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Objective: Disturbances in the kynurenine pathway have been implicated in the
pathophysiology of psychotic and mood disorders, as well as several other psychiatric
illnesses. It remains uncertain however to what extent metabolite levels detectable in
plasma or serum reflect brain kynurenine metabolism and other disease-specific
pathophysiological changes. The primary objective of this systematic review was to
investigate the concordance between peripheral and central (CSF or brain tissue)
kynurenine metabolites. As secondary aims we describe their correlation with illness
course, treatment response, and neuroanatomical abnormalities in psychiatric diseases.

Methods: We performed a systematic literature search until February 2021 in PubMed.
We included 27 original research articles describing a correlation between peripheral and
central kynurenine metabolite measures in preclinical studies and human samples from
patients suffering from neuropsychiatric disorders and other conditions. We also included
32 articles reporting associations between peripheral KP markers and symptom severity,
CNS pathology or treatment response in schizophrenia, bipolar disorder or major
depressive disorder.

Results: For kynurenine and 3-hydroxykynurenine, moderate to strong concordance was
found between peripheral and central concentrations not only in psychiatric disorders, but
also in other (patho)physiological conditions. Despite discordant findings for other
metabolites (mainly tryptophan and kynurenic acid), blood metabolite levels were
associated with clinical symptoms and treatment response in psychiatric patients, as
well as with observed neuroanatomical abnormalities and glial activity.
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Conclusion: Only kynurenine and 3-hydroxykynurenine demonstrated a consistent and
reliable concordance between peripheral and central measures. Evidence from psychiatric
studies on kynurenine pathway concordance is scarce, and more research is needed to
determine the validity of peripheral kynurenine metabolite assessment as proxy markers
for CNS processes. Peripheral kynurenine and 3-hydroxykynurenine may nonetheless
represent valuable predictive and prognostic biomarker candidates for psychiatric
disorders.
Keywords: kynurenine, blood-brain barrier, immune, tryptophan, psychiatry, inflammation, CSF
1 INTRODUCTION

Immune dysregulation plays an important role in the
pathophysiology of several psychiatric disorders. Mood and
psychotic disorders exhibit peripheral and central immune
abnormalities, such as increased peripheral pro-inflammatory
cytokine levels (1–3) and up- or downregulated central nervous
system (CNS) glial responses (4–7). Immune mechanisms are
further known to modulate psychiatric symptom development
and illness course. Specifically, inflammation-induced depressive
symptomatology has been observed in healthy volunteers and
patients recently remitted from major depression (8, 9), while
add-on anti-inflammatory drugs improve residual symptoms in
patients with major depressive disorder (MDD) and psychotic
disorders. This effect is particularly observed if patients present
with a basally increased peripheral pro-inflammatory cytokine
profile (10, 11).

For over half a century, disruption of the kynurenine pathway
(KP) has been proposed as a mechanistic link between immune
disturbances and psychiatric pathology and symptomatology (12,
13). Since the early 1990s, increased efforts and better analytical
methods have further disclosed the role of tryptophan (TRP),
kynurenine (KYN) and their downstream metabolites in
psychotic and mood disorders. Two meta-analyses (14–16) have
demonstrated that a.o. peripheral tryptophan, kynurenine and
kynurenic acid levels are at least partially downregulated in mood
and psychotic disorders, whereas the limited number of studies
focusing on cerebrospinal fluid (CSF) and brain tissue demonstrate
unaltered or even increased KP metabolite concentrations
(especially kynurenic acid) in these disorders (17–20). Most
clinical studies to date quantified kynurenine metabolite
concentrations in peripheral blood. Nonetheless, fundamental
knowledge about the interrelation between kynurenine
metabolites in CNS and peripheral blood and, importantly, their
bidirectional transport across the blood-brain barrier remains
incomplete. Peripheral KP metabolite quantifications may not
represent concentrations in CNS tissue, as evidenced by divergent
research results. Consequently, the validity of peripheral kynurenine
metabolite assessment as biomarkers for human neuropsychiatric
illnesses has been questioned (14, 21, 22).

1.1 Overview of the Kynurenine Pathway
Tryptophan (TRP) is an essential amino acid mainly known as
the precursor of serotonin (5-HT) and melatonin. The first, rate-
org 2
limiting, step of the pathway is the conversion of TRP to KYN by
the enzymes indoleamine 2,3-dioxygenase (IDO) and
tryptophan 2,3-dioxygenase (TDO) (Figure 1). TDO, which is
mainly found in the liver and also in the brain (23–26),
metabolizes 95% of whole-body TRP into KYN, of which the
liver contributes 90%. Under normal physiological conditions,
TDO in liver tissue will consume most of diet-derived TRP, and
as such is the main source of KYN throughout the body (27).
TDO is considered a housekeeping enzyme: excess TRP is
diverted to the Krebs cycle to generate energy (26). The
enzyme is induced by glucocorticoids to fulfill energy needs
under stressful conditions and is thus activated by
psychophysiological stress by cortisol release (28). Moreover,
TDO is inhibited by a reduction in nicotinamide, activated by
heme and stabilized by TRP (26).

Activity of IDO is low in non-pathological conditions but,
unlike TDO, can be downregulated by anti-inflammatory
cytokines (29) and upregulated by pro-inflammatory cytokines
[mainly interferon gamma (IFN-g), but also tumor necrosis
factor alpha (TNF-a)] (30) and psychological stress (31).

In the brain, downstream metabolization of KYN occurs
through divergent routes in microglia and astrocytes.
Kynurenine 3-monooxygenase (KMO), only active in cerebral
microglia, metabolizes KYN into 3-hydroxykynurenine (3-
HK), an N-methyl D-aspartate (NDMA) receptor agonist
(32). Metabolites further downstream from 3-HK include
quinolinic acid (QUINO), another NMDA-receptor agonist,
and picolinic acid (PICO), which in contrast antagonizes the
NMDA-receptor. It is assumed that additional microglial
QUINO can be produced in parallel via catabolization of
KYN to anthranilic acid (AA), although this was not
supported by Giorgini et al. as QUINO levels were almost
non-existent in KMO deficient mice (AA) (33). Quinolinic acid
phosphoribosyltransferase (QPRT) further degrades QUINO to
niacin, a form of vitamin B3.

