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Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative
therapy for hematological malignancies. This beneficial effect is derived mainly from graft-
versus-leukemia (GVL) effects mediated by alloreactive T cells. However, these alloreactive
T cells can also induce graft-versus-host disease (GVHD), a life-threatening complication
after allo-HSCT. Significant progress has been made in the dissociation of GVL effects
from GVHD by modulating alloreactive T cell immunity. However, many factors may
influence alloreactive T cell responses in the host undergoing allo-HSCT, including the
interaction of alloreactive T cells with both donor and recipient hematopoietic cells and
host non-hematopoietic tissues, cytokines, chemokines and inflammatory mediators.
Interferons (IFNs), including type I IFNs and IFN-g, primarily produced by monocytes,
dendritic cells and T cells, play essential roles in regulating alloreactive T cell differentiation
and function. Many studies have shown pleiotropic effects of IFNs on allogeneic T cell
responses during GVH reaction. Epigenetic mechanisms, such as DNA methylation and
histone modifications, are important to regulate IFNs’ production and function during
GVHD. In this review, we discuss recent findings from preclinical models and clinical
studies that characterize T cell responses regulated by IFNs and epigenetic mechanisms,
and further discuss pharmacological approaches that modulate epigenetic effects in the
setting of allo-HSCT.
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) provides the long-term effective
and curative treatment for patients with hematological malignancies. The therapeutic benefit of allo-
HSCT is primarily attributed to the graft-versus-leukemia (GVL) effect, which is mainly mediated
by infused donor T cells (1). However, these allogeneic T cells can also cause harmful graft-versus-
host disease (GVHD) (2–4). Acute GVHD is a major risk for non-relapse mortality in the first 200
days after allo-HSCT (5). Therefore, maintaining the beneficial GVL effect while reducing GVHD is
the holy grail of allo-HSCT.
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Upon stimulation by host antigen-presenting cells (APC),
infused donor T cells are activated to undergo robust
proliferation and effector differentiation (2, 6). These APCs
express high levels of antigen-presenting molecule MHC class
II and costimulatory molecules (e.g., CD80, CD86), which are
required to activate allogeneic T cells and promote expansion of
activated T cells, respectively. Many cytokines, such as IL-2 and
IL-12, are important for instructing these activated T cells to
differentiate into effector cells mediating host tissue injury (7, 8).
Notably, interferons (IFN) have an essential role in regulating T-
cell activities during GVHD (9, 10). Type I (mainly IFN-a/b)
and type II (IFN-g) are two major IFNs that mediate
pathophysiologic changes during infection, cancer and
autoimmune diseases (11–15). IFN-g is primarily derived from
T helper 1 (Th1) CD4+ T cells and cytotoxic CD8+ T cells once
adaptive immunity develops, whereas IFN-a can be produced by
plasmacytoid dendritic cells (pDCs) (16, 17). Both IFN-g and
IFN-a are pivotal regulators of alloreactive T cell responses that
mediate GVHD (18–20). However, optimal control of GVHD by
modulating IFN signaling remains challenging. IFN signaling is
complex and frequently context-dependent: it can lead to distinct
effects at different times or stages of a disease course. IFNs
regulate T cell functions by regulating a group of intracellular
transcription programs. Epigenetic regulations of molecules in
the IFN signaling pathway and the interferon-stimulated genes
(ISG) are crucial for T cell activity (21, 22). This review focuses
on how IFNs regulate alloreactive T cell responses and what role
epigenetic regulation plays in this process.
EFFECTS OF IFNs ON T CELL
DIFFERENTIATION AND FUNCTION
DURING GVHD

Type I IFNs
Type I IFNs contain a subgroup of highly related polypeptides
that have proven essential in regulating innate and adaptive
immunity (23). Approximately 12-14 types of IFN-a and one
type of IFN-b, IFN-ϵ, IFN-k, and IFN-w have been identified (24).
Intriguingly, although type I IFNs are structurally divergent, only
one form of heterodimer receptor, IFNAR, has been found. Thus,
all type I IFNs activate the same receptor and many subsequent
cell-signaling activities are shared. IFN-a and IFN-b are well
defined and are the main subtypes from the immunological
perspective. Virtually all cell types reserve the ability to produce
variable level of IFN-b, whereas pDCs are the main source of
IFN-a (23). Host tissue injuries triggered by conditioning
regimens, such as preparative irradiation and chemotherapy,
induce damage-associated molecular patterns (DAMP) and
foreign pathogen-associated molecular patterns (PAMP). Type I
IFNs are among the early cytokines whose production is triggered
by the host and donor APCs after the detection of these danger
signals by pattern recognition receptors (PRRs), such as toll-like
receptors (TLRs) and nucleic acid sensors that located on or
within the cytosol of cells (25) (Figure 1). IFN-a/b can exert
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antiviral and antitumor activity by up-regulating MHC-I and
subsequently promoting antigen presentations.

