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Background: Cancer immunotherapy has produced significant positive clinical effects in
a variety of tumor types. However, pancreatic ductal adenocarcinoma (PDAC) is widely
considered to be a “cold” cancer with poor immunogenicity. Our aim is to determine the
detailed immune features of PDAC to seek new treatment strategies.

Methods: The immune cell abundance of PDAC patients was evaluated with the single-
sample gene set enrichment analysis (ssGSEA) using 119 immune gene signatures.
Based on these data, patients were classified into different immune subtypes (ISs)
according to immune gene signatures. We analyzed their response patterns to
immunotherapy in the datasets, then established an immune index to reflect the
different degrees of immune infiltration through linear discriminant analysis (LDA). Finally,
potential prognostic markers associated with the immune index were identified based on
weighted correlation network analysis (WGCNA) that was functionally validated in vitro.

Results: Three ISs were identified in PDAC, of which IS3 had the best prognosis across all
three cohorts. The different expressions of immune profiles among the three ISs indicated
a distinct responsiveness to immunotherapies in PDAC subtypes. By calculating the
immune index, we found that the IS3 represented higher immune infiltration, while IS1
represented lower immune infiltration. Among the investigated signatures, we identified
ZNF185, FANCG, and CSTF2 as risk factors associated with immune index that could
potentially facilitate diagnosis and could be therapeutic target markers in PDAC patients.

Conclusions: Our findings identified immunologic subtypes of PDAC with distinct
prognostic implications, which allowed us to establish an immune index to represent
the immune infiltration in each subtype. These results show the importance of continuing
investigation of immunotherapy and will allow clinical workers to personalized treatment
more effectively in PDAC patients.

Keywords: pancreatic ductal adenocarcinoma (PDAC), immune characteristics, immune subtypes, immune
index, immunotherapy
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the most
invasive and lethal malignancies. For patients diagnosed with
PDAC, the prognosis remains extremely poor, with less than a
10% survival rate (1, 2). Most patients with PDAC are diagnosed
as advanced or metastatic, and the median survival time is less
than 1 year. Conventional approaches using chemotherapy and
radiotherapy have only moderately increased the overall survival
time of patients (3). In recent years, immune checkpoint
blockade (ICB) treatment based on programmed cell death
protein 1 (PD-1) and its programmed death ligand 1(PD-L1)
have produced promising clinical results in many types of
cancers (4). However, PDAC is widely considered to be a
poorly immunogenic type of cancer, and ICB treatment has
thus far shown a low response rate in the treatment of PDAC.
Indeed, the objective response rate in unselected PDAC patients
is only 3.1% in clinical trials (5). Therefore, acquiring a complete
understanding of the heterogeneity of the immune responses of
patients and the mechanisms that underline the effectiveness of
immunotherapy treatment for PDAC is of great importance.

In the past decade, substantial progress in research on PDAC
molecular subtypes has increased our understanding of
molecular pathogenesis (6, 7). Given the advancement, many
attempts have been made to evaluate the expression of
biomarkers to identify patients most likely to benefit from ICB.
However, low patient numbers have limited observation
opportunities for studying the associations between treatment
response and PD-L1 expression, or microsatellite instability
status. Ines de Santiago et al. performed an integrative meta-
analysis of 353 patients from four different studies to derive the
PDAC classification based on immunological parameters (8).
The results of this study revealed that the expression
characteristics related to tumor-infiltrating immune cells in
different PDAC subtypes may assist in guiding immunotherapy
treatments. The success of cancer immunotherapy treatment
depends on multiple key steps that are involved in immune
activation during the cancer immune cycle (9). The low response
rates to this kind of treatment and the limited number PDAC
patients who have benefitted from ICB have been attributed to
low immunogenicity and multiple immunosuppressive
mechanisms (10, 11). Balachandran et al. highlighted the key
barriers that limit immunotherapy efficacy, including cytokines,
immune ce l l t ype s , and ce l l u l a r componen t s o f
immunosuppression (12). Thus, more detailed immune
characterization of PDAC is needed in the investigation of
novel therapeutic strategies.

In this study, we implemented the ssGSEA approach to
evaluate immune characteristics based on the marker genes of
119 immune cells, then classified PDAC into different immune
subtypes (ISs) based on the immune scores. Subsequently, the
response patterns of different ISs to immunotherapy were
analyzed to verify their reproducibility in different datasets. We
then established the immune index to reflect the different degrees
of immune infiltration in the patients. Finally, based on the co-
expression network analysis, we identified potential prognostic
Frontiers in Immunology | www.frontiersin.org 2
markers related to the immune index and functionally validated
them in vitro.
MATERIAL AND METHODS

Data Source
Gene expression profiles and clinical follow-up information data
on pancreatic cancer were downloaded from the International
Cancer Genome Consortium (ICGC) data portal, which contains
a total of 237 samples after excluding probes with empty values
and samples without clinical data. The TCGA-PAAD gene
expression data (n = 177) and the corresponding clinical data
were obtained from the UCSC Xena (http://xena.ucsc.edu/)
website. An additional 250 PDAC gene expression microarray
data and clinical data were derived from the NCBI Gene
Expression Omnibus (GEO) database as validation cohorts,
including GSE28735 (n = 42) (13), GSE57495 (n = 63) (14),
GSE62452 (n = 66) (15), and GSE85916 (n = 79). Using the
“Combat” algorithm in R package “sva,” the batch effects were
removed, and the expression values were quantile-normalized
across the different samples. The scaled estimate values derived
from RNA-seq by Expectation Maximization (RSEM) were
converted to transcripts per million (TPM) values by
multiplying them by one million. A total of 100 immune gene
signatures were obtained from the R package “IOBR” (Table S1)
(16), and after which we calculated the immune scores using the
single-sample gene set enrichment analysis (ssGSEA) algorithm
in the “GSVA” package (17).