In astrocytes, KYN is metabolized by kynurenine
aminotransferases (KAT) to kynurenic acid (KA), another
NMDA-receptor antagonist. However, a portion of this
astrocyte produced KYN will fuel macrophages and microglia
to produce QUINO (34). KA is considered a neuroprotective
metabolite due to its antagonism effect on the excitatory NMDA
receptor. However, abnormally elevated KA has been put
forward as the mechanism causing glutamate hypofunction by
sustained NMDA receptor antagonism, which can lead to
September 2021 | Volume 12 | Article 716980
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psychotic symptoms and cognitive and social impairments in
MDD and SCZ (35–37).

In the periphery, catabolization through KMO and KAT both
occurs albeit at different rates depending on multiple factors such as
the relative abundance of the enzymes in specific tissues, substrate
concentration and affinity, pH, bioavailability of cofactors,
cosubstrates and competing substrates (26). As the majority of
studies investigating these enzymes are performed in vivo, these
factors are often not taken into account resulting in a simplification
of the actual enzyme physiology (38). KMO is mostly present in
liver, kidney, macrophages andmonocytes (39), while KAT is active
in liver, kidney, placenta, heart and macrophages (40). Pro-
inflammatory cytokines like IFN-g also have a strong stimulating
effect on KMO, in the brain as well as in the periphery.

1.2 Study Objectives
As the primary objective of this systematic review, we will
investigate the correlation coefficients between peripheral and
central kynurenine metabolite concentrations in preclinical
research and in human samples of varying origins. As
secondary objectives, associations between peripheral KP
measures and (endo)phenotypic measures (symptom severity,
treatment response and CNS abnormalities) in psychiatric illness
will be described to appraise the value of KP metabolites as
prognostic and predictive biomarkers. In order to provide a
better understanding of the factors influencing central and
peripheral KP metabolites, we will discuss the (patho)
physiological impact on KP bioavailability and blood-brain-
Frontiers in Immunology | www.frontiersin.org 3
barrier (BBB) transport in healthy and immune-activated
physiological states.
2 METHODOLOGY

We performed a pubmed-based literature systematic search
(January 1968 - February 2021) using the following search
string: ((tryptophan OR kynuren* OR “quinolinic” OR
“xanthurenic acid” OR “anthranilic acid”) AND (“serum” OR
“plasma” OR “blood”) AND (“brain tissue” OR “BBB” OR “blood
brain barrier” OR “blood-brain-barrier” OR “CSF” OR
“cerebrospinal fluid” OR “postmortem” OR “post-mortem” OR
“MRI” OR “fMRI” OR “PET” OR “DTI”) NOT (review
[Publication Type])). Eligible papers were extracted from the
PubMed database using the following inclusion criteria: 1)
English language articles published in peer-reviewed journals, 2)
Human studies including patients with a major psychiatric
disorder reporting correlation coefficients between peripheral
and central KP metabolites or association measures between at
least one peripheral KP metabolite and symptom severity or brain
imaging disturbances or treatment outcome, or 3) Human studies
including healthy controls or non-psychiatric patients reporting
correlation coefficients between peripheral and central KP
metabolites, or 4) In-vivo or postmortem assessment of at least
one KP metabolite peripherally and centrally.

Two authors independently performed the literature search
(M.M., K.S.). This search strategy yielded 1078 records that, with
FIGURE 1 | Kynurenine metabolites and the blood brain barrier (BBB). Tryptophan (TRP) and kynurenine (KYN), and to a lesser degree 3-hydrox kynurenine (3-HK)
are actively transported into the brain over LAT1 transporters. Downstream metabolites of the kynurenine pathway (KP), like quinolinic acid (QUINO) and kynurenic
acid (KA), cannot make use of these transporters, but (probably limited) passive diffusion of these metabolites over the BBB is possible. Anthranilic acid and 3-
hydroxy anthranilic acid (not shown in figure) may equally pass the blood brain barrier through passive diffusion, much like QUINO. In the brain, microglia are
responsible for the production of metabolites 3-HK and QUINO, whereas astrocytes produce KA. Peripheral production of these KP metabolites is done by blood
immune cells, such as blood monocytes (PBMC) and other organs, including liver and kidney. The gut microbiome, which plays a role in psychiatric illness through
the gut-brain axis, also affects KP metabolization.
September 2021 | Volume 12 | Article 716980
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19 additional records found through cross-referencing resulted
in a total of 1097 records that were screened based on title and
abstract. After exclusion of 868 irrelevant records, full articles
were evaluated of 229 papers, ultimately leading to 59 papers that
were included in the systematic review.

We included 27 original research articles describing a
correlation between peripheral and central kynurenine
metabolite measures in preclinical studies and human samples
from healthy controls and patients suffering from
neuropsychiatric disorders and other conditions. Correlation
coefficients of peripheral-central KP metabolites along with the
p-values, sample type, sample size and pathology type were
extracted from the articles. The strength of concordance
between peripheral and central KP measures was evaluated as
a function of correlation measures, i.e. discordance = r <.20; weak
concordance = .20 ≤ r ≤ -.39; moderate concordance = .40 ≤ r ≤
-.59 and strong concordance = r ≥.60 (41, 42).

We also included 32 articles reporting associations between
peripheral KP markers and symptom severity, CNS pathology or
treatment response in schizophrenia (SCZ), bipolar disorder
(BD) or major depressive disorder (MDD).

See Figure 2 for PRISMA Flow Diagram [based on (43)].
3 CONCORDANCE OF PERIPHERAL AND
CENTRAL KP METABOLITE
ASSESSMENTS

(Table 1) provides an overview of the included studies
investigating correlations between peripheral and central
kynurenine metabolite concentrations in both human and
Frontiers in Immunology | www.frontiersin.org 4
preclinical research. Since only a handful of studies (n=4)
reported on these correlations in psychiatric populations, we
additionally listed findings in healthy subjects and non-
psychiatric diseases (n=14). It should be noted that the
available psychiatric studies only concern depressed and
bipolar patients, as until date no study has scrutinized this
association in schizophrenic patients.

3.1 Preclinical Findings
Overall, animal studies showed divergent results on peripheral-
central TRP correlations (see Table 1) (44–48). In immune
challenged mice (i.e. lipopolysaccharide) (48) plasma and brain
parenchyma KYN levels strongly correlated (r=.86; p<.001), in
contrast to TRP levels (r=-.21). Similarly, 3-HK displayed very
good inter-tissue correlations (r=.72; p>.001). Animal studies
(rats, mice, rabbits) using (supraphysiological) stimulation of the
immune system showed very high between-tissue correlations
for QUINO and KA (r>.70) in plasma, CSF and brain tissue (48,
50). When directly comparing CSF and serum of monkeys
receiving a kynurenine 3-hydroxylase inhibitor, both
kynurenine and KA correlated between CSF and serum (r=0.60
and 0.43, respectively) (49).