IFN-a/b has context-dependent roles in CD4+ T cell
activation, differentiation and survival (26). IFN-a is associated
with CD4+ T cell activation and contributes to the IFN-g-
mediated Th1 response (27). In contrast, IFN-a/b may
suppress Th2 differentiation of human CD4+ T cells.
Importantly, IFN-a regulation of T cell differentiation appears
to be context-dependent. Dichotomous T cell polarization
towards either Th1 or TFH was recently observed depending on
the IFN-a exposure at different times (28, 29). In a colon-targeted
GVHD murine model, IFN-a signaling prevented donor CD4+ T
cell proliferation and differentiation, resulting in alleviating colon
tissue damage (30, 31). Regulatory T cells (Tregs) play essential
roles in controlling immune tolerance after allo-HSCT (32).
Adoptive transfer of Treg ameliorates GVHD and improves
survival in a murine model (33). However, IFN-a/b has shown
some controversial impacts on Tregs. Some studies suggested that
overexpression of IFN-a significantly reduced the frequency of
Tregs in the tolerogenic tumor environment (34). Other studies
suggested that IFN-a stimulation may increase differentiation of
CD4+CD25+FOXP3+ Tregs (iTregs) (35) (Figure 1).

IFN-a/b signaling is essential for antigen-driven CD8+ T cell
responses. First, differentiation of effector CD8+ T cell was
associated with decreased IFNAR but increased IL-12 receptor,
whereas augmented IFNAR favors the development of central
memory T (TCM) cell (36, 37). In IFNAR deficient mice, CD8+ T
cells lose the ability to become memory T cells during
lymphocytic choriomeningitis virus (LCMV) infection (37, 38).
Paradoxically, withdrawal of IFN-a monotherapy in clinical
chronic myeloid leukemia resulted in elevated frequency of
peripheral CD8+ TCM cells (39). Given that many different
types of cells express IFNAR, the difference in regulating
memory formation between IFNAR deficiency and IFN-a
monotherapy may be attributable to both direct and indirect
mechanisms. Second, the activation of IFN-a/b signaling in T
cells could benefit cytokine secretion and cytolytic activity. In
mice, injection of IFN-a incited substantial primary CD8+ T
responses through cross-priming by DCs that were independent
of CD4+ T-cell help (40, 41). IFN-a/b signaling plays a co-
stimulatory role in CD8+ T activation and slows the death of
activated T cells (42, 43). Moreover, direct activation of
granzyme B transcription through IFN-a/b in effector CD8+ T
cells contributes to tumor suppression as well as autoimmunity
(44, 45). Consistent results were found in the context of GVHD
that both CD8-dependent GVHD and GVL effects were
enhanced through IFN-a/b signaling (30). In addition, despite
IFN-a/b signaling induces transient attrition of bystander naïve
T cells in the wake of T-cell response, it can rapidly activate
nonspecific bystander memory CD8+ T cells. Activation of
memory T cells contributes to rapid production of
proinflammatory cytokines including IFN-g (Figure 1) (46–48).

Clinically, recombinant IFN-a has been used alone or in
combination with donor lymphocytes infusions or other
cytokines such as granulocyte-macrophage colony-stimulating
factor to establish GVL effects in patients with minimal residual
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FIGURE 1 | Role of type I IFNs and IFN-g in the development of acute graft-versus-host-disease. Acute graft-versus-host disease (GVHD) is often initiated with the
destruction of the epithelial barrier through the conditioning regimens including irradiation and chemotherapy. The signal of pathogen-associated molecular patterns
(PAMP) and damage-associated molecular patterns (DAMP) released from damaged cells and microbiota induce the activation of antigen-presenting cells (APCs).
Consequently, the production of IFNs by APCs interact with the alloreactive T cells and regulate their activation, differentiation, function and contraction. The
proliferation of Th1 cells and effector CD8 T cells result in increased secretion of IFN-g. The induction of activated alloreactive T cells and cytokines further affect the
resident APCs and host tissues contributing to extensive functional incapability and damages of different organs. The IFNs play a critical role in orchestrating T cell
activities throughout the induction and effector phase of GVHD. The blue and red dots indicate the IFNs (type I IFNs and IFN-g, respectively) secreted by adjacent
cells. CXCR, CXC chemokine receptors; GI, gastrointestinal; Th, T helper cells; iTreg, induced regulatory T cells; Teff, effector T cell; Teff, memory T cell.
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disease or relapse after allo-HSCT (49–53). Studies using animal
models demonstrate the effectiveness of IFN-a treatment against
leukemia cells. A most recent trial showed that the proportion of
granzyme positive CD8+ effector and effector memory subsets is
positively correlated with GVHD incidence (53). This suggests
that IFN-a-induced CD8+ T cells may be a double-edged sword
against both malignant and normal cells.

In response to IFN-a/b signaling, the trimolecular interferon-
stimulated gene factor 3 (ISGF3), which comprises signal
transducer and activator of transcription (STAT) 1, STAT2
and interferon regulatory factor (IRF) 9, leads to most of the
cellular effects of IFN-a/b (23). The dysregulation of ISGF3
results in aberrant T cell functions. For example, the absence of
IRF2, a negative regulator of ISGF3, induces hyperresponsiveness
of CD8+ T cells and promotes spontaneous inflammatory skin
lesion in mice (54). Furthermore, in a LCMV infection mouse
model, the STAT1 deficiency leads to a CD4+ T cell-mediated
lethal disease. This effect is independent of IFN-g, but it coincides
with exaggerated proinflammatory cytokine production as well
as increased frequency of LCMV-specific CD4+ and CD8+ T cells
(55). These observations suggest that the effects of IFN-a/b
signaling are not only divergent on CD4+ or CD8+ T cells, but
also highly dependent on the pathophysiological backgrounds.
Of note, several molecules in the downstream of the IFN-a/b
pathway, including Janus Kinase (JAK) 1, STAT1 and STAT3,
are shared with IFN-g signaling, which indicates the possibility of
crosstalk between the two signals in the transcriptional level.