Clustering Analysis
Based on the normalized enrichment score of the immune
characteristics, the R package “ConsensusClusterPlus” (18) was
used to construct a consistency matrix to classify the samples via
clustering to generate the immune subtypes in PDAC. The “PAM”
algorithm and “1-Pearson Correlation” were used to measure
distance, and bootstraps were performed 500 times. Each
bootstrapping process included 80% of the patients in the
training set. The number of clusters was set from 2 to 10, and
the optimal classification was determined through calculating the
consistency matrix and the consistency cumulative
distribution function.

Immunoprofiling
To investigate the relative abundance of tumor-infiltrating
immune cells, we performed CIBERSORT (19) to quantify the
distribution of the 22 immune cell types in individual specimens
of the ICGC cohort. Immune-related signatures of PDAC,
including the Th1/IFNg gene, cytolytic immune activity (CYT),
and 47 immune checkpoints, were obtained from previous
publications (20–22). Additionally, we utilized the Estimation
of STromal and Immune cells in MAlignant Tumor tissues using
Expression data (ESTIMATE) tool to determine the score that
represents the proportion of immune and stromal cells (23). We
used the “TIDE” software (24) with default parameters to analyze
the differences in immune efficacy. The anti-CTLA4, anti-PD1,
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and anti-PD-L1 treatment profile data were obtained from
previous studies (25, 26).

LDA and Construction of the
Immune Index
As different subtypes have different gene signatures, we
conducted a linear discriminant analysis (LDA) for
dimensionality reduction and established a subtype
classification feature index to better quantify the immune
characteristics of patients in different sample cohorts (27, 28).
In order to do this, z-transformation was performed on each
feature across 14 prognostic-related immune features, and the
centroid of each group was dispersed as much as possible based
on Fisher’s LDA optimization standards. The goal was to find
one linear combination, “A,” that could maximize variance
across all classes and ensure that the first two features of the
model could clearly distinguish samples of the different subtypes.
The LDA score was computed for the discriminative functional
markers by adding the first two linear discriminants, LD1 and
LD2, from the LDA of the combined normalized data to produce
an immune index. The classification performance of the immune
index in different subtypes was determined by the area under the
curve (AUC) of multiclass receiver operating characteristic
(ROC) curves.

Weighted Correlation Network Analysis
The R software package “WGCNA” (29) was used to identify the
co-expression modules in immune genes. Genes with the top
5,000 standard variations were retained and subjected to the
clustering analysis in the TCGA cohort. The co-expression
network conformed to the scale-free network with beta values
ranging between 1 and 20. Meanwhile, the linear model was
established via logarithms of the adjacency degree of a node (log
k) and the appearance probability of the node [log(p(k))] with a
correlation greater than 0.85. To ensure a scale-free network, the
nearest soft threshold was selected and used to filter the co-
expression module. In the next step, the expression matrix was
converted into an adjacency matrix and then converted into a
topological matrix. Based on the topological overlap matrix
(TOM), we used the average-linkage hierarchical clustering
method to cluster genes in order to maintain the minimum
number of genes in each module of base 30 according to the
standard of the hybrid dynamic cut tree. After this, we calculated
the eigengenes of each module to perform a cluster analysis on
the modules, then merged the modules that were closer to each
other into a new module with the following characteristics:
height = 0.25, DeepSplit = 2, and minModuleSize = 30. The
gene networks were built and visualized by the software
Cytoscape version 3.8.0 (30).

Prognostic and Functional
Enrichment Analysis
The “coxph” function of the “survival” package in R was used to
perform univariate Cox analysis on significant gene modules.
The prognostic performance was determined by analyzing the
HR score of each gene module based on its degree of significance
Frontiers in Immunology | www.frontiersin.org 3
with p <0.05. Moreover, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway and gene ontology (GO) analyses
were carried out using the “clusterProfiler” package in R (31).

Cell Culture
The human pancreatic ductal cell line PANC-1 and pancreatic
carcinoma cell HPDE6-C7 were purchased from the American
Type Culture Collection (ATCC, Manassas, VA, USA). The
PANC-1 and HPDE6-C7 cells were maintained in DMEM
medium (Gibco, Grand Island, USA) with 100 U/ml of
penicillin, 100 mg/ml of streptomycin, and 10% fetal bovine
serum (Gibco, Grand Island, USA) in an incubator containing
5% CO2 at 37°C. The cell lines were subcultured every 2 to 3 days
following digestion with 1 ml 0.25% trypsin and 0.02% EDTA
(Sigma-Aldrich, MO, USA). The viability was measured by the
number of surviving cells as a percentage of the total number of
cells. The average viability of over 95% was determined by
Trypan Blue staining at 37°C in an incubator containing 5% CO2.

RNA Extraction and Real-Time
PCR Analysis
Total RNA from cultured cells was extracted using an RNeasy
Plus Mini Kit (Qiagen, Dusseldorf, Germany). First-strand
cDNA was synthesized using an M-MLV Reverse SuperScript
II reverse transcription kit (Thermo Fisher Scientific, Waltham,
MA, USA). The qRT-PCR reaction was performed using Power
SYBR Green PCR Master Mix (Thermo Fisher Scientific,
Waltham, MA, USA) on the ABI PRISM 7900 Sequence
Detection System (Applied Biosystems, Foster City, CA, USA).
The relative expression of genes was calculated using the 2−DDCt

method. All experiments were performed in triplicate. The PCR
primers used in this study were as follows:

hsa-CSTF2: forward, 5′-CAGCGGTGGATCGTTCTCTAC-3′
and reverse, 5′-AACAACAGGTCCAACCTCAG-3; hsa-
FANGG: forward, 5′-CAGGGATTGAAGGATGTCCTCC-3
and reverse, 5′-TGGATTTCCCATCTTACGGTGA-3; hsa-
ZNF185: forward, 5′-AGCTCTACCACCAAAGGGATT-3
and reverse, 5′-TGGCGAATGAGTCCTCAATGC-3; hsa-
TPX2: forward, 5′-ACTTCCGCACAGATGAGCG-3 and
reverse, 5′-GGATGCTTTCGTAGTTCAGATGT-3; hsa-
GAPDH: forward, 5′-TGACAACTTTGGTATCGTGGA
AGG-3 and reverse, 5′-AGGCAGGGATGATGTTCTGGAG
AG-3.
Small Interfering RNA and Transfection
The small interfering RNAs (siRNAs) were purchased from
GEMA Gene Company (Pudong, Shanghai, China), and their
sequences are listed in Table S2. We designed triplicate sets for
each gene, and the cells were seeded into six−well plates that
measured 3 × 105 cells per well. The plasmids were transfected to
a concentration of 2.5 µg/well using Lipofectamine® 2000
reagent (Thermo Fisher Scientific, Waltham, MA, USA)
according to the instructions of the manufacturer. Cells were
then collected for subsequent analysis 48 h after transfection.
January 2022 | Volume 12 | Article 719105
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Cell Viability Assay
Cell viability was determined using a Cell Counting Kit-8
(Beyotime Biotechnology, Shanghai, China). Cells were seeded
into 96-well plates at a density of 2 × 103 cells per well. At 24, 48,
and 72 h post-transfection, 20 ml of CCK-8 solution was added to
each well. The absorbance values were recorded at a wavelength
of 450 nm after a 4-h incubation period.

Cell Invasion Assay
The cell invasion assay was performed using 8-mm Matrigel-
coated Transwell inserts (Corning Costar, NY, USA) to evaluate
invasion capacities in vitro. Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% FBS was added to the lower chamber.
After 12 h of transfection, the cells were washed with Hanks’
balanced salt solution (Thermo Fisher Scientific, Waltham, MA,
USA), suspended in 100 ml of serum-free medium (8 × 104 cells),
then added to the upper chamber. After 12 h of incubation, the
cells were removed from the top of the filter. The cells that
moved to the lower chamber were fixed with methanol and
stained with 0.01% crystal violet dye, after which the number of
migrated cells was counted in five random photographs under an
inverted microscope (Olympus, Tokyo, Japan). The experiments
were performed in triplicate.

Statistical Analysis
The unpaired Student’s t-test was used for comparison between
two continuous variables and a normally distributed variable.
Non-normally distributed variables were analyzed using the
Wilcoxon rank-sum test. To compare three or more groups,
analysis of variance (ANOVA) and the Kruskal–Wallis test were
performed on both the parametric method and the non-
parametric method. The threshold of significance is
p-value <0.05, <0.01, or <0.001. Different significance levels are
represented in different analyses, all of which were conducted
using R version 4.0.3 (R Foundation for Statistical Computing,
Vienna, Austria) and GraphPad Prism version 8.0.2 (GraphPad
Software, San Diego, CA, USA).
RESULTS

Identification of Immune Subtypes in
PDAC Based on Immune Gene Signatures
First, we implemented the ssGSEA approach to calculate the
absolute enrichment scores of 110 immune features in the
“IOBR” package from the ICGC and TCGA cohorts. Next, we
used a total of 250 PDAC samples with complete follow-up and
overlapping immune characteristics from GSE28735, GSE57495,
GSE62452, and GSE85916 as validating cohorts and pretreated
them by removing batch effects, thus leading to an independent
cohort. Data before and after normalization were inspected using
principal component analysis (PCA), which revealed that the
batch effect was successfully removed using the “ComBat”
algorithm (Figures 1A, B). We then performed a univariate
Cox analysis, which showed that 30 immune features in the
ICGC cohort, 40 immune features in the TCGA cohort, and 10
Frontiers in Immunology | www.frontiersin.org 4
immune features in the GEO cohort were significantly associated
with PDAC prognosis (Table S3). As shown in Figure 1C, there
were few intersections across these three cohorts, indicating that
the immune features were inconsistent among the datasets of the
different platforms. Therefore, we selected 14 immune
prognostic-related risk features over at least two cohorts for
subsequent analysis (p < 0.05). The distribution and abundance
of these 14 immune characteristics in the three cohorts are
shown in Figure 1D. We then classified 237 PDAC samples,
which we used as a training cohort, from the ICGC cohort
according to the 14 immune features.

Using consensus clustering cumulative distribution functions
(CDF) and the CDF Delta area curve, we determined that the
optimal cluster number is three, at which point relatively stable
clustering results can be applied and result in three PDAC ISs
(Figures 1E–G). Upon further analysis of the prognostic
characteristics of the three ISs, we observed that IS1 has the
poorest prognosis, while IS3 has favorable prognosis in all three
cohorts (Figures 1H–J), suggesting that the three immune
subtypes showed consistency in different PDAC cohorts.
Consequently, we compared the levels of the TNM staging
system, clinical stage, and grade among the three ISs in the
TCGA cohort, which was revealed to be in line with the survival
data. IS3 patients account for the lowest proportion of M1
(metastasis) and the highest proportion of low-grade patients
(G1, G2) (Figure S2).

The Differences in the Innate and Adaptive
Immune Signatures Among the Three ISs
It is well-known that the cyclic GMP-AMP synthase-stimulator
of interferon genes (cGAS-STING) signaling pathway is an
innate immune pathway that can induce the release of type I
IFNs and other inflammatory factors by recognizing foreign
cytosolic DNAs (cDNAs) to promote innate immunity. In
addition, this pathway also functions as a detector of self-DNA
released from tumor cells and dying cells (32, 33). Activation of
this pathway is significantly associated with tumor progression,
and its role in cancer immunotherapy has been well identified in
recent years (34–38). This includes pancreatic cancer, as it
exhibits a strong connection to the type I interferon pathway
(39–43). We compared the expression levels of four key genes in
the cGAS-STING signaling pathway across the three ISs,
including cGAS (encoding cGAS protein), TMEM173, TBK1,
and IRF3 (encoding STING protein). As shown in Figure S1,
there were no significant differences in the gene expressions of
the four genes among the three ISs. We also found that IFNg, a
type II interferon that is predominantly produced by T helper
(TH) CD4 and CD8 cytotoxic T lymphocyte (CTL) effector T
cells during antigen-specific immunity, was significantly
upregulated in IS3 (Kruskal–Wallis test, p = 3.4e−06)
(Figure 2A). In line with these results, the cytolytic immune
activity (CYT) score, which was based on the cytotoxic T-cell
(CTL) markers proposed by Rooney et al. (21), consistently
showed the identical trend that IS3 held the highest cytotoxic
immunity (Kruskal–Wallis test, p = 2.6e−13) (Figure 2B) and
was associated with positive prognosis. All together, these results
January 2022 | Volume 12 | Article 719105
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suggest that our classification system accurately reflects the
differences in adaptive immunity in pancreatic cancer patients
rather than innate immunity.