In amino acid supplemented rats, a significant increase in
brain TRP concentrations was observed, accompanied by strong
plasma/brain correlations (47). Goeden (67) demonstrated that
administration of kynurenine to pregnant female rats leads to
very comparable increases of KYN (9-10 fold), KA (3-6 fold) and
3-HK (15-17 fold) in the maternal placenta, fetal plasma and
brain. In contrast, administration of KA to the pregnant dams
increased KA levels in placenta and plasma, but not the fetal
plasma or brain. Interestingly, whereas a 7-day treatment with
systemic KA in rats led to increased KA concentrations in both
FIGURE 2 | PRISMA flowchart.
September 2021 | Volume 12 | Article 716980
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TABLE 1 | Overview of studies investigating correlations between blood-based and CSF kynurenine pathway metabolites.

r-value p-value

Conflicting results
.53 <.001
-.69 NS
.29 NS
.95 <.05

d) .95 <.001
d) -.21 NS

Strong concordance
.60 .011
.86 <.0001

Conflicting results
.42 NS

Strong concordance
.97 <.01
.71 <.0001

Moderate-strong concordance
.72 <.0001

r-value p-value

Discordance
.15 NS

d) .21 NS
d) N/A NS

Strong concordance
.61 <.001
.60 <.0001

Discordance
.15 NS
N/A NS

Moderate concordance
.55 <.0001

Moderate concordance
.47 <.0001

Total TRP: 3 of 5 studies show discordant results
Free TRP: 3 of 6 studies show discordant results
Not specified TRP: 3 of 4 studies show
discordant results

.47 <.05

.25 NS

.30 .01

.28 NS

.26 NS

.22 NS

(Continued)
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Study Animal Sample type Sample size Metabolite

PRECLINICAL RESEARCH
Tryptophan
Crandall et al. (1983) (44) Normal and diabetic rats serum//brain n=36 TRP (total)
Sarna et al. (1982) (45) Rats plasma/brain n=23 TRP (total)
Sarna et al. (1982) (45) Rats plasma/brain n=23 TRP (free)
Gabriel Manjarrez et al. (2001) (46) Rats undernourished in utero plasma/brain (auditory cortex) n=30 TRP (free)
Yokogoshi et al. (1987) (47) Rats receiving amino acid supplementation plasma/brain n=54 TRP (not specifi
Verdonk et al. (2019) (48) Mice receiving an immune challenge plasma/brain n=60 TRP (not specifi
Kynurenine
Gregoire et al. (2008) (49) Monkeys serum/CSF n=8 KYN
Verdonk et al. (2019) (48) Mice receiving an immune challenge plasma/brain n=60 KYN
Kynurenic acid
Gregoire et al. (2008) (49) Monkeys serum/CSF n=8 KA
Quinolinic acid
Saito et al. (1993) (50) Immune stimulated gerbils plasma/CSF n=5 QUINO
Verdonk et al. (2019) (48) Immune stimulated mice plasma/brain n=60-75 QUINO
3-hydroxykynurenine
Verdonk et al. (2019) (48) Mice receiving an immune challenge plasma/brain n=60-75 3-HK

Study Pathology Sample type Sample size Metabolite

HUMAN RESEARCH
Psychiatric diseases
Tryptophan
Moreno et al. (2010) (51) Remitted MDD plasma/CSF n=21 TRP (total)
Hestad et al. (2017) (17) MDD serum/CSF n=75 (MDD n=44) TRP (not specifi
Haroon et al. (2020) (52) MDD plasma/CSF n=72 TRP (not specifi
Kynurenine
Hestad et al. (2017) (17) MDD serum/CSF n=75 (MDD n=44) KYN
Haroon et al. (2020) (52) MDD plasma/CSF n=72 KYN
Kynurenic acid
Sellgren et al. (2019) (20) BD plasma/CSF BD n=163 KA
Haroon etal. (52) MDD plasma/CSF n=72 KA
Quinolinic acid
Haroon et al. (2020) (52) MDD plasma/CSF n=72 QUINO
Anthranilic acid
Haroon et al. (2020) (52) MDD plasma/CSF n=72 AA
Nonpsychiatric diseases
Tryptophan

Young et al. (1975) (53) Healthy volunteers Serum/CSF n=29 TRP (total)
Sullivan et al. (1978) (54) Healthy volunteers Plasma/CSF n=13 TRP (total)
Kruse et al. (1985) (55) Healthy volunteers Serum/CSF n=44 TRP (total)
Young et al. (1976) (56) 59 year old man after neurosurgery (ventricular drain) Serum/ventricular CSF n=1 (case 1) TRP (total)
Young et al. (1976) (56) 21 year old man with acute meningitis (ventricular drain) Serum/ventricular CSF n=1 (case 2) TRP (total)
Sullivan et al. (1978) (54) Uraemic patients Plasma/CSF n=14 TRP (total)
e
e

e
e
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TABLE 1 | Continued

size Metabolite r-value p-value

TRP (total) .58 NS
TRP (free) .02 NS
TRP (free) .22 NS

) TRP (free) .57 <.05
) TRP (free) .76 <.05

TRP (free) .97 <.01
TRP (free) .44 .02
TRP (free) .57 NS
TRP (free) .57 <.01
TRP (not specified) .34 NS
TRP (not specified) .37 <.025
TRP (not specified) .21 NS
TRP (not specified) .14 NS

Moderate-strong concordance
KYN .27 NS
KYN .65 <.0001
KYN .53 <.01
KYN .46 .03

=20) KYN .70 <.001
Conflicting results: 2 of 3 studies shown
discordance

KA -.02 NS
KA N/A NS
KA .51 <.01

Moderate concordance
3-HK .51 .02

=20) 3-HK .33 .044
Moderate-strong concordance in patients

QUINO .02 NS
QUINO .43 <.0001
QUINO .57 <.0001
QUINO .72 <.001

Strong concordance
=20) AA .63 <.001

Moderate-strong concordance
PICO .93 <.0001

=20) PICO .54 <.001

chiatric studies, sorted by metabolite. The correlations coefficients and its significance are

tryptophan; KYN, kynurenine; KA, kynurenic acid; 3-HK, 3 hydroxykynurenine; QUINO,
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Study Animal Sample type Sample