IFN-g
IFN-g promotes CD4+ T cell differentiation towards Th1
lymphocytes and drives CD8+ T cell expansion and
differentiation towards both effector and memory cells
(Figure 1). Early studies in GVHD models suggest that IFN-g
contributes as a pathogenic factor to alloreactive responses. For
instance, high serum levels of IFN-g correlated with increased
severity of GVHD after allo-HSCT (56). IFN-g induced apoptosis
of intestinal epithelial crypt cells, leading to extensive erosion of
intestinal epithelium and GVHD propagation (57, 58). Genetic
deletion of IFNGR in T cells prevents lethal GVHD while
preserving the robust GVL effect (59). Furthermore, evidence
from live-cell imaging reveals that both motility and cytotoxicity
of CD8+ T cells are enhanced in alloreactive tissue due to
autocrine/paracrine IFN-g (60). The expression of CXCR3
induced by IFN-g signaling is one of the mechanisms that
drive the T cells to the sites of GVHD target organs (59).

Intriguingly, some studies suggested that IFN-gmay negatively
regulate alloreactive T cells and prevent tissue damages. Evidence
from IFN-g knockout mice shows that IFN-g could be protective
against GVHD depending on the extent of conditioning in mouse
models (18, 61). Infusion of IFN-g-null donor T cells increased
mortality of GVHD compared to that of wild-type T cells (62).
One possible reason might be that IFN-g is required for normal
T cell contraction since IFN-g deficiency would lead to delayed
apoptosis of CD8+ T cell population, leading to prolonged
inflammation (63–65). In addition, PD-L1, which is considered
as an inhibitory checkpoint molecule in infections and tumors,
Frontiers in Immunology | www.frontiersin.org 4
was identified as a positive contributor to T cell-mediated GVHD
in the murine model, as decreased inflammatory cytokines and
increased apoptosis were observed in both Pdl1-/- allogeneic CD4+

and CD8+ T cells. Of note, both Ifngr-/- CD4+ and CD8+ donor T
cells showed impaired PD-L1 expression, suggesting that loss of
IFN-g signaling mitigates tissue damages in GVHD via the PD-L1
pathway (66).

Interestingly, manipulation of IFN-g signaling in alloreactive
T cells results in variable lesions in GVHD target organs. IFN-g
produced by alloreactive T cells is the primary mediator
contributing to the apoptosis of intestinal stem cells and
intestinal damage (57). In addition, both clinical and
preclinical studies suggest that IFN-g-producing Th1 cells
mediate damages in the gastrointestinal (GI) tract (67),
whereas IFN-g KO model results in exacerbated skin and lung
injury (68). In the absence of IFN-g signaling, alloantigen-
primed CD4+ T cells showed decreased capacity to produce
IFN-g-secreting Th1 cells while skewing toward both Th2 and
Th17 cells (68). Further studies are needed to define the
correlation between the effects of IFN-g on alloreactive T cells
and the consequence of GVHD.

The binding of IFN-g to the receptor, IFNGR1 and IFNGR2
complex, induces recruitment and phosphorylation of receptor-
associated JAK1/2, which triggers subsequent signaling pathways
predominantly through STAT1 (Figure 2). Interestingly, TCR
stimuli initiate the translocation of STAT to IFNGR1-rich regions
of the membrane similar to IFN-g ligation (69). Blocking the
JAK1/2 molecule significantly abrogates the polarization and
proliferation of activated T cells as well as downregulates
activation markers, such as CD69 and CD25, and reduces the
production of proinflammatory cytokines (70). In light of the
suppressive effect on T cell responses, the JAK inhibitors were
reported to control GVHD in both mice and humans. Recently,
ruxolitinib was approved for the treatment of steroid-refractory
acute GVHD. JAK inhibitors mitigate GVHD via pleiotropic
effects on T cells. For example, ruxolitinib mitigates acute GVHD
by reducing CXCR3 expression, which results in less T-cell
infiltrates in target organs (59, 71, 72), and by decreasing IFN-g
and IL17A production in CD4+ T cells (73). Similarly, another
JAK1/2 selective inhibitor, baricitinib, can abrogate IFN-g and IL-
6 signaling in CD4+ T cells and significantly decrease Th1 and
Th2 cell differentiation while augmenting the frequency of Tregs
(74). In addition to the reduction of GVHD, baricitinib could also
improve GVL (74). Despite these promising observations, the
transcriptional regulations of the downstream genes in T cells are
yet to be found.

