrasound
(US) has been extensively used to detect superficial lymph nodes
and guide needle biopsies. It provides a real-time, radiation-free,
access to the lymph node substructure, visualizing micro-
metastasis (0.2 - 2 mm) as well as inflammatory changes within
the node, resulting from either tissue inflammation or metastatic
invasion (4–6). OnUS, inflamed lymph nodes usually present with
increased size (small axis >10 mm), a thicker cortex and increased
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vascular flow (using Doppler mode). Such findings are not specific
and it may sometimes be difficult to differentiate inflamed nodes
from metastatic ones. The use of microbubble-based contrast
agent, Doppler imaging (with blood flow velocity measures of
microvascular network) and elastrography (using tissue stiffness)
improved the US-detection of lymph node metastasis and the
distinction between malignant (harder) and benign (softer) nodes
(4–6). However, US is observer-dependent, limited by the depth of
tissue penetration and subject to air/bone artifacts. Presently,
routine lymph node imaging relies on multimodal imaging by
CT (computed tomography), PET (positron emission
tomography) and/or MRI (magnetic resonance imaging), which
are free from limitations imposed by the type of surrounding tissue
and the depth of exploration. Validated morpho-functional
criteria applied to the node (i.e., small axis > 10mm, presence of
necrosis, round shape) are used to detect metastasis on imaging (8,
13). Unfortunately, all techniques reveal several limitations
(Table 1). For instance, due to their current spatial resolution
and acquisition time, CT, PET and MRI are currently insufficient
to detect micro-metastasis (< 2 mm), which can be an issue for the
accurate preoperative staging of cancers. Additionally, they fail to
provides architectural information on the lymph nodes, and CT
mostly reveals changes in nodal size. Yet, enlargement of the organ
may be secondary to a metastatic invasion, inflammation and/or
follicular hyperplasia (9). Therefore, evaluation of lymph node size
or shape is no longer sufficient and more functional approaches
are required. For instance, metastatic lymph nodes present with
restricted diffusion on MRI and lower rADC (apparent diffusion
coefficient ratio) than inflammatory ones (21). Additionally, [18F]
Fluorodeoxyglucose ([18F] FDG) uptake on PET appears more
sensitive and more specific than restricted diffusion on MRI to
detect metastatic nodes (14). Similarly, dual-energy CT techniques
have been used to differentiate between normal, inflammatory and
metastatic lymph nodes in cervical squamous cell carcinoma (10).
Unfortunately, despite constant progress, the current imaging
approaches remain limited to lymph nodes and have not yet
reached the cellular level.
TABLE 1 | Critical assessment of the imaging modalities for intravital immune assessment.

Modalities
(References)

Clinical
uses

Lymphatic
tissue

Single cells Limitations Advantages Spatial
resolution

Lymphography (3) + + – Resolution, contrast
agents

LN architecture, lower cost 10-20 mm

Ultrasound (4–7) + + (superficial) + (contrast agents) Depth, contrast
agents

Lower cost 0.2-2 mm

CT (8–12) + + + (contrast agents) Radiation Depth ~ 1 mm (clinical)
Lower (preclinical)

PET/SPECT (13–20) + + + (radioisotopes contrast
agents)

Radiation, higher
costs

Depth, activity quantification ~ 4-5 mm
(clinical)

MRI (8, 9, 14, 21–30) + + + (contrast agents) Higher costs Depth
Radiation-free

~ 1-2 mm
(clinical)
Lower (preclinical)

PA (7, 31–35) + + + (contrast/fluorescent
agents)

Clinical applications Depth, combination with NIR/
ultrasound imaging

< 5 µm

OCT (36–40) + -/+ – Depth Needle OCT < 2 mm, depth
Fluorescence (41–48) – -/+ + (fluorescent probes) Depth, clinical use NIR, multimodalities, theranostics NA
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FROM LYMPHATIC TISSUE TO
IMMUNE CELLS