Additionally, we observed that the expression of most
chemokines and chemokine receptors in IS3 was considerably
higher than in IS1 and IS2 (Figures 2C, D) (Kruskal–Wallis test,
Frontiers in Immunology | www.frontiersin.org 5
p < 0.05). Given this, we compared the expression levels of 47
immune checkpoint genes among the three ISs, and as expected,
the critical inhibitory immune checkpoints [i.e., CTLA4, BTLA,
IDO1, PDCD1 (PD-1), IDO2, LAG3, etc.] were overexpressed in
IS3 (Figure 2E). Hence, we consider that targeting CTLA-4, PD-
1, or PD-L1 in IS3 patients may be clinically useful.
A B C

D E

F

H I

G

J

FIGURE 1 | The immune-based molecular subtypes in pancreatic ductal adenocarcinoma (PDAC). (A) The PCA scatter plot of immune features before removing batch
effects across the four involved PDAC GEO datasets. (B) The PCA scatter plot of immune features after removing batch effects across the four involved PDAC GEO
datasets. (C) Overlapping of significantly prognosis-related immune features across the three cohorts (ICGC, TCGA, and GEO). (D) Heatmap of significantly prognosis-
related immune features in at least two cohorts (p < 0.05). (E) The CDF curves for sample consensus clustering in the ICGC cohort. (F) Delta area curve of consensus
clustering. The horizontal axis represents the category number k, and the vertical axis represents the relative change in area under the CDF curve. (G) Sample clustering
heatmap when consensus k = 3. (H) Kaplan–Meier curve of the clinical outcome across the three subtypes in the ICGC cohort. (I) Kaplan–Meier curve of the clinical
outcome across the three subtypes in the TGCA cohort. (J) Kaplan–Meier curve of the clinical outcome across the three subtypes in the GEO cohorts.
January 2022 | Volume 12 | Article 719105

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Immunological Classification of Pancreatic Carcinomas
Difference in Immune Profiles Among the
Three ISs
In the ICGC cohort, we performed CIBERSORT analysis to
evaluate the proportions of the 22 immune cells in each sample
(Table S4). The distribution of the immune cell proportions in
all samples is shown in Figures S3A, B, while the proportions
across the three ISs are shown in Figures S3C, D. These results
exhibit the significant differences in the immune characteristics
of different subgroups. Notably, IS3 has the highest proportion of
CD8+ T cells, resting memory CD4 T cells, and B cells, as well as
the lowest proportion of M0 and M2 macrophages. Immune
infiltration analysis showed that IS3 has the highest immune
infiltration, followed by IS2, while IS1 had the lowest stromal and
immune score (Figures 3A–C; Table S5). All together, we
Frontiers in Immunology | www.frontiersin.org 6
observed that IS3 patients presented a preferable cell-mediated
immune response and humoral immune response.

Subsequently, we implemented the TIDE algorithm to
evaluate the potential clinical effects of immunotherapy in the
three ISs we defined. As shown in Figure S4A, there was
apparently no difference in the TIDE scores of the three ISs. At
the same time, IS3 had the highest T-cell dysfunction score
compared with IS1 (p < 0.0001) and IS2 (p < 0.0001), but the
lowest score in T-cell exclusion (p < 0.0001) (Figures S4B, C;
Table S6). These results may partially explain why T-cell
infiltration was the highest in the IS3 patients, but the
objective response rates of ICB in clinical trials were extremely
low. Therefore, there are likely other underlying mechanisms
that lead to T-cell dysfunction due to sustained antigen exposure.
A B

C

E

D

FIGURE 2 | Expression of chemokines and checkpoint in PDAC immune subtypes. (A, B) The distribution of IFNg scores and CYT scores in three ISs, respectively.
(C, D) The distribution of the expression levels of chemokines and chemokine receptors across three ISs. (E) Expression levels of immune checkpoints in three ISs.
*p < 0.05, **p < 0.01, ****p < 0.0001. ns: p > 0.05.
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We used submap analysis to compare the similarity between the
gene signatures of the three ISs and melanoma patients treated
with anti-PD1 and anti-CTLA4 (44), which revealed that IS3
patients were more sensitive to PD-1 inhibitors than the other
two subtypes (Figure 3D). We also analyzed the responsiveness
of traditional chemotherapy drugs, including gemcitabine,
cisplatin, erlotinib, and fluorouracil (5-FU), in all three ISs. IS1
was more sensitive to gemcitabine (p < 0.01 and p < 0.0001,
respectively), cisplatin (p < 0.0001), and erlotinib (p < 0.0001)
compared with IS2 and IS3, while IS3 was more sensitive to 5-FU
(p < 0.0001) (Figures 3E–H). Thus, our overall computational
calculations predicated that IS3 has the highest immune cell
infiltration. Therefore, stratification might be helpful in patient
selection for ICB trials or further studies on drug resistance,
regardless of the wide ineffectiveness with PDAC treatment
so far.