Gillman et al. (1980) (57) Psychosurgery patients Plasma/brain tissue n=5
Young et al. (1975) (53) Healthy volunteers Serum/CSF n=29
Sullivan et al. (1978) (54) Healthy volunteers Plasma/CSF n=10
Young et al. (1976) (56) 59 year old man after neurosurgery (ventricular drain) Serum/ventricular CSF n=1 (case
Young et al. (1976) (56) 21 year old man with acute meningitis (ventricular drain) Serum/ventricular CSF n=1 (case
Gillman et al. (1980) (57) Psychosurgery patients Plasma/brain tissue n=5
Curzon et al. (1980) (58) Psychosurgery patients Plasma/CSF n=19
Sullivan et al. (1978) (54) Uraemic patients Plasma/CSF n=12
Cangiano et al. (1990) (59) Cancer patients and healthy volunteers Plasma/CSF n=28
Sarrias et al. (1990) (60) healthy volunteers plasma/CSF n=35
Isung et al. (2021) (61) Healthy subjects plasma/CSF n=27
Heyes et al. (1992) (62) HIV serum/CSF n=79
Raison et al. (2010) (63) Hepatitis plasma/CSF n=27
Kynurenine
Isung et al. (2021) (61) Healthy subjects plasma/CSF n=27
Heyes et al. (1992) (62) HIV serum/CSF n=79
Raison et al. (2010) (63) Hepatitis plasma/CSF n=27
Havelund et al. (2017) (64) Parkinson plasma/CSF n=26
Jacobs et al. (2019) (65) AD plasma/CSF n=38 (AD n
Kynurenic acid

Sellgren et al. (2019) (20) Healthy volunteers plasma/CSF n=113
Havelund et al. (2017) (64) Parkinson plasma/CSF n=26
Isung et al. (2021) (61) Healthy subjects plasma/CSF n=27
3-hydroxykynurenine
Havelund et al. (2017) (64) Parkinson plasma/CSF n=26
Jacobs et al. (2019) (65) AD plasma/CSF n=38 (AD n
Quinolinic acid
Isung et al. (2021) (61) Healthy subjects plasma/CSF n=27
Heyes et al. (1992) (62) HIV serum/CSF n=111
Valle et al. (2004) (66) HIV plasma/CSF n=62
Raison et al. (2010) (63) Hepatitis plasma/CSF n=27
Anthranilic acid
Jacobs et al. (2019) (65) AD plasma/CSF n=38 (AD n
Picolinic acid
Isung et al. (2021) (61) Healthy subjects plasma/CSF n=27
Jacobs et al. (2019) (65) AD plasma/CSF n=38 (AD n

This table presents a summary of the concordance between peripheral and central kynurenine metabolites in preclinical, human psychiatric and non-ps
represented as r-values and p-values respectively.
MDD, major depressive disorder; BD, bipolar disorder; AD, Alzheimer’s disease; HIV, human immunodeficiency virus; CSF, cerebrospinal fluid; TRP
quinolinic acid; AA, anthranilic acid; PICO, picolinic acid; NS, non-significant.
1
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plasma and CSF but not in the other metabolites, acute KA
administration did alter both TRP and several KP metabolite
serum levels (68, 69).

In rats subjected to chronically unpredicted mild stress during
5 weeks, significant increases in KYN were observed in the colon,
as well as in the cortex and hippocampus. Additionally, KA levels
were increased in colon, whereas a decrease was seen in the
cortex and hippocampus. Colonic KYN was significantly
correlated with hippocampal KYN (r=.6154; p=.0066), KA
(r=−.5787; p=.0119) and 3-HK (r=.5050; p=.0325) and
negatively correlated to cortical KA (r=-.6717; p=.0023) (70).

Of note, kynurenine metabolite production seems to vary
between species, e.g. between rats and gerbils (71), between
mouse and human brain (29), so findings from animal models
cannot be generalized to the human brain.

3.2 Psychiatric Research
Strong correlations were found between CSF and peripheral
measures of KYN in MDD (n=75; r=.61; p<.001 (17) (n=72;
r=.60; p=<.0001) (52). Peripheral TRP concentrations, however,
did not correlate with central assessments (17, 51, 52), although
it should be noted that these studies did not measure free TRP.
Notably, the serotonin branch utilizes 10% of the blood-based
TRP but on average half of the cerebral TRP, which may partially
explain its low correlations with central concentrations. In
contrast, peripheral assessments of KA (KAT-branch) did not
correlate with CSF measures of the same metabolite in a large
sample of bipolar patients (n=163) (20). Plasma concentrations
of downstream metabolites of the KMO-branch QUINO and AA
also showed a moderate concordance with CSF values in MDD
(n=72; r=.55, resp. r=.47; all p-values <.0001) (52).

Although peripheral and central kynurenines have not been
compared directly yet in schizophrenic patients, a recent meta-
analysis showed that schizophrenia is associated with lower
plasma KYN levels but higher CSF KYN and KA (72), which
may suggest that peripheral and central KYN are not necessarily
correlated in psychotic illness.

However, with only 4 psychiatric studies available, the
currently available data do not allow calculation of quantitative
meta-analytic summary statistics.

3.3 Non-Psychiatric Research
Similar to animal studies and in MDD, both total and free TRP
correlation mostly show discordance in studies with healthy
participants. Peripheral and central levels of kynurenine
metabolites were compared in healthy participants (n=27) either
after an intense physical activity or after a 4-week training program.
At baseline, PICO levels were strongly correlated between plasma
and CSF (r=.93; n=27; p<.0001), whereas a weak correlation was
seen for the other kynurenine metabolites. After exercise, however,
discordance ensued for KYN (r=-.22; NS), QUINO (r=-.09; NS) and
KYNA (r=-.05; NS) (61).

In line with the results in MDD, peripheral KYN levels
showed a moderate-to-strong concordances with CSF values in
HIV patients (n=79; r=.65; p<.0001) (62), Alzheimer patients
(n=20; r=.70; p<.001) (65), hepatitis C (n=27; r=.46; p<.01) (63)
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and Parkinson patients (n=26; r=.46; p=.03) (64), whereas both
free and total peripheral TRP measures again showed conflicting
results (free TRP: 3 of 6 studies show discordance; total TRP: 3 of
5 studies show discordance; not specified TRP: 3 of 4 studies
show discordance) (53–60, 62, 63).

Peripheral 3-HK assessments also tend to reflect central
concentrations of the same metabolite, albeit more modestly,
as plasma and CSF 3-HK concentrations correlated weakly in
Alzheimer’s (r=.33; p=.044) (65) and moderately in Parkinson’s
disease (r=.51; p=.02) (64).