Pre-clinical in vivo micro-imaging techniques offer superior
technical possibilities compared to current human imaging
modalities because of i) the immobility of the studied specimen
(e.g., ex vivo lymph node, anesthetized animal), ii) higher spatial
resolutions (e.g., special coils, higher frequency probes or higher
magnetic fields) and the possible use of novel contrast-agents, not
approved for clinical use. Pre-clinical multimodal imaging,
especially in mice, progressed from a macroscopic lymph node-
centered approach to a cellular and functionally-driven aspect of
imaging. For instance, the introduction of gold-nanoparticles
(AuNPs) as CT contrast agent allows the detection of T cells
(11) or monocytes (12). Concerning MRI, an ex vivo study on a
limited number of samples of normal and metastatic lymph nodes
produced a series of images of the node substructure and
metastatic changes that presented a good correlation with the
corresponding histological slides, using very high sub-millimetric
spatial resolution and longer scanning time (22). Additionally,
cell-specific imaging approaches make use of contrast or tracer
agents to label and track cells after their intravenous injection
(23, 24). Similarly, Magnetic particle imaging (MPI) of
superparamagnetic iron oxide SPIO nanoparticles are promising,
with new cell-specific applications awaiting further development
(25–27). Recently, large progress has been made in immuno-
imaging with the development of new probes targeting
endogenous immune cells for PET or SPECT (single-photon
emission computed tomography) and a large toolbox of
lymphocyte and myeloid cell-targeting antibodies is becoming
available (15). Molecular imaging has a pivotal role to visualize
immune cells, such as the different immune cells and structures in
the tumor microenvironment. Several advances within PET
imaging of immune checkpoint blockade (e.g., PD-L1, PD-1)
and CD8 have been evaluated on animal models and are now
finding their way to the clinics. For instance, site-specific immune-
PET tracers (64Cu-NOTA-aPD-L1 or 68Ga-NOTA-Nb109) has
been developed to image PD-L1 and PD1 (68Ga-DOTA-HACA-
PD1) (16–18). Additionally, specific immune-PET tracers for
endogenous CD8 imaging have also been developed (19) and
one of them (89Zr-IAB22M2C) is currently undergoing a human
phase I clinical trial (20). Similarly, the tumor-associated-
macrophages localized in a tumor microenvironment that can
represent up to 50% of a tumor mass can now be visualized using
macrophage-directed radiotracers in PET (e.g., using 64 Cu-
labeled polyglucose nanoparticles) and MRI (28, 29). The non-
invasive detection of tumor-associated-macrophages appears
promising to monitor cancer immunotherapies, especially when
combined with iron oxide nanoparticles, emerging as a novel
prognostic assay for more refined patient stratification and
personalized therapeutic choices (30).

Alternative imaging systems have been developed. Here, the
challenges are specificity, sensitivity and penetrance that preclude
so-far the dominance of one particular imaging approach (Table 1).
Optoacoustic or photoacoustic tomography (PA) is based on the
generation of an acoustic wave resulting from the absorption of
Frontiers in Immunology | www.frontiersin.org 3
optical energy and combines optical contrast and high ultrasonic
resolution in a single modality (31). It has a spatial resolution of less
than 5 µm and higher imaging depth than US. PA combined with
ultrasound proved useful to image sentinel lymph node metastasis
in vivo in a rabbit compared to histology (7). Using multi-
wavelength measurements and the hemoglobin as endogenous
contrast agent, venous and arterial blood flow can be imaged.
Multispectral optoacoustic tomography (MSOT) offers the
possibility of simultaneously imaging cell-specific signals with
high tissue penetration. Near infrared (NIR) fluorescent dyes,
such as indocyanine green, widely used in angiography, can detect
immune cells such as macrophages in mice (41). AuNPs have seen
increased use as contrast agents for PA with the advantage of
different absorption spectra and multiplex targeting moieties (32).
Coupled to tumor cell-specific antibodies, they allow simultaneous
detection of different tumor cells (33) and antigen delivery to
dendritic cells (34). NIR excitation combined with photoacoustics
efficiently tracks T cells in mouse tumor models (35). Optical
coherence tomography (OCT) uses interference of light rather
than the sound exploited in US to generate two-dimensional
cross-sectional images. Although its resolution is higher than US,
it suffers from a low (~1-2 mm) penetration depth. Small lymph
nodes such as those of rodents can be entirely analyzed, whereas the
analysis of the larger human lymph nodes is restricted to its
periphery (36–38). A means to overcome this constraint is to
minimize the imaging probe to the size of a needle allowing
tissue-imaging biopsies. Thus, internal human nodal B cell
follicles and germinal centers can be observed (39) making it in
theory possible to detect intra-tumoral tertiary lymphoid structures.
Because of lack of molecular sensitivity, there have been efforts to
combine OCT with fluorescence detection systems (40).