Notably, as the IFNGR can be expressed on almost all cell
types, the generated IFN-g from activated allogeneic T cells could
have a remarkable influence on the innate immunity and break the
homeostasis of the surrounding tissues. For instance, IFN-g
signaling acts as a ‘super-activator’ of macrophages, inducing
transcriptional activation of proinflammatory genes (e.g., IL-6
and TNF-a) and enhancing antigen presentation. Furthermore,
recent evidence suggests that IFN-g directly inhibits the
proliferation of hematopoietic stem/progenitor cells (HSPCs)
and their generation of pDCs that can induce immune tolerance
July 2021 | Volume 12 | Article 717540
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FIGURE 2 | Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathways and the epigenetic regulations of IFN signaling in T cell. Generally,
the binding of type I IFN to the receptor initiates the engagement of IFNAR1 associated Tyk2 protein tyrosine kinase and the IFNAR2 associated JAK1 protein
tyrosine kinase. The signal further passes to the phosphorylation and the heterodimerize of STAT1 and STAT2, which together with IRF9 form the ISGF3 complex in
the cytoplasm. ISGF3 translocates into the nucleus and binds to IFN-stimulated response elements (ISREs) found in most of IFN-stimulated genes (ISGs).
Alternatively, STAT3 and STAT5 heterodimer are also observed after IFNAR activation in the absence of STAT1. Canonical IFN-g signaling occurs through IFNGR and
activates the JAK1/2 kinases, which further induce the phosphorylation of STAT1. The STAT1 homodimer can directly move into the nucleus and binds to gamma-
activated sequence (GAS) sites. The activation of T-cell receptor could also help the co-localization of STAT1 to IFNGR-rich regions of the membrane. The
transcription of the downstream genes as well as the production of IFN-g are tightly regulated by numerous epigenetic enzymes, which control the modification of the
DNA and histones. These regulators critically control the T cell activities in the process of GVHD, which allows for possible therapeutic interventions. JAK, Janus
kinase; STAT, signal transducer and activator of transcription; IFNAR, interferon alpha receptor; IFNGR, interferon gamma receptor; ISREs, IFN-stimulated response
elements; GAS, gamma-activated sequence; TCR, T cell receptor; MHC, major histocompatibility complex; IRF, interferon regulatory factor; HDAC, histone
deacetylase; SIRT, sirtuin.
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against GVHD (20). On the other hand, exposure to IFN-g reduces
the proliferation of intestinal epithelial cells and further induces
apoptosis by modulation of the AKT/b-catenin and Wnt/b-
catenin pathway (75). Thus, although IFN-g plays dichotomous
roles in the regulation of T cells, its proinflammatory damage to
the tissues in GVHD is generally acknowledged (Figure 1).

Type III IFNs
Recent studies have discovered other members of type III IFNs,
including IFN-l1 (IL-29), IFN-l2 (IL28A), IFN-l3 (IL-28B) and
IFN-l4 (76–78). They participate in the antiviral activities
similar to the type I IFNs, but primarily in barrier tissues such
as mucosal epithelial cells (79, 80). Although IFN-a/b and IFN-l
engage different receptors, they induce similar downstream
signaling pathways through the phosphorylation of STAT1/2
and the subsequent transcription factor ISGF3 (81). However,
our knowledge of IFN-l in GVHD is limited. An initial study
found that IFN-l2 did not significantly modulate GVHD
mortality in a murine model upon deleting its receptor
(Ifnlr1-/-) or administration of recombinant IFN-l2 (82).
Intriguingly, a most recent study revealed that Ifnlr1 deletion
led to exaggerated damages in the GI tract and recombinant
IFN-l treatment reduced GVHD lethality (83). Deletion of Ifnlr1
led to increases of donor T-cell expansion and serum IFN-g
levels, however, it did not affect the proliferation and apoptosis
of alloreactive T cells. Interestingly, the effect of IFN-l on T cells
seemed to be indirect since the T-cell expansion was influenced
by early engraftment, which was related to IFN-l signaling in
NK cells (83). Further studies of IFN-l in the modulation of
GVHD the underlying mechanisms are warranted.
EPIGENETIC REGULATION OF IFN
EXPRESSION AND FUNCTION IN T CELLS

The epigenomic signatures, including DNA methylation on
cytosine nucleotides, histone modifications and chromatin
accessibility, reflect previous and present gene expression, and
can positively or negatively regulate future transcription
according to environmental stimuli. The labeled or
‘bookmarked’ chromatin organized as ‘epigenetic code’ that
can be recognized by protein complexes called ‘readers’. It is
also closely controlled by enzymes, called ‘writers and erasers’,
that are able to manipulate different modifications mounted on
specific residues (84). The major contributors comprise DNA
methyltransferases (DNMTs) or DNA demethylases on DNA
level; histone acetyltransferase (HATs), histone deacetylase
(HDACs), histone methyltransferases (HMTs) and lysine
demethylases (KDM) on histone level. Other epigenetic
mechanism includes the microRNAs (miRNAs), which
negatively control target gene expression post-transcriptionally
via interaction with the complementary sequences. It has been
well established that IFN-signaling can generate ‘interferon
epigenomic signatures’ and reprogram cell response (21).

During antigen-driven immune responses, such as GVHD, T
cells are located at the downstream of type I IFN signaling as they
Frontiers in Immunology | www.frontiersin.org 6
receive this signal from innate immune cells (20, 85). Although
many regulators and pathways of type I IFN signaling from
innate cells may be interchangeable in T cells, the cell type and
context-dependent mechanisms have yet to be characterized. As
discussed earlier, the canonical signal of type I IFN depends on
the activation of STAT1 and STAT2, which leads to the
activation of ISGs by transcription factor IRF9 (also known as
ISGF3) (23). Notably, multiple pathways co-exist in the
downstream of IFNAR1/2 and control T cell immune
responses (Figure 2). For example, IFN-a/b induced STAT1 is
responsible for the suppression of CD8+ T cell expansion,
whereas STAT3 and STAT5 mediate antiapoptotic and
mitogenic effects in T cells in the absence of STAT1 (86).