Construction of the Immune Index and Its
Related Immune Characteristics
To further assess the differences in the gene signatures across the
three ISs, as well as quantify the immune characteristics of
individual patients, we performed LDA analysis. As shown in
Figure 4A, the first linear discriminants (LD) of the model
clearly distinguish between the samples of different subtypes.
Following this, we calculated the LDA score of each patient in the
three cohorts, which make up the immune index. The differences
in the scores were significant across the three ISs (Table S7;
Frontiers in Immunology | www.frontiersin.org 7
Figures 4B–D). The classification performance of the immune
index in the different subtypes is depicted in Figure 4E with a
multiclass comprehensive prediction AUC of 0.89. After
applying the immune index to the TCGA and GEO cohorts,
we observed a similar performance to the ICGC dataset
(multiclass AUC = 0.84 and 0.78, respectively) (Figures 4F,
G). Together, a high index indicated a higher immune
infiltration as seen in IS3 and vice versa as seen in IS1.

Additionally, to observe the relationship between the immune
index and immune cell characteristics, the immune scores in 28
immune cells were calculated using ssGSEA analysis (Table S8)
(45). Most of the immune cells in IS3 had significantly higher
enrichment scores than IS1, including activated B cells, activated
CD8 T cells, activated CD4 T cells, T follicular helper cells,
myeloid-derived suppressor cells (MDSCs), and natural killer
cells, all of which were significantly positively correlated with the
highest immune index (Figures S5A–C).

Recent studies have revealed that the recruitment of tumor-
associated immune cells that occurs during inflammation that
accompanies tumor progression has been shown to promote
tumor growth and contribute to angiogenesis, invasion, and
metastasis (46–48). Therefore, we also analyzed the distributions
of inflammation-related genes of the ISs in the ICGC cohort, the
results of which revealed that the monocyte/myeloid lineage
(HCK), T cells (LCK), major histocompatibility class II complex
(MHC-II) molecules, and gene clusters are all highly expressed in
IS3 compared with IS1 and IS2 (Figure 5A; Table S9). All seven
A B C D

E F G H

FIGURE 3 | The difference of the tumor microenvironment and therapeutic treatments in PDAC immune subtypes. (A–C) The distribution of stromal scores, immune
scores, and estimated scores in three ISs, respectively. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (D) Submap analysis of the published dataset with
immunotherapy response data manifested that the IS3 could be more sensitive to the anti‐PD‐1 therapy (Bonferroni‐corrected p = 0.008). (Bonferroni-corrected p <
0.05). The distribution of the estimated IC50 for (E) gemcitabine, (F) cisplatin, (G) erlotinib, and (H) 5-FU in three ISs. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001,
ns: p > 0.05.
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inflammation-related metagenes were then quantified with the
enrichment score using the ssGSEA approach as shown in Figure
S6A, which revealed that the enrichment score of the five
metagenes in IS3 are significantly higher than in IS1 and IS2
(p < 0.0001), with the exception of MHC-I and interferon. The
relationship between the LDA score and the enrichment score was
identified using Pearson’s correlation coefficient. Based on this, we
found that antitumor immune metagenes, including HCK, LCK,
MHC-II, and STAT1 were significantly positively correlated with
the immune index (p < 0.001) (Figure S5B).

The correlation between the immune index and the
expression levels of 47 immune checkpoints is illustrated in
Figure 5B. Notably, the LDA score has a significant positive
correlation with many critical inhibitory immune checkpoints
[i.e., CTLA4, BTLA, IDO1, PDCD1 (PD-1), IDO2, LAG3, etc.].
Of those, CTLA4 (r = 0.72, p < 0.0001) and PDCD1 (r = 0.54, p <
0.0001) show high correlation, whereas no significant correlation
between the immune index and CD274 was discovered (r = 0.04,
p = 0.530) (Figures 5B–D). We then analyzed the difference
between immune index and melanoma patients treated with
anti-PD1 and anti-CTLA4 as well as urothelial carcinoma
Frontiers in Immunology | www.frontiersin.org 8
patients treated with PD-L1 under different responses. The
LDA score was significantly upregulated in patients with an
immunotherapy response compared with SD or PD patients in
anti-CTLA4 and anti-PD1 treatments (Figures 5F, G). However,
there was no big difference in anti-PD-L1 patients across the
three ISs (Figure 5H). These results reinforce the results of the
submap analysis in Figure 3D that indicate that immune index
can be a good representation of the gene profile. It also further
suggests that patients with high immune infiltration (IS3) might
benefit from anti-PD-1 therapy.

Identification of the Co-Expression Gene
Module of the Immune Index
According to the weighted correlation network analysis
(WGCNA) method described previously, samples were
clustered (Figure S6A) and immune gene co-expression
modules were identified with a soft threshold of 5 for the
scale-free network (Figures 6A, B). As a result, a total of 18
gene modules were generated based on a dissimilarity measure
(1-TOM), where the gray module was a collection of genes that
could not be gathered into other modules (Figures 6C, S6B;
A B C

E F G

D

FIGURE 4 | LDA score and immune index construction. (A) The relationship between the first two linear discriminants and three ISs. (B–D) The distribution of the
LDA scores across three ISs in the ICGC, TCGA, and GEO cohorts. (E–G) The ROC curve of the immune index in the ICGC, TCGA, and GEO cohorts. ****p <
0.0001. ns: p > 0.05.
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Table S10). Furthermore, we analyzed the correlation between
each module and the age, gender, clinical stage, grade, IS1, IS2,
IS3, and LDA score of the patient. As shown in Figure 6D, the
tan module showed a significant positive correlation with IS1 and
a negative correlation with IS3 and its LDA score. On the other
hand, the light cyan module showed the opposite result. The
genes in these two modules are significantly associated with gene
significance and module membership (IS1 is tan and IS3 is light
cyan) (Figures 6E, F).