Further downstream the KMO-branch, QUINO and KA were
most frequently studied. Blood and CSF assessments of
microglia-based metabolites (AA, 3-HK, PICO, QUINO)
equally tended to intercorrelate irrespective of the underlying
illness (see Table 1), with moderate-to-strong concordances for
QUINO (r-values ranging from.43 to.57; all p-values below.001)
(62, 63, 66) and weak-to-moderate for 3-HK (r-values ranging
between.33 and.51; all p-values <.05) (64, 65). Although based on
a singly study, plasma AA and PICO showed a high (n=20; r=.63;
p<.001) and moderate (n=20; r=.54; p<.001) concordance with
CSF levels in Alzheimer patients (65). However, it should be
noted that all investigated patient groups had hepatitis or
neurological or HIV-related pathology, which may not be
reflective of the concentrations and correlations found in
psychiatric patients. Serum QUINO in HIV patients for
example (73) ranged between 200-8000 nM/L, whereas that in
schizophrenia and MDD more modestly ranged from 200 to 600
nM/L (74–76).

In line with findings in BD, KA measures in blood did not
mirror central values in patients with Parkinson’s disease and
healthy volunteers, although this discordance could be explained
by the use of a peripheral aromatic amino acid decarboxylase
inhibitor along with L-dopa which inhibit both KAT and KYNY
enzymes in the periphery (20, 64).

In conclusion, human studies support several findings from
preclinical samples, namely positive correlation coefficients
between peripheral and central KYN and 3-HK levels, in
contrast to TRP and KA. Free TRP has been preferred by
several researchers over total TRP to correlate with CSF values
(54, 56, 59, 77), although this could not be confirmed with the
current results. Furthermore, hepatitis and HIV patients and
immune stimulated rodents showed high inter-tissue correlation
values of QUINO, possibly caused by inflammation in both
compartments. However, further studies are necessary to
confirm these interpretations.
4 LINK BETWEEN PERIPHERAL KP
MARKERS AND ENDO-PHENOTYPICAL
MARKERS OF PSYCHIATRIC ILLNESS

As a secondary objective of this review, we aimed to develop a
better understanding of the relationships between peripheral KP
markers and several relevant clinical features such as symptom
severity and treatment response.
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4.1 Correlations Between Peripheral KP
Markers and Clinical Symptomatology in
Psychiatric Illness
An increased KYN/TRP ratio has been associated with higher
depression severity scores in MDD patients (78, 79), with the
presence of suicidality (80) and with manic symptomatology
(81), irrespective of pharmacological treatments. Increased KYN/
TRP has equally been linked to reduced cognitive performance in
schizophrenia, MDD, panic disorder and aging (17, 76)
(Table 2). In contrast, symptom severity in depression did not
correlate with free or total plasma TRP levels (82).

Increased peripheral QUINO concentrations have been
associated with depressive symptom severity in major
depression and postpartum depression and in healthy volunteers
receiving an inflammatory challenge (10, 83–85), as have increased
AA and decreased KA. Decreased KA has also been associated
with negative symptomatology in schizophrenia patients (86),
although it is important to note that these low KA
concentrations could be attributable to extremely low KYN
levels (<200ng/ml instead of normal values around 2µg/ml)
possibly caused by food intake which is known to lower KYN
values (87). It should be noted that these associations were not
consistently present (63, 88).

A shift towards the neurotoxic branch has equally been
associated to affect cognition, as increased 3-HK activity was
associated with poor memory performance in unipolar
depressive and bipolar disorder (74, 89). This is in contrast
with the negative correlation between KA and social cognition
demonstrated by Huang (90). Although serum 3-HK and XA
values were lowered in SCZ and BD compared to healthy
controls (HCs), these metabolites did not correlate with
symptom severity (91).

4.2 Correlations Between Peripheral KP
Markers and CNS Physiology in
Psychiatric Illness
A higher KYN/TRP ratio has been associated with loss of grey
and white matter integrity in bipolar disorder (92) and
schizophrenia (93) as well as with lower dorsolateral prefrontal
cortex (DLPFC) volumes in schizophrenia (76), lower frontal
Frontiers in Immunology | www.frontiersin.org 8
white matter glutamate levels (93) and reduced striatal volumes
in MDD (94).

Low plasma KA concentrations and KA/QUINO ratios have
been associated with reduced connectivity, white matter integrity
and cortical thickness and hippocampal volume in MDD (95–
97) and bipolar disorder (75, 98) as well as increased glial cell
activation [as assessed by Positron Emission Tomography using
radioligand (18F)-PBR111] in schizophrenia (99). Surprisingly, a
positive correlation between neurotoxic QUINO and increased
connectivity in MDD was equally shown (95).

A small sample of melancholic depressed adolescents (n=7)
showed strong correlations (r>.90) between plasma KYN and 3-
HAAwith brain choline, a cell membrane turnover biomarker, in
the striatum with magnetic resonance spectroscopy (MRS) (100).
Please find the summary of this paragraph in Table 2.

4.3 Link Between Peripheral KP Markers
and Treatment Response in
Psychiatric Illness
In mood disorders, antidepressant treatment with an selective
serotonin reuptake inhibitor (SSRI) (48), ketamine (48, 101),
electroconvulsive therapy (ECT) (79, 102) or real time functional
magnetic resonance imaging (RT fMRI) neurofeedback training
(103) typically have similar effects on the KP pathway as
evidenced by overall lowering of QUINO and 3-HK levels
(typically thought to be more neurotoxic in nature), as well as
increases in KA, which is seen as neuroprotective. These KP
changes, as well as baseline high QUINO and low KA levels were
predictive for treatment response or remission (48, 101, 104).
Whereas plasma TRP levels did not predict treatment response
on lithium nor amitriptyline, a subnormal ratio of TRP to other
amino acids competing with the LAT1 transporter predicted
better outcome in depressed individuals (105). Moreover,
antidepressant treatment has been shown to decrease IFN-g
expression as well as IDO activity in the brain and in
peripheral blood mononuclear cells (PBMCs) (106), leading to
reduced overall activation of the kynurenine pathway, mirrored
by reduced KYN levels after antidepressant treatment (48). It
remains to be investigated whether the antidepressant effect of
these treatments is mediated by their impact on kynurenine
TABLE 2 | Effects of KP changes on symptomatology and biomarkers in psychiatric illness.