The epigenetic regulation of ISGs in T cells is far less
documented compared with studies in innate immune cells.
Evidence has been widely found on innate immune cells that
ISG promoters are associated with increased level of histone
acetylation, which in part mediated by STAT1 and STAT2 (87),
STAT1/2 promotes histone acetylation after IFN-a/b
stimulation in T cells as well. Early study has linked IFN-a
signaling with histone hyperacetylation at the granzyme B and
eomesodermin (Eomes) loci during CD8+ T cell differentiation
(88). Similarly, IFN-a/b signaling enhances H3K4me3 and
H3K9ac (transcription permissive) at the promoter region of
Eomes and activates it in an IRF9-dependent manner (89).
Interestingly, T-bet is found to counteract aberrant IFN-a/b
signaling during Th1 cell development by repressing ISGs such
as Isg15, Mx1, Oasl1a, etc. Deletion of T-bet results in
accumulation of STAT2 and elevation of transcription active
mark H3K27ac at ISGs activated by IFN-b (90), highlighting the
complexity of interactions between the extrinsic cytokine
influence and the intrinsic regulation of cell development. In
addition, the epigenetic modulation of T cells in responding to
IFN-a/b is likely to be context-dependent. For example,
although STAT1 mRNA levels are both increased in lupus and
normal CD8+ T cells with IFN-a stimulation, the signature of
hypomethylated DNA sites in lupus CD8+ T cells facilitates the
upregulation of HLA-DRB1 in a STAT1-signaling-dependent
manner (91). In addition to histone and DNA modification, the
miRNA-155 downregulates the T-cell responsiveness to IFN-a/b
via IFNAR-STAT pathway. Despite the direct targets of miRNA-
155 were not defined, the loss of microRNA-155 results in
impaired antiviral CD8 T cell response (92). To reconcile these
paradoxical and the highly context-dependent effects of IFN-a/b
on T cells, it will be important to map how the ISGs are regulated
on the epigenetic level in alloreactive T cells during GVHD.

Compared to IFN-a/b, the epigenetic regulation of IFN-g is
much more complicated. IFN-g not only promotes antigen-
driven T cell differentiation, but also is the major mediator for
tissue injury. Much work has investigated the epigenetic
regulation of Ifng locus in T cells. The CpG dinucleotide at
Ifng promoter in naïve CD8+ T cells is substantially methylated
and undergoes demethylation when these CD8+ T cells are
activated. Memory CD8+ T cells retain relative hypomethylated
status to enable a rapid gene expression for the re-activation in
the future (93, 94). Similar regulation can be found in Th1 CD4+
July 2021 | Volume 12 | Article 717540
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T cells. The CpG for Ifng promoter in naïve CD4+ T cells is
mostly methylated, but only approximately 50% of CpG regions
are methylated in resting memory cells (95). Conversely, in the
lineages other than Th1 development, their suppression of IFN-g
can also be achieved in part with DNA methylation (96). The
ten-eleven translocation (TET) 2 enzyme, which mediates DNA
demethylation, positively regulates Ifng transcription by
promoting 5-hydroxymethylcytosine level in CD4+ T cells (97).
From another view, histone modifications act in accordance with
the gene regulation of DNA methylation. For example, the Ifng
promoter region in Th1 cells is associated with hyperacetylation
of histones H3 and H4, but not in Th2 cells (98). Additionally,
the Ifng suppression in Th2 cells is accompanied by repressive
H3K9me3, which is governed by enzyme SUV39H1. Loss of this
enzyme results in skewed lineage stability (99).
EPIGENETIC PROGRAMS AND
PHARMACOLOGICAL MODULATIONS
THAT CONTROL IFNs IN ALLOGENEIC
T CELLS DURING GVHD

The function and differentiation of T cells are closely intertwined
with IFN expression. Epigenetic processes, including DNA
methylation, histone modification and chromatin remodeling,
are the key mechanisms that control T cell differentiation and
function (100, 101). Multiple epigenetic enzymes have been
identified to regulate the production and subsequent effect of
IFNs in allogeneic T cells (102–104). A number of chemical
compounds that selectively inhibit these enzymes are made
available, and their effect on IFN signaling and therapeutic
potentials are under active investigation (104–106). Since there
are very limited reports studying the epigenetic regulation of type
I IFNs in the GVHD context, our continual discussion will focus
on the epigenetic effects on IFN-g.

DNA Methylation
DNA methyltransferase (DNMT) 3a or DNMT3b contributes to
de novo DNA methylation, resulting in genetic silencing. In T
cells, DNMT3a expression is regulated by TCR signaling (107).
The promoter of Ifng locus remains hypomethylated during Th1
differentiation from naïve CD4+ T cells, albeit de novo DNA
methylation at Ifng promoter is observed in other commitments,
such as Th2, Th17 and iTreg cells (108). DNMT3a is responsible
for maintaining the silence of Ifng gene in non-Th1 lineages
(109). Accordingly, deletion of DNMT3a after T cell activation
selectively reduces the level of Ifngmethylation (107), and allows
significant IFN-g production from non-IFN-g producing CD4+ T
cells (109). During secondary contact with antigen, DNA
demethylation at the IFN-g promoter takes place in memory T
cells in order to facilitate rapid effector responses (94).
Furthermore, the functional exhaustion of the CD8+ T cells
couples with persistent DNA hypermethylation at Ifng loci,
even if the cells are treated with anti-PD-1 blockade. Inhibition
of DNA methylation by hypomethylating agent together with
anti-PD-L1 significantly promotes IFN-g secretion by exhausted
Frontiers in Immunology | www.frontiersin.org 7
CD8+ T cells (110). The above studies suggest that inhibition of
DNMT may promote alloreactive T cell activities in GVHD by
suppressing DNA methylation and subsequently enhance
IFN-g production.