Next, we investigated the correlation between each of these
gene modules and the immune index. In this analysis, each of
these 13 modules were significantly associated with the LDA
score (Figure 6G) where tan is shown as a risk factor (p < 0.0001,
HR = 1.4) and light cyan is shown as a favorable factor (p = 0.002,
HR = 0.76) (Figure 7A; Table S11), as expected. We
subsequently screened the co-expressed genes of prognostic-
related modules with co-expression weights greater than 0.35
and identified 11 hub genes (Figure 7B; Table S12). These hub
genes reflected the immune index and showed up as potential
candidates for biomarkers. Functional enrichment analysis
revealed that genes within tan modules were enriched for
biological terms (GO) or KEGG pathways with strong
Frontiers in Immunology | www.frontiersin.org 9
significance in homologous recombination, the p53 signaling
pathway, DNA replication, and the cell cycle (Figure S7).
Meanwhile, the light cyan module was significantly associated
with immune-related processes including positive regulation of
lymphocyte activation, positive regulation of cell activation,
regulation of T-cell activation, etc. (Figures 7C, D). Among
these hub genes, high expressions of CSTF2, TPX2, FANCG, and
ZNF185 were significantly associated with poor outcomes (log
rank test, p = 0.009, p < 0.0001, p = 0.0357, and p = 0.006,
respectively) (Figures 7E and S8).

These data suggest that the expression levels of CSTF2, TPX2,
FANGG, and ZNF185 may be negatively correlated with the
immune index and warrant validation of their biological
functions in vitro to find potential biomarkers indicative of the
immune index.

Given that in biological and therapeutic systems upregulated
genes are more likely to be manipulated than downregulated
genes, we decided to focus our validation study on investigating
the functions of CSTF2, TPX2, FANCG, and ZNF185 in PDAC.
Firstly, we examined the expression levels of these genes in the
human pancreatic ductal cell line PANC-1 as well as the
pancreatic carcinoma cell HPDE6-C7. As presented in
A B

C D E

F G H

FIGURE 5 | The relationship between the immune index and inflammatory characteristics and immune checkpoints. (A) The abundance of seven inflammatory
metagenes and immune index in three ISs. (B) The correlation between the immune index and expression levels of immune checkpoints. *p < 0.05, **p < 0.01, ***p <
0.001, Spearman rank correlation. In the upper triangle, the shade of color represents the level of −log10(p-value), while in the lower triangle, the shade of color
represents the level of correlation. (C–E) The correlation between the immune index and expression levels of CTLA4, PDCD1, and CD274 (Spearman rank correlation).
(F) The distribution of the immune index in different treatment response statuses after anti-CTLA4 treatment. (G) The distribution of immune index in different treatment
response statuses after anti-PD1 treatment. (H) The distribution of the immune index in different treatment response statuses after anti-PD-L1 treatment. *p < 0.05, **p <
0.01, ns: p > 0.05. PD, progressive disease; PRCR, partial response and complete response; SD, stable disease.
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Figure 8A, increased expression of ZNF185, CSTF2, and
FANCG (p < 0.01), but not TPX2, was observed in the
HPDE6-C7 cell line (p > 0.05). These results indicate that
ZNF185, CSTF2, and FANCG were overexpressed in PDAC
and might be considered as biomarkers of poor prognosis.

Next, for each gene (ZNF185, CSTF2, and FANCG), we
designed triplicate sets of siRNAs. We downregulated ZNF185,
CSTF2, and FANCG in HPDE6-C7 through transfection with
Frontiers in Immunology | www.frontiersin.org 10
three siRNAs using the empty vector as a negative control. As a
result, gene expressions significantly dropped after transfection
(Figure S10), where si-ZNF185-3, siCSTF2-2, and si-FANCG-3
exhibited the best transfection efficiency among each group (p <
0.01, p < 0.001, and p < 0.001, respectively). These siRNAs were
subsequently selected for functional cell experiments. Weakened
cell viabilities were observed in ZNF185, CSTF2, and FANCG
downregulated HPDE6-C7 cells compared with NC-transfected
A

D

G

E

F

B C

FIGURE 6 | Identification of the co-expressed gene modules of the immune index. (A) Analysis of the scale-free fit index for various soft-thresholding powers (b).
(B) Analysis of the mean connectivity for various soft-thresholding powers. (C) The distribution of gene numbers in each module. (D) The relationships between gene
modules and clinical variables, ISs, and immune index. (E) Scatter plot of module members versus gene significance for IS1 in the tan module. (F) Scatter plot of
module members versus gene significance for IS1 in the light cyan module. (G) The correlation between immune index and gene modules. In the upper triangle, the
shade of color represents the level of −log10(p-value), while in the lower triangle, the shade of color represents the level of correlation. *p < 0.05, **p < 0.01, ***p <
0.001.
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cells after 24, 48, and 72 h (p < 0.001; Figure 8B). Additionally,
the migration assay showed that downregulation of ZNF185,
CSTF2, and FANCG in HPDE6-C7 cells can significantly inhibit
cell invasion capability (p < 0.01; Figure 8C). Collectively, these
findings indicate that ZNF185, CSTF2, and FANCG are involved
in the proliferation and metastasis of PDAC.
Frontiers in Immunology | www.frontiersin.org 11
DISCUSSION

During the last decade, the emergence of immunotherapy has
presented a significant advantage for certain malignancies,
including melanoma, lung cancer, and other tumor patients
(49–52). This has resulted in the improvement of the
A B

C D

E

FIGURE 7 | Co-expression gene module features and the prognostic association. (A) Forest plot of the univariate analyses of gene modules with overall survival. (B)
Co-expression network of 11 potential gene markers related to immune index. Blue color indicates genes derived from the light cyan module; yellow color indicates
genes derived from tan module. (C, D) The functional enrichment of the module tan: (C) top 10 GO biological process; (D) top 10 KEGG pathways. (E) The gene
expression levels of four genes (CSTF2, TPX2, FANGG, and ZNF185) were significantly associated with overall survival (log-rank test, p < 0.05).
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prognosis of treated patients, suggesting that there could be
substantial benefits associated with immunotherapy. Even
though immunotherapy has achieved impressive clinical
benefits, its applications have shown limited efficacy due to
multiple immune escape mechanisms. There is an urgent need
to better understand the tumor immune microenvironment to
design more effective strategies and improve the response and
outcomes of immunotherapy. In this study, we reevaluated
available OMICS data from an immunological perspective to
understand the immune response of PDAC and provide clinical
implications for personalized immunotherapy.