Peripheral finding MDD BD SCZ

↑ KYN/TRP ↑ depression severity
↑ cognitive symptom severity
↓ frontal glutamate
↓ striatal volume

↑ mania severity
↓ GM/WM integrity

↑ cognitive symptom severity
↓ GM/WM integrity
↓ DLPFC volumes

↓ KA and/or ↑ QUINO ↑ depression severity
↑ lifetime MDD episodes
↑ ketamine response
↑memory impairment
↓ connectivity
↓ WM integrity
↓ cortical thickness
↓ hippocampal volume

↑ ketamine response
↑memory impairment
↓ connectivity
↓ WM integrity
↓ cortical thickness
↓ hippocampal volume

↑ negative symptom severity
↑ glial cell activity
September 2021 |
MDD, major depressive disorder; BD, bipolar disorder; SCZ, schizophrenia; TRP, tryptophan; KYN, kynurenine; KA, kynurenic acid; QUINO, quinolinic acid; WM, white matter; DLPFC,
dorsolateral prefrontal cortex.
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pathway dynamics. Nonetheless, these results suggest that KP
abnormalities may be useful as predictive biomarkers for
treatment response.

Antipsychotics have equally shown KP modulating effects in
schizophrenia patients. Lowered TRP and KA (107, 108) and
increased 3-HK levels (108) normalized after antipsychotic
treatment. Cao et al. reported lower KYN levels in
unmedicated schizophrenic patients in their meta-analysis,
whereas higher KYN levels existed during and after treatment
with antipsychotics (72). This also accords with earlier findings
by our group, which showed that decreased levels of QUINO and
3-HK in unmedicated psychotic patients tend to normalize after
antipsychotic treatment (86).
5 PERIPHERAL AND CENTRAL FACTORS
INFLUENCING KYNURENINE
METABOLITE CONCENTRATIONS

The following sections describe the bioavailability and blood
brain barrier transport of KP metabolites in normal and
immune-activated conditions, which is often the case in
psychiatric illness.

5.1 Mechanisms of Entrance of
Tryptophan and Kynurenines Into
the Brain
The blood-brain barrier (BBB) separates the central nervous
system from peripheral circulation and regulates the exchange
between these two compartments, protecting the brain from
harmful or toxic compounds circulating in the blood, while
supplying the brain with nutrients (27).

Tryptophan and kynurenine easily pass the BBB, actively
transported by the large neutral amino acid transporter (LAT1) in
competition with other essential amino acids such as valine,
isoleucine, leucine, tyrosine and phenylalanine (109, 110). LAT1 is
ubiquitously expressed on both apical and basolateral sides of the
endothelial membranes, as well as on neurons, microglia and
astrocytes (111, 112). Although relative concentration differences
may be present depending on the compound (113, 114), the
transporters provide bidirectional transport to maintain
equilibrium of amino acid distribution across both sides of the
BBB (115). Preclinical research suggests that 60-78% of the cerebral
pool of KYN is imported from the periphery (109, 116, 117) and
that TRP transport over the BBB declines with older age (45, 118).

In addition to TRP and KYN, 3-HK is also actively
transported over the BBB by LAT1, albeit to a much lesser
degree (109, 117). Still, animal research shows that the uptake of
systemically administered 3-HK was seven- to eight-fold higher
in the brain than in other tissues (119), arguing for efficient
metabolite transport over the BBB. AA, another precursor for
QUINO (Figure 1), can also pass the BBB easily, presumably by
passive diffusion (117, 120).

By contrast, QUINO, 3-HAA and KA are not actively
transported over the BBB, restricting brain uptake to passive
diffusion (120), which supposedly is very limited due to these
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compounds’ polar nature (117). This is confirmed by preclinical
studies where systemically administered neurotoxic doses of KA
and QUINO had no effect on rats (121), while equal doses of a
synthetic KA variant that easily passes the BBB instantly killed all
animals (122). As they cross the BBB very poorly, cerebral
concentrations of KA and QUINO are therefore considered
mainly to derive from local production (117). In contrast,
several gerbil studies show subcutaneously infused radiolabeled
QUINO made up 50-70% of the QUINO brain pool (116, 123),
challenging the notion that passive QUINO diffusion over the
BBB is limited. However, it is unclear to what extent these
findings are extrapolatable to humans.

Cholesterol and fatty acid composition of cell membranes
determines membrane fluidity and as a consequence the
efficiency of the transport function (124). Data from several
studies suggest that cholesterol disturbances are associated with
psychiatric disease, including MDD and schizophrenia (125–
128). Also, chronic hypertension and insulin seem to facilitate
TRP brain uptake in rats (129, 130). However, the role of these
factors in altered BBB permeability in psychiatric patients needs
further clarification.

5.2 Bioavailability and Transport of
Kynurenine Metabolites
As TRP, KYN and KA are known to be loosely bound to human
serum albumin (HSA), these compounds first need to be stripped
off of HSA in order to be transported to the central nervous system
(131–134). In fact, 80-95% of plasma TRP is bound to human
serum albumin (HSA), leaving only a small percentage as free TRP
(114, 135). Therefore, factors influencing the albumin concentration
or interacting with the binding sites have a major impact on the
bound/unbound ratio and, consequently, on transportation over the
BBB (136, 137). For example, low HSA may occur during liver and
kidney disease, prolonged inadequate food intake and in a pro-
inflammatory state. Lower TRP in turn affects albumin synthesis
(135, 138). Moreover, fatty acids and several drugs, such as
salicylates, are able to displace TRP from its binding site, although
these mechanisms are difficult to evaluate in vivo (135, 139, 140).

Additionally, it is important to bear in mind that KP enzyme
expression and/or activity is changed in various diseases [for
review, see (26)].

5.3 Peripheral-Central Neuroimmune
Crosstalk and the Effect on the
Kynurenine Pathway
Although the brain is considered as an immune-privileged organ
since tissue grafts survive when implanted into the CNS
parenchyma, the BBB has shown to be permeable to
inflammatory proteins and cells under inflammatory conditions,
which are able to activate immune responses in the CNS. Several
mechanisms may result in crosstalk between the peripheral and
central immune system, influencing the functional link between
the peripheral and central KP metabolism.