Although hypomethylating agents globally alter DNA
methylation levels, their influence on gene expression in T cells
shows preference. Compelling evidence indicates that both IFN-g
and FOXP3 locus are demethylated by Azacytidine (Aza) (94, 111,
112). In vitro studies revealed that Aza and decitabine could directly
induce FOXP3 expression in T cells, whereas IFN-g gene expression
along with other cell-cycle related genes were significantly down-
regulated by Aza (104). Consistently, decitabine significantly
suppressed differentiation of naïve CD4+ T cells into Th1 subsets
but not Tregs (113). These findings applied to the alloreactive T cells
in GVHD. It has been observed that Aza mitigates GVHD in
murine models by converting alloreactive CD4+CD25+FOXP3- cells
to suppressive CD4+CD25+FOXP3+ Tregs and directly increase
Treg proliferation. In addition, the frequency of IFN-g-producing
CD4+ T cells was significantly decreased (114–116). The inhibition
of naïve CD4+ T cell proliferation by decitabine is also accompanied
by the elevation of the TET2, an enzyme that acts opposite to
DNMTs, which promote DNA demethylation (113).

Despite the above in vitro data supporting that hypomethylating
agents up-regulate Treg and suppress conventional CD4+ T cells
(117, 118), post-transplantation Aza treatment in patients with high
risk of AML and MDS shows no significant differences in terms of
overall survival and GVHD incidence in patients compared to the
control arm (119). It is possible that additional epigenetic
mechanisms are involved in the IFN-g regulation of alloreactive T
cells. For example, in DNMT3a-null Th2 or Th17 cells, decreased
level of DNAmethylation at the Ifng loci correlated with low level of
H3K4 and high H3K27 methylation, which permits and inhibits
DNA transcription, respectively (109).

Histone Methylation
Histone methylation is predominantly restricted to the N-
terminal tails of H3 and H4 histones and is usually presented
by one, two, or three lysine residues (120). The effects of histone
methylation on gene expression are loci-specific. Genes that
bound by H3K4, H3K36 and H4K20 are more likely to be
actively transcribed, whereas H3K9, H3K27 and H3K79 are
usually associated with gene suppression (121–124). The
histone methylation level at each site is controlled by one or a
set of HMTs and KDMs (120, 124). Thus, the activities of these
enzymes are the key factors that determine gene transcription.

CD4+ and CD8+ T cells display unique patterns of histone
methylation landscapes at Ifng locus based on the stages of cell
differentiation. Once activated by TCR signaling or specific
cytokines, the histone methylation markers of T cells are
dynamically catalyzed by their dedicated enzymes. During the
quiescent stage of naïve T cells, the Ifng promoter of both CD4+

and CD8+ T cells are occupied with repressive H3K27me3 but
low level of permissive H3K4me3 (125, 126). Upon activation,
Ifng region of both CD4+ and CD8+ T cells loses H3K27me3
markers (125, 127, 128). However, effector CD8+ T cells gain
H3K4me3 at Ifng locus (127, 129). CD4+ Th1 cell differentiation
increases both H3K4me3 and H3K9me2 (permissive and
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repressive, respectively), whereas CD4+ Th2-cells rapidly
extinguish H3K9 methylation by STAT6 and GATA-3
dependent mechanisms (130).

Ezh2 is a crucial enzyme that catalyzes H3K27 methylation
and remarkably silences target genes to facilitate T cell
differentiation and function. During Th2 cell development,
Ezh2 is recruited with STAT6 and GATA3 to the Ifng locus
and is responsible for the silencing of Ifng locus through H3K27
methylation (130). In vitro studies revealed that Ezh2 affected
CD4+ T cell differentiation depending on the context of the
extracellular environment. For instance, Ezh2-deficiency could
enhance the CD4+ T cell production of either IFN-g or IL-4,
depending on the cell-inducing cytokines in vitro, such as IL-12
or IL-4, respectively (131–133). Further, both T-bet and Eomes
are required for the regulation of IFN-g production by Ezh2
(131). The role of Ezh2 in GVHD is complex. In an MHC-
mismatched B6 anti-BALB/c GVHD murine model, loss of Ezh2
in donor T cells resulted in impaired IFN-g production and
reduced GVHD. Specifically, Ezh2 promoted Th1 development
by stimulating Ifng, Tbx21 and Stat4 expression (102). Similar
results could also be found from Th1 cells in aplastic anemia, in
which Ezh2 directly activated Tbx21 transcription by direct
binding to its promoter (134). Contradictive results are also
found with CD8+ T cells. Ezh2 inhibition resulted in increased
frequency of IFN-g producing tumor-infiltrating CD8+ T cells
(135), whereas Ezh2-deficient CD8+ T cells exhibit an impaired
ability to produce IFN-g in a virus infection model (136). How to
explain the discrepancy observed in these studies remains
elusive. In addition, Ezh2 could co-localize with FOXP3 and
assist in silencing the IFN-g expression (137). Consistently, the
absence of Ezh2 resulted in defective Treg differentiation, which
could further contribute to autoimmune colitis (132).