Pancreatic tumors avoid immune responses through different
me ch an i sm s . F i r s t , p a n c r e a t i c TME i s r i c h i n
immunosuppressive cells such as MDSCs, regulatory T cells
(Tregs), tumor-associated macrophages (TAMs), and
immunosuppressive antigen-presenting cells (APCs), which
lead to refractory ICB (12, 53, 54). In our study, unsupervised
consensus clustering showed that there is substantial variation in
the immune characteristics of PDAC. Among all subtypes in our
study, IS3 is associated with the best prognosis, whereas IS1
indicates the poorest survival probability. Cyclic GMP-AMP
synthase (cGAS) is a nucleotidyl transferase that is critical for
the recognition of double-stranded DNA in the cytosol and
generates second messenger cyclic GMP-AMP (cGAMP). It
promotes the activation of STING to elicit kinase TBK1 and its
downstream substrate, the transcription factor IRF3. The
phosphorylated IRF3 then translocates into the nucleus and
Frontiers in Immunology | www.frontiersin.org 12
stimulates the production of type I interferons (IFNs) and
other cytokines, leading to immunity regulation (55, 56). Type
I IFNs are antitumor cytokines and modulators of innate
immune activation that have recently been shown to cause
radiosensitization in pancreatic cancer, and they all bind to the
cell surface receptor complex (IFNAR) (39, 43, 57). The
deactivation of the IFN1–IFNAR1 pathway by cancer-
associated fibroblasts (CAFs) leads to tumorigenic effects and
tumor growth in pancreatic cancer (41, 43). This pathway affects
the pancreas by regulating the production of T cells so that when
STING is activated in human cells, the T-cell infiltration can be
decreased (41). However, our findings have not shown a
significant difference in gene expressions of these four key
genes within cGAS-STING pathways among the three ISs,
suggesting that our classifications have little connection with
innate immunity in pancreatic cancer. Furthermore, it is well
known that IFN-g has been shown to exhibit antitumor activity
both in vitro and in vivo, and deficiencies in IFN-g (IFN-g−/−) or
the IFN-g receptor (IFN-gR−/−) promote tumor development in
mice (58, 59). The CYT score has been reported to be associated
with improved prognosis in glioma, gastric cancer, and
hepatocellular carcinoma, among other cancers (21, 60–62). In
our study, IS3 patients represent the highest score in both IFN-g
and CTY. Their maintenance of strong immune activity may
suggest a good response to immunotherapy. Since most of the
expression levels of inhibitory immune checkpoints were
upregulated more in IS3 than in other ISs [i.e., CTLA4, BTLA,
A

C

B

FIGURE 8 | ZNF185, CSTF2, and FANCG were overexpressed in PDAC cell lines and promote cell viability and invasion. (A) Expression levels of ZNF185, CSTF2,
FANCG, and TPX2 in human pancreatic ductal cell line PANC-1 and pancreatic carcinoma cell HPDE6-C7. Data are presented as mean ± standard error based on
at least three independent experiments. **p < 0.01, ***p < 0.001. (B) CCK-8 assay on HPDE6-C7 cell line co-transfected with si-control and the optimal si-ZNF185,
si-CSTF2, and si-FANCG. (C) The invasion assays on HPDE6-C7 cell line co-transfected with si-control and the optimal si-ZNF185, si-CSTF2, and FANCG.
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IDO1, PDCD1 (PD-1), IDO2, LAG3, etc.], we can conclude that
different subgroups have varied therapeutic responses to ICB,
which indicates that IS3 may be sensitive to ICB and vice versa.

We also demonstrated stromal and immune phenotypes in
IS3, including a high proportion of T cells CD8, T cells CD4
memory resting, and B cells as well as a low proportion of
macrophages M0 and macrophages M2 based on CIBERSORT
and ESTIMATE algorithms. The presence of M2-type
macrophages is associated with poor clinical outcomes in
various types of cancers due to certain cellular interactions
within metastatic sites. Nevertheless, the low CD8 T cells and
the high M2-type macrophages were infiltrated in IS1, with
unsurprisingly minimal immune infiltration. Our study
revealed that IS3 is more significantly correlated with
melanoma patients who respond well to anti-PD1 treatment
than IS1 and IS2. However, the high levels of T-cell dysfunction
in IS3 might explain why some PDAC patients have high T-cell
infiltration but are generally tolerant to ICB. Additionally, IS1
patients were more sensitive to traditional chemotherapeutic
agents, including gemcitabine, cisplatin, and erlotinib, but
more chemoresistant to 5-FU. These findings might provide a
strong rationale in patient selection for systemic therapy option-
combination regimens.

Unlike PCA, which summarizes the total variation in a dataset,
LDA derives synthetic variables from a linear combination of
features looking for maximum separation of two or more classes
of objects. This allows us to derive an immune index to
characterize immunity based on LDA scores. Consistent with
the highest immune infiltrations, IS3 represented the highest
immune index, which showed as significantly positively
associated with the immune cells engaged in the antitumor
response. High LCK has been identified with a good prognosis
in breast cancer, endometrial carcinoma, and melanoma (63–65).
It was in this way that we first identified the potential roles of LCK
in PDAC. Strikingly, Tiziana et al. reported that MHC-II was
highly correlated with the LCK and HCK metagene (66), which
reflects the infiltration of T cells and monocytes (67). Indeed, IS3
shows high immune infiltration and plays critical roles in
antitumor immune responses through activating MHC-II, LCK,
and HCK as well as augmentation of its expression levels.
Pancreatic tumors remain refractory to ICB as it is characterized
by its T-cell exclusion and an immunosuppressive tumor
microenvironment (68–70). However, while the LDA score is
significantly associated with the expression levels of anti-CTLA4
and anti-PD1, it is not associated with PD-L1. The high immune
index represents a good clinically predicted response to both anti-
CTLA4 and anti-PD1 therapy. Actually, our results strengthen the
findings that patients with a high immune index (IS3) and low T-
cell exclusion might benefit from PD-1 therapy; however, the
complications resulting from severe T-cell dysfunction needs to be
further investigated in the future.