Analogous to radioisotopes or contrast NPs, various optical tags
such as fluorescent dyes can be used to observe cells in vivo.
Fluorescence imaging is well established for superficial
investigations, but at the generally-employed wavelengths (from
450 nm [ultraviolet] to 650 nm [visible]) the strong interaction
between the photon and the tissue that it traverses causes image
inaccuracy. Photon scattering is therefore dependent on wavelength,
tissue optical properties and depth of imaging (42). Confocal
and multiphoton microscopy have greatly improved image
resolution, with depth reaching several hundreds of µm. Further
improvements were made with selective plane illumination
microscopy (light sheet) and optical clearing of tissue allowing a
depth of up to 2 mm. These improvements are welcomed in
research laboratories but are unlikely to see clinical pre-operative
applications. More promising are fluorophores with excitation and
emission spectra in the NIR wavelength range (700–900 nm) or the
second NIR range (up to 1700 nm) owing to their improved depth
penetration (43). The cancer-cell targeting antibody recognizing
EGFR (Cetuximab) coupled to IRDye800CW allows the
visualization of tumor margins and the identification of lymph
nodes with micro-metastasis (44, 45). Other therapeutic antibodies
are undergoing repurposing with fluorescent dyes (46). In pre-
clinical models, myeloid cells were detected using dual NIR imaging
with NPs coupled to anti-Gr-1 and to anti-CD11b antibodies (47).
Likewise, the use of anti-CD5 and anti-CD20 antibodies, coupled to
September 2021 | Volume 12 | Article 716860
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NIR emitting NPs allowed the detection of CD5+ CD20+ mantle
cell lymphoma (48).
A FINE LINE BETWEEN IMAGING AND
THERAPEUTICS: THERANOSTICS/
THERAGNOSTICS

Before fluorescence is applied to the detection of specific
immune cells in vivo, hurdles such as the toxicity of
fluorophores and the feasibility of imaging instrumentation
must be taken. In this context, photoactivated therapy for
directed cancer treatment should be considered. Several NPs
used for imaging present themselves intrinsic cytotoxicity by
liberating - upon illumination - reactive oxygen species (PDT,
Photo-Dynamic Therapy), bioactive chemicals (Photo-Activated
Chemotherapy, PACT), or even heat (Photo-Thermal Therapy,
PTT) (49–51). Hence, these bifunctional NPs are valuable tools
to simultaneously treat and assess treatment efficacy by
visualizing the tumor or the immune cells. This combined
approach defines the concept of theranostics. The NPs used for
theranostics are of multiple sorts that can be categorized into at
least two types based on the principal constituent: either purely
organic or containing one or multiple metals (such as silica, zinc,
gold, or ruthenium) (52, 53). The metal present in the NPs can
either function as structural support for light-emitting
compounds or for bioactive molecules. It can also be exploited
for its intrinsic physicochemical properties. For instance, in PDT,
light-sensitive transition metals, such as ruthenium, can change
their peripheral electronic content to generate reactive oxygen
species after reacting with O2. The reactive oxygen species
degrade several intracellular biological macromolecules,
including DNA (54). Besides directly inducing cancer cell
death by apoptosis, PDT can produce danger signals that
recruit and activate cytotoxic immune cells (55). Indeed,
PLGA-PEG NPs stimulate the accumulation of myeloid cells
within the tumor microenvironment (56). This opens interesting
opportunities to assess immune cell localization within the
tumors while releasing compounds capable of recruiting and
activating immune cells with antitumor activity. For PACT,
bioactive ligands are liberated from the bond with the metal
core to stimulate immune cells or directly kill cancer cells.
Similar to the NPs that are used in diagnostics, the NPs with
therapeutic properties can be functionalized for targeting
specifically the tumors or infiltrating cells by using antibodies
or other bioactive molecules (57). So far, only a limited number
of tumors are targeted by these light-induced therapies, such as
head and neck cancer, melanoma and bladder cancers. A better
translation of theranostics from the pre-clinical stage to the clinic
is likely to depend on the ability of NPs to be activated within the
tissues. In line with the trend seen in imaging, the development
of NPs for theranostics is moving toward the conception of NIR-
sensitive compounds. Other innovative strategies include self-
illuminating NPs that would avoid the requirement of external
illumination while auto-generating light for PDT and imaging
(58). Another complexing factor is the choice of the necessity of
Frontiers in Immunology | www.frontiersin.org 4
oxygen within the tumor for PDT and the choice of the target
when considering the development of targeted NPs using
monoclonal antibodies.
OUTLOOK AND CHALLENGES