Dot1L, a solo H3K79 methyltransferase, has been recently
identified to regulate T cell activation and polarization. In
general, H3K79 methylation strongly correlates with active
gene transcription (138, 139), but exceptions are also reported
(140, 141). When T cells were cultured in Th1 cell-polarizing
conditions, IFN-g production was enhanced by Dot1L inhibition
with a small molecule inhibitor (SGC0946) at the beginning of
polarization and was associated with the reduction of
H3K79me2. Interestingly, the proliferative capacity was not
affected (142). These observations indicate that Dot1L may
play a negative role in regulating Th1 cell differentiation and
IFN-g production. Another group recently used a T-cell-specific
Dot1L-deficient infection mouse model and observed that the
repressive effect of IFN-g production by Dot1L was T-bet
dependent. In this study, the enhanced IFN-g secreting ability
via Dot1L inhibition (with chemical probe SGC0946) in Th2
cells was abrogated by T-bet deletion (143). However, the
opposite phenomenon was observed in GVHD setting.
Inhibition of Dot1L with the same chemical probe attenuated
xenogeneic GVHD by globally suppressing T cell activation-
induced genes, in which IFN-g production was significantly
reduced (103). Of note, this effect was only observed in T cells
with low-avidity TCR interaction. Therefore, Dot1L inhibition
increased the TCR stimulation threshold and was controlled in
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an ERK phosphorylation-dependent manner (103). The
inconsistent findings among different studies are likely due to
the different roles of Dot1L in the regulations of upstream and
downstream of IFN-g signaling. Similar to the data found in
CD4+ T cells, Dot1L also remarkably controls the differentiation
of CD8+ T cells. Dot1L-deficiency resulted in the induction of
memory-like transcriptome feature in antigen inexperienced
CD8+ T cells. Furthermore, these cells were functionally
impaired as they were incompetent to produce IFN-g upon
stimulation with anti-CD3 and anti-CD28 antibodies (144). In
addition, using the approach of genetic Dot1L deletion and a
specific inhibitor, EPZ004777, the repression of Dot1L resulted
in inhibition of H3K79me2 in CD8+ T cells that associated with
increased CD8+ T cell apoptosis and suppressed IFN-g and
TNF-a secretion. Besides, the methionine metabolism in the
microenvironment also affects the methylation status of H3K79
in CD8+ T cells, further promoting the dysregulation of the
immune response (145). However, genetic approaches are
required to define the precise role of Dot1l in T cells.

Both G9a and SUV39H1/2 contribute to the methylation of
the H3K9 site. However, G9a catalyzes H3K9 residue to mono-
or dimethylation (H3K9me/me2), whereas SUV39H1/2 is
responsible for di- to tri-methylation (H3K9me3) (146, 147).
These enzymes could be found in multiple repressive complexes
that promote transcription inhibition. Importantly, the
heterochromatin protein 1a (HP1a) directly recognizes and
binds to H3K9me3 and initiates the chromatin remodeling by
forming heterochromatin (148). Despite their similarity in
histone modification, G9a and SUV39H1/2 are remarkably
divergent in epigenetic regulation of IFN and its subsequent
effects on T cell functions. During Th2 development, G9a
facilitates the transcriptional silence of Ifng locus since
increased IFN-g production was observed in G9a deficiency
CD4+ T cells along with a decreased level of H3K9me2 (149).
However, given that G9a deficiency and inhibition do not affect
the development of Th1 cells as well as their capacity in secreting
IFN-g both in vitro and in vivo, G9a is currently considered
dispensable for Th1 cell response (149, 150). Similarly, the ability
to produce IFN-g in CD8+ T cells is not affected in G9a knockout
cells, but G9a is crucial to repress helper T lineage genes after the
activation of CD8+ T cells (151). These studies indicate a
moderate role of G9a in epigenetic control of IFN-g. In
addition, although not verified in T cells, evidence suggests
that the downstream of IFN-a/b signaling and ISGs are
negatively regulated by G9a (152). On the other hand,
SUV39H1-H3K9me3-HP1a pathway also contributes to Th2
stability by decorating H3K9me3 at Ifng promoter (99). Less is
known whether this signaling redundancy may mutually
compensate for both G9a and SUV39H1 when activated via
different upstream pathways.

In addition, SETDB1, which belongs to the SUV39H family, is
responsible for H3K9me3 deposition at specific promoters.
Adoue et al. demonstrated that SETDB1 was required to
maintain IFN-g silencing in Th2 cells. Instead of directly
catalyzing H3K9me3 on the target gene, SETDB1 represses
adjacent endogenous retrovirus location that affects the
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transcription of Th1 genes (153). This study reveals the spatial
regulation of histone modification in the epigenetic control of Th
cell differentiation. In contrast to the inhibitory regulation of
IFN-g in CD4+ T cells, wild-type CD8+ T cells exhibited a higher
ability to produce IFN-g compared to SUV39H1-conditional
knockout mice that infected with L. monocytogenes. SUV39H1
was responsible for silencing stem/memory gene programs while
enhancing the functions of effector cells in CD8+ T cells (154).

Histone Acetylation
Unlike methylation, histone acetylation uniformly assists gene
transcription because the acetyl group neutralizes the positive
charge on the histones, thereby reducing the electrostatic force
between histone and the negatively charged DNA molecules
(155). On the other hand, together with methylation,
phosphorylation and other covalent modifications, histone
acetylation also takes part in the formation of ‘epigenetic code’,
which allows the recognition by the protein complexes that help
amplify the gene transcription (156). HAT and HDAC regulate
acetylation status on both H3 and H4 histones.