We found several interesting components within the hub
gene modules related to IS3 as well overall survival: ZNF185,
FANCG, and CSTF2. These candidates have been functionally
validated, and their potential roles have also been identified by
previous studies. ZNF185, an actin cytoskeleton-associated
Frontiers in Immunology | www.frontiersin.org 13
protein from the LIM family of Zn-finger proteins, has been
demonstrated to be a bona fide p53 target gene following DNA
damage, which is consistent with the enrichment results of the
GO biological process in the tan module–p53 single signaling
pathway (71). In addition, the overexpression of ZNF185 has
been shown to promote chemoresistance, tumor proliferation,
and inhibition of apoptosis by downregulating SMAD4 in PDAC
(72). Furthermore, inherited mutations of the DNA repair genes
FANCG have been thoroughly demonstrated to be responsible
for accelerating genomic instability due to the loss of the G1/S
checkpoint, leading to increased risk in PDAC (73, 74). Even
though the functional role of CSTF2 has not been conclusively
proven, the overexpression results in the shortening of 3′ UTRs
and promotes pathogenesis and poor prognosis in several types
of cancer, including endometrial carcinoma, lung cancer, and
bladder cancer (75–77). The results indicate that ZNF185,
FANCG, and CSTF2 cannot be effective biomarkers for risk
assessments and reflect the immune index for personalized
treatment decision-making in PDAC. Nevertheless, the
immune-related roles of these genes will have to be further
verified in future studies.

Although computational approaches for analyzing bulk RNA
sequencing data from public databases have been well established,
this study shares some limitations with previous bioinformatics
studies. Given the recalcitrant nature of pancreatic cancer, there are
rarely research cohorts regarding immunotherapy for it. The
TCGA, ICGC, and GEO cohorts were collected prior to the
immunotherapy. The projection of pancreatic cancer by assessing
the similarities between molecular features in gene expression data
with melanoma immunotherapy cohorts may cause some bias.
Furthermore, given that we used these three gene signatures to
represent the immune infiltration, we might be unable to
comprehensively profile the immune landscape of the PDAC
sample. The true predictive effect of these three gene signatures
(ZNF185, FANCG, CSTF2) on immune infiltration needs to be
evaluated in future studies. Although we predict that the IS3 group
may benefit from anti-PD1 therapy and show low levels of T-cell
exclusion, whether the true response rate is higher than in other
groups requires further validation in other cohorts receiving anti-
PD1 treatment.

In summary, we identified three immunological subtypes of
PDAC, each with distinct immune infiltration and prognostic
characteristics. We further established an immune index to
quantify the abundance of immune infiltration in different ISs.
Finally, based on the co-expression network analysis, potential
biomarkers (ZNF185, FANCG, CSTF2) related to the immune
index were identified and functionally validated in vitro. Overall,
our results provide new insights into the stratification and selection
of patients for personalized immunotherapy assessment in PDAC.
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Supplementary Figure 1 | The distribution of the expression levels of four key
genes in the innate immune regulatory cGAS-STING signaling pathway across three
ISs.

Supplementary Figure 2 | The fraction of Stage T, Stage N, Stage M, clinical
stage, and grade in three ISs.
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Supplementary Figure 3 | The difference of immune cells in three ISs (A). The
fraction of 22 immune cells in three ISs. (B) The distribution of the estimated immune
cell proportions in all samples. (C) The distribution of the estimated immune cell
proportions in three ISs. (D) The abundance of immune cell components in three
ISs, only the immune cells in which the nonzero proportions in all samples exceeded
half were retained

Supplementary Figure 4 | (A–C) The differences of TIDE scores, T cell
dysfunction scores, and T cell exclusion scores in three ISs, respectively.

Supplementary Figure 5 | The relationship between the immune index and
immune-related characteristics. (A) The abundance of 28 immune cell scores in
three ISs. (B) The distributions of 28 immune cell scores in three ISs. *p < 0.05; **p <
0.01, ***p < 0.001. (C) The correlations between immune index and immune cell
scores. In the upper right triangle, the shade of color represents the level of
correlation, while in the lower left triangle, the shade of color represents−log10(p
value). *p < 0.05; **p < 0.01, ***p < 0.001.

Supplementary Figure 6 | T (A) The distribution of seven inflammatory
metagenes in three ISs. *p < 0.05; **p < 0.01, ***p < 0.001, ****p < 0.0001. (B) The
correlations between the LDA score and inflammatory metagene enrichment score.
In the upper right triangle, the shade of color represents the level of correlation, while
in the lower left triangle, the shade of color represents−log10 (p value). *p < 0.05;
**p < 0.01, ***p < 0.001.

Supplementary Figure 7 | (A) WGCNA sample clustering. (B) Dendrogram of all
differentially expressed genes clustered based on a dissimilarity measure (1-TOM).

Supplementary Figure 8 | The functional enrichment of module lightcyan,
(A), top 10 GO biological process; (B), top 10 KEGG pathways

Supplementary Figure 9 | Kaplan-Meier curves show the overall survivals
between high- and low- expression of seven hub genes with no significance
(CTBP1-DT, ZNF165, TPSB2, ZNF195, TRAF1, TRAF3IP3, ZNF271P).

Supplementary Figure 10 | The relative expression of ZNF185, CSTF2, and
FANCG after transfection of relevant siRNAs in PANC-1 cell line. Error bars
represent the standard error of the mean from at least three independent
experiments). *p < 0.05; **p < 0.01, ***p < 0.001.
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