Pro-inflammatory cytokines, which activate the kynurenine
pathway both peripherally and centrally, pass the BBB easily
through cytokine-specific transporters and circumventricular
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organs (CVOs) (141), the latter being highly permeable and
isolated brain areas characterized by efficient neurohumoral
exchange (142). However, the complex interactions between
the peripheral and central immune system need further
clarification. Cytokine-stimulated activation of the kynurenine
pathway in the brain may be mirrored in peripheral tissue, and
theoretically peripheral assessments of metabolites such as
QUINO or KA could indirectly reflect the situation in brain
tissue. During immune activation in the CNS, over 98% of brain-
located KYN and QUINO could derive from local production
(116). However, Guillemin and colleagues (143) demonstrated
that human monocytes and monocyte-derived macrophages can
produce up to 19 times more QUINO than activated microglia
(143). This is also in line with findings of Espey (32), who showed
that synthesis of QUINO by microglia in epilepsy patients was
approximately 15% of that produced by monocyte-derived
macrophages retrieved from brain tissue. In acute liver failure,
an 11-fold increase in QUINO plasma concentrations was
mirrored by 1-4-fold elevations in postmortem cerebral tissue,
again arguing for more potent QUINO production capacities in
peripheral tissue (144). In this line, QUINO concentrations over
a range of pathological conditions are systematically higher in
blood compared to the CNS with blood/CSF ratios of 14:1 in
humans, 19:1 in rodents and up to 52:1 in nonhuman primates,
[for review, see (145)]. This can also have relevance to the CNS,
as infiltrating activated macrophages could be the most potent
QUINO source during brain inflammation (143).

Chronic inflammation leads to an enhanced release of pro-
inflammatory cytokines and other components that may alter the
microvascular permeability, resulting in a so-called ‘leaky’ blood-
brain barrier, which is associated with increased permeability for
activated monocytes that may migrate to brain tissue, thus
exacerbating neuroinflammation (27).

BBB integrity was shown to be affected in 14-29% of treatment
resistant patients with mood and psychotic spectrum disorders
(146) and was suggested to be associated with negative symptoms
in schizophrenia (147). However, very few psychiatric studies
focused on differentiating resident microglia from blood-derived
macrophages that migrated to the brain, so little is known about a
potentially changed macrophage presence in psychiatric brain tissue
and their impact on neuroinflammatory abnormalities.
Nonetheless, an invasion of macrophages in brain tissue in 40%
of schizophrenic patients in a high inflammatory state as found by
Cai and colleagues (148), could alter local QUINO concentrations
drastically, given the previously mentioned superior ability of
macrophages to produce QUINO compared to microglia.
Importantly, QUINO increases result in astrocytic apoptosis,
which may further impact BBB integrity (149).

As for KA, early results in an animal model may suggest that
(supraphysiological) increased levels of peripheral KA could alter
BBB permeability in itself, and in this way penetrate the BBB to
reach the brain (150, 151). However, the relevance of these data
to humans in general and to KP metabolite concentrations
reached in psychiatric illnesses specifically is not clear.

The CNS in turn keeps the peripheral immune activity in check
by a number of neuronal control mechanisms. First, although both
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physiological and psychological stress activates the paraventricular
nucleus in order to adapt rapidly to threats of homeostasis, the
hypothalamo-pituitary-adrenocortical (HPA) stress response has
self-regulating abilities through glucocorticoid negative feedback
loops (152, 153). Second, stress-induced cortisol activates multiple
physiological reactions, including the induction of TDO. On the
other hand, acute cortisol release has anti-inflammatory effects, as
it leads to the production of anti-inflammatory cytokines (154).
However, persistent elevations of cortisol downregulate the
expression of the glucocorticoid receptor which results in
glucocorticoid resistance, leading to a pro-inflammatory state as
evidenced by elevated IL-6 and TNF-a levels (155).

Interestingly, increased cortisol or treatment with
dexamethasone has been associated with low TRP plasma levels
in treatment resistant schizophrenics (156) and MDD (157–159).
6 DISCUSSION

Disturbances in the KP are thought to be involved in the
pathophysiology of several psychiatric illnesses, such as
psychotic and mood disorders. Whereas these abnormalities
are easily measured in plasma/serum, empirical evidence of
BBB transportation dynamics of the different metabolites
under physiological and pathological conditions is limited. The
general consensus has been that TRP, KYN and maybe 3-HK
easily cross the BBB whereas other downstream metabolites
(QUINO, 3-HAA, AA, KA) do not. Nonetheless, this theory
has been based on a single study (117) that investigated BBB KP
metabolite transport in rats. Evidently, findings in rodents are
not always extrapolatable to humans. Kynurenine pathway
enzymes might be more active in the brain of higher species
(160) and interspecies differences in the KP have been
demonstrated (71, 117). The present review was designed to
summarize the available correlation coefficients between
peripheral and central kynurenine metabolite concentrations.

In clinical studies, KYN and, to a lesser degree, 3-HK,
correlate well between blood and CSF samples, irrespective of
underlying diagnosis. This is unsurprising, as both metabolites
are actively transported over the BBB. However, although TRP
equally passes the BBB easily, CSF and peripheral samples taken
from the same individual do not always correlate well in human
studies for both free and total TRP, especially with regard to
more recent studies. High TRP-binding to blood albumin may
explain low correlations to central TRP levels. More than 90% of
the peripheral TRP is metabolized into KYN, while brain TRP is
equally divided over the serotonergic and the kynurenine
pathway (69) Additionally, IDO is more represented in the
brain, whereas TDO is mainly responsible for metabolization
in the periphery; this may contribute to differential levels
between CNS and blood. As TRP is an essential amino acid,
active transport into the brain may alter the ratio of these
molecules between CSF/brain and blood. Downstream
metabolites in both branches of the pathway cannot easily pass
the BBB due to a lack of active transportation. Yet despite relying
solely on passive diffusion, peripheral and central concentrations
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of QUINO and the precursor AA have shown correlations of
moderate strength in neurological (Parkinson’s disease,
Alzheimer’s disease) and infectious disorders (HIV, hepatitis C).
In psychiatric disorders however, there generally is a lack of
available evidence on CSF concentrations of kynurenine
metabolites. Interestingly, out of all KP compounds, peripheral
KA levels seem to be the least predictive and even diametrically
opposed to those in the CSF of depressed and bipolar patients.