The imaging of immune entities, such as different immune cells
and structures in the tumor microenvironment represents an area
of molecular imaging that has a pivotal role for the development
of personalized and modern medicine. With the rise of
immunotherapy for cancer treatment, one of the main issues on
imaging is the enlargement of tumors related to the infiltration of
the tumor microenvironment by immune cells that may be
misinterpreted for tumor progression due to cancer growth
(especially as both cases would show increased [18F]-FDG
uptake on PET). Therefore, the non-invasive molecular imaging
approaches of different immune cell subtypes would represent a
change of paradigm, especially in the era of immunotherapy and
personalized medicine (59). While cutting-edge non-invasive
imaging modalities, coupled to contrast agents with optimized
cell specificity had been restricted to pre-clinical tests for years,
they are now mature and are likely to reach the routine clinic in
the near future. These include specific PET radiotracers for the
immune checkpoint blockade or CD8/TAM that can be of crucial
help for assessing the immune status of tumors and help select the
patients who have the highest probability to respond to
immunotherapy. Challenges will be to control cell toxicity in a
way to avoid adverse effects, while preserving the option of
targeted cell death for direct tumor destruction and to create
inflammation. Another issue will be to refine the measures in a
way to allow the distinction between pro- versus anti-
inflammatory immune cell infiltration. The direct way to
tackle this difficulty would be to distinguish between cell types
such asM1 versusM2macrophages or the release of inflammatory
mediators such as IFN-g, TNF-a or IL-1 versus anti-inflammatory
IL-10 or TGF-b. An alternative, probably technically less
challenging, could be to consider not only the number but also
the localization of the immune cells. Their tumor-peripheral
residence is likely characteristic of an inactive immune system
and an ability of the tumor to resist immune attack, while an
infiltrated tumor translates to an active immune cell response. To
take this further, the presence of tertiary lymphoid structures
comprising a large variety of hematopoietic cells including B cells
in an organized fashion would suggest a chronic inflammatory and
a potent anti-tumoral activity. In this general context of
questioning anti- versus pro-inflammatory immune cell activity,
it is important to also consider the draining lymph node. A pro-
inflammatory immune cell activity in the tumor will necessarily
translate into active draining lymph nodes characterized by
increased size, rich immune cell traffic and extensive
vascularization. All things considered, by bringing the immune
cell into the foreground of the oncologist’s attention new
diagnostic and therapeutic possibilities will certainly emerge.
Molecular imaging and nanomedicine will probably help to
improve the cancer patient management, for improved patient
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stratification for a more personalized care, providing a novel
axis of success that has the potential to revolutionize
cancer immunotherapy.
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Olivé K. Radiolabeled Liposomes and Lipoproteins as Lipidic Nanoparticles
for Imaging and Therapy. Chem Phys Lipids (2020) 230:104934. doi: 10.1016/
j.chemphyslip.2020.104934

53. Osterrieth JWM, Fairen-Jimenez D. Metal–Organic Framework Composites
for Theragnostics and Drug Delivery Applications. Biotechnol J (2021) 16
(2):2000005. doi: 10.1002/biot.202000005

54. Kessel D. Photodynamic Therapy: Apoptosis, Paraptosis and Beyond.
Apoptosis: Int J Programmed Cell Death (2020) 25(9-10):611–5. doi: 10.
1007/s10495-020-01634-0