The anti-inflammatory properties of the HDAC inhibitors have
long been recognized by numerous experimental and clinical
studies, including GVHD. Early studies that first linked histone
acetylation with GVHD revealed that the panoramic HDAC
inhibitor (pan-HDACi) suberoylanilide hydroxamic acid
(SAHA) ameliorate and delayed the development of GVHD and
reduced the serum level of proinflammatory cytokines such as
IFN-g and TNF-a following allogeneic bone marrow
transplantation (157, 158). Although the STAT1 phosphorylation
was inhibited during this process, the T cell proliferation and
cytotoxic responses in GVL activity remained intact. Several
clinical trials using SAHA as prophylactic treatment after allo-
HSCT also observed reduction of GVHD in patients (159, 160).
These trials revealed higher Treg cell numbers in the peripheral
blood after HDACi administration as well as lower GVHD-related
biomarkers, such as ST2 and Reg3a, and the proinflammatory
cytokine IL-6 in the plasma. Another clinical trial uses pan-HDACi
panobinostat, combined with glucocorticoids, as primary
treatment for acute GVHD demonstrates an enhanced H3
acetylation in both CD4+ and CD8+ T cells (161). However, in
contrast to the mouse model, the level of plasma IFN-g was not
significantly changed in patients (160, 161). It will be interesting to
determine whether functional changes of T cells are controlled by
HDACi and correlate with clinical responses and outcomes
of patients.

Accumulating evidence from recent studies discovered the
regulation of IFN-g by specific HDAC members in T cell
responses with or without allogeneic antigens. HDAC1-
deficiency does not affect the development and effector
functions but increases the STAT1 activity in CD4+ T cells,
which results in the elevated level of IFN-g production in
activated Th1 cells (162, 163). Similar effects were also detected
in effector CD8+ T cells (164), indicating a negative role of
HDAC1 in controlling IFN-g transcription. Besides, HDAC7 and
SIRT1 may synergize with HDAC1 in repressing T cell activation
and IFN-g production via separate pathways (165, 166). On the
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contrary, HDAC5 and HDAC11 positively regulate IFN-g
production. Both HDAC5 deletion in CD8+ T cells and
HDAC11 knockout in CD4+ and CD8+ T cells induce
increased IFN-g production upon anti-CD3 and anti-CD28
activation in vitro (167, 168). In addition, potent GVHD in the
murine model can be induced in HDAC11 KO mice. Both CD4+

and CD8+ T cells with HDAC11 deletion are hyperresponsive to
alloantigen and associated with increased expression of Eomes
and T-bet (167).

Of note, inconsistent results can be found among studies.
These discrepancies may partially attribute to the fact that some
HDACs can both have histone and non-histone targets, which
increases the complexity of gene regulation by introducing
indirect effects. For example, genetic deletion and inhibition of
SIRT1 reduces T-cell alloreactivity and promotes the function of
iTreg through the enhancement of p53 acetylation, leading to the
attenuation of GVHD (169).

Compared to the extensive investigations exploring the
features of HDACs, the regulatory role of HAT in IFN related
T cell responses are not well understood. In Th2 cells, the HAT
p300 is recruited by Gata3 and Chd4 complex to promote the
transcription of Th2 cytokine, whereas HDAC2 is recruited in
the Gata3-Chd4-NuRD complex to suppress Tbx21 and the
subsequent IFN-g expression (170). Moreover, the CREB-
binding protein and p300 complex regulates the differentiation
of human Treg via H3K27 acetylation. Although much evidence
has been found in innate immune cells that p300 and other
HATs essentially regulate STAT-ISG signaling and type I IFN
production, our understanding of the epigenetic control of HATs
remains low in regard to functional regulation of IFN in T cells.
Especially, further studies of HATs should be conducted to
validate the roles of both HATs and HDACs in GVHD models.
CONCLUSION AND PERSPECTIVES

Although extensive efforts have been made in defining the roles
of IFNs in alloreactive T cells, the mechanisms underlying the
effects of IFNs in the setting of GVHD remain largely unknown.
Much of our knowledge about the IFN-related regulations in T
cells mostly come from infection, tumor and autoimmune
diseases. However, considering the release of DAMP and
PAMP, anti-leukemia effect and the exposure of alloreactive
antigens in patients after allo-HSCT, the T cell response in
GVHD and GVL scenarios reflect combined effects of these
conditions. In addition, the effect of IFNs in different organs and
tissues, which have distinct microenvironments, may also affect
T cell response. Development of novel genetic approaches is
important to further dissect the impact of IFNs on T cell
alloimmunity and tumor immunity.

The advancement in epigenetics of T cell biology opens a
unique way to understand the molecular mechanisms of IFN
regulation. Much effort has been made to identify key epigenetic
enzymes and pathways that affect IFN expression in T cells.
However, most of the effects of the enzymes are still unknown in
the context of GVHD. It will be interesting to determine the
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connection between the inhibitors of epigenetic enzymes and the
outcomes of GVHD models and clinical patients. Future studies
mapping epigenetic mechanisms of IFN regulations in allogeneic
T cells may be beneficial to elucidate how IFN modulates GVHD
and GVL.
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