Overall, recent meta-analyses and individual psychiatric
studies investigating KP metabolites in either peripheral or
central samples have shown divergent results across both sides
of the BBB (Figure 3). Several reasons can be proposed for these
discrepancies. It is to be considered that central and peripheral
aberrations may reflect different processes in the human body.
Under physiological circumstances for example, intense physical
exercise causes transient changes in the KP both in the periphery
and centrally (61, 161, 162). KP metabolization in tissue
macrophages, PBMCs and other immune cells contribute
substantially to peripheral concentrations, whereas central
levels of downstream metabolites are mostly determined by the
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lower enzymatic activity in astrocytes and microglia. Moreover,
somatic comorbidities such as autoimmune illnesses, metabolic
syndrome, an altered microbiome and hepatic or renal
dysfunction (163, 164) may impact peripheral and central KP
metabolite concentrations. Even though stress and pro-
inflammatory cytokines (IFN-g, TNF-a) equally activate the
pathway in peripheral and central tissue (123), it is possible
that the correlation between peripheral and CNS KP findings
depends on the type and level of inflammation. While high-level
inflammation and/or BBB disintegrity may lead to parallel
changes in CNS and blood KP (Table 1), this is not necessarily
the case in the chronic mild inflammatory conditions found in
psychiatric illness (Figure 3). The observed positive correlations
in blood-CSF QUINO concentrations in MDD, hepatitis and
HIV, but not in healthy volunteers, could be attributable to the
inflammatory conditions in these illnesses damaging the BBB.
On the other hand, peripheral findings in psychiatric illness do
represent valuable biomarkers, associated with symptom severity
and treatment response, as well as other core biological features
of the disorder as discussed in section 6. This corroborates the
FIGURE 3 | Comparing peripheral (serum/plasma) and central (CSF/brain tissue) kynurenine pathway findings in major psychiatric disorders. Legend: In mood
disorders, peripheral studies demonstrate decreased measures of blood TRP, KYN and a downregulation of the KAT-driven branch in the periphery, which is
possibly explained by a decreased availability of TRP to the KP. Central studies investigating cerebrospinal fluid (CSF) or brain tissue are less conclusive, but are very
limited. In schizophrenia, peripheral findings are much less clear downstream with very conflicting results. Central studies in schizophrenia, also limited and mainly
based on CSF research on KA, equally suggest an activation of the pathway, reflected by KYN increases, accompanied by a shift towards the astrocyte-derived
branch. KP, kynurenine pathway; 3-HK, 3-hydroxy-kynurenine; KA, kynurenic acid; KYN, kynurenine; QUINO, quinolinic acid; TRP, tryptophan; XA, xanthurenic acid;
KMO, kynurenine 3-monooxygenase; KAT, kynurenine aminotransferase.
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notion of psychiatric illnesses as ‘whole-body disorders’ rather
than brain disorders (165).

Psychiatric diagnoses are typically based on clinical phenotypes
which are now widely accepted to represent a heterogeneous
group of biotypes. Several biological dysregulations (immune,
neuroendocrine, metabolic,…) are therefore nonspecific,
overlapping between diagnostic categories. Kynurenine
abnormalities may thus vary over studies depending on the
representation of the different biotypes in these studies.
Symptomatic state (14), medication status and use of illicit
substances - in particular THC - (86, 108, 166) may also impact
KP alterations, further adding to the variability. The complex
interaction between KP and the dimensional aspects of different
psychiatric syndromes needs further scrutiny. An increased KYN/
TRP ratio as well as low KA and/or high QUINO emerge as true
transdiagnostic blood-based trait markers across the three major
psychiatric disorders. A similarly strong overlap has recently been
demonstrated in the polygenic risk factors related to these
disorders (167) (see Table 2).

Methodological issues should also be considered. Study sample
sizes have systematically been small, especially in those investigating
central KP metabolites. A recent meta-analysis (19) demonstrated
that schizophrenia-related KYN findings in CSF were based on a
total of 60 patients over 3 studies, and KA on a total of 148 patients
over 4 studies. Although the role of QUINO in the pathophysiology
of schizophrenia has been a favored and frequently repeated
hypothesis in many opinion papers and reviews, no study has
actually investigated QUINO in the CSF of schizophrenia patients
to date. Similarly, the KP was investigated in the CSF of below 100
MDD patients (17–19). Postmortem studies equally tend to include
smaller sample sizes (168–170). The fact that data on microglia-
driven metabolites appear more mixed than KA levels, may simply
result from the fact that these metabolites have hardly been
investigated. Another methodological issue is that some
metabolites (e.g. QUINO) are present in very low ranges (200-600
nM/L) and QUINO findings over studies differ with factors up to
one million, which may reflect bioanalytical inaccuracies related to
the assays’ lower detection limits that are nonetheless rarely
acknowledged in these papers (171). In this line, the smaller
ranges of KP metabolite alterations found in psychiatric illnesses
(75, 76) may need higher sample sizes in order to achieve sufficient
statistical power compared to studies investigating neurological and
infectious illnesses, which are accompanied by high-grade systemic
responses and more profound blood-brain barrier disintegrety (63,
65, 73). Another issue is that CSF findings may not reflect brain KP
metabolism in situ, especially in the context of a ‘leaky’ brain, as CSF
may bemore representative of KP enzyme activity in periventricular
Frontiers in Immunology | www.frontiersin.org 12
macrophages rather than parenchymal glial cells. Moreover, the
total volume of the obtained CSF and the exact intervertebral height
have a significant impact on protein concentration as the
concentration decreases when descending along the vertebral
column (172).

Finally, KP enzyme activity is typically estimated using metabolite
ratios. For example, TDO/IDO activity is typically calculated from
KYN/TRP ratios. Actual assessment of enzyme activity (e.g. in
isolated cell types such as PBMCs) or genetic expression of these
enzymes may be more relevant and representative.

In conclusion, KYN and 3-HK measured in plasma or serum
seem to reflect their concentrations in brain tissue, but this
relationship is less clear in TRP and more downstream
metabolites of the KP. Even if peripheral concentrations do not
correlate with central measures in psychiatric illness, they are not
necessarily without merit as relevant biomarkers of phenotypical
features and treatment response. Nonetheless, many potential
confounders may contribute to diverging central and peripheral
assessments, and more fundamental research is needed to clarify
these issues. Future studies should investigate 1) to what extent
KP metabolites pass BBB in humans (e.g. by use of radioactive
labelling), 2) whether CSF concentrations reflect in situ brain
abnormalities and to what extent these KP abnormalities are
systemic or region-dependent in the brain, 3) how well CSF and
blood concentrations of microglial branch metabolites
intercorrelate in mood and psychotic disorders and 4) what the
impact is of medication, symptom status and illness phase on KP
abnormalities. Finally, we strongly recommend future studies
investigating the KP in psychiatric illness to assess (at least) the
following metabolites: TRP, KYN, QUINO, 3-HK and KA.
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