55. Alzeibak R, Mishchenko TA, Shilyagina NY, Balalaeva IV, Vedunova MV,
Krysko DV. Targeting Immunogenic Cancer Cell Death by Photodynamic
Therapy: Past, Present and Future. J ImmunoTher Cancer (2021) 9(1):
e001926. doi: 10.1136/jitc-2020-001926

56. Huis in ‘t Veld RV, Ritsma L, Kleinovink JW, Que I, Ossendorp F, Cruz LJ.
Photodynamic Cancer Therapy Enhances Accumulation of Nanoparticles in
Tumor-Associated Myeloid Cells. J Controlled Release (2020) 320:19–31.
doi: 10.1016/j.jconrel.2019.12.052

57. Vijayan V, Uthaman S, Park I-K. Cell Membrane-Camouflaged
Nanoparticles: A Promising Biomimetic Strategy for Cancer Theragnostics.
Polymers (2018) 10(983):1–25. doi: 10.3390/polym10090983

58. Xu X, An H, Zhang D, Tao H, Dou Y, Li X, et al. A Self-Illuminating
Nanoparticle for Inflammation Imaging and Cancer Therapy. Sci Adv (2019)
5(1):eaat2953. doi: 10.1126/sciadv.aat2953

59. Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A. Relevance
of Immune Cell and Tumor Microenvironment Imaging in the New Era of
Immunotherapy. J Exp Clin Cancer Res: CR (2020) 39(1):89. doi: 10.1186/
s13046-020-01586-y

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Mueller, Gaiddon and Venkatasamy. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
September 2021 | Volume 12 | Article 716860

https://doi.org/10.1016/j.nic.2016.09.002
https://doi.org/10.1021/acsnano.8b04338
https://doi.org/10.1177/1178623x18771974
https://doi.org/10.7150/thno.37306
https://doi.org/10.1118/1.3013698
https://doi.org/10.2217/nnm.14.169
https://doi.org/10.1364/oe.16.018605
https://doi.org/10.1016/j.biomaterials.2017.09.029
https://doi.org/10.1002/jbio.201800073
https://doi.org/10.1109/memb.2009.935722
https://doi.org/10.1117/1.3496301
https://doi.org/10.3390/cancers5041691
https://doi.org/10.1097/lbr.0000000000000491
https://doi.org/10.1097/lbr.0000000000000491
https://doi.org/10.1364/boe.8.002405
https://doi.org/10.1364/ol.39.003523
https://doi.org/10.1038/nmeth.1483
https://doi.org/10.1038/nmeth.1483
https://doi.org/10.1038/nrclinonc.2016.212
https://doi.org/10.1158/1078-0432.Ccr-14-3284
https://doi.org/10.1158/1078-0432.Ccr-16-2968
https://doi.org/10.1016/s1470-2045(19)30317-1
https://doi.org/10.1016/s1470-2045(19)30317-1
https://doi.org/10.1021/acsnano.9b05038
https://doi.org/10.18632/oncotarget.23860
https://doi.org/10.18632/oncotarget.23860
https://doi.org/10.1002/wnan.1347
https://doi.org/10.1002/anie.201905171
https://doi.org/10.1002/wnan.1408
https://doi.org/10.1016/j.chemphyslip.2020.104934
https://doi.org/10.1016/j.chemphyslip.2020.104934
https://doi.org/10.1002/biot.202000005
https://doi.org/10.1007/s10495-020-01634-0
https://doi.org/10.1007/s10495-020-01634-0
https://doi.org/10.1136/jitc-2020-001926
https://doi.org/10.1016/j.jconrel.2019.12.052
https://doi.org/10.3390/polym10090983
https://doi.org/10.1126/sciadv.aat2953
https://doi.org/10.1186/s13046-020-01586-y
https://doi.org/10.1186/s13046-020-01586-y
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Current Clinical and Pre-Clinical Imaging Approaches to Study the Cancer-Associated Immune System
	Introduction
	Lymph Node Imaging in the Clinics
	From Lymphatic Tissue to Immune Cells
	A Fine Line Between Imaging and Therapeutics: Theranostics/Theragnostics
	Outlook and Challenges
	Author Contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


