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Interleukin 1b (IL-1b) plays a major role in inflammation and is secreted by immune cells,
such as macrophages, upon recognition of danger signals. Its secretion is regulated by
the inflammasome, the assembly of which results in caspase 1 activation leading to
gasdermin D (GSDMD) pore formation and IL-1b release. During inflammation, danger
signals also activate the complement cascade, resulting in the formation of the membrane
attack complex (MAC). Here, we report that stimulation of LPS-primed human
macrophages with sub-lytic levels of MAC results in activation of the NOD-like receptor
3 (NLRP3) inflammasome and GSDMD-mediated IL-1b release. The MAC is first
internalized into endosomes and then colocalizes with inflammasome components;
adapter protein apoptosis associated speck-like protein containing a CARD (ASC) and
NLRP3. Pharmacological inhibitors established that MAC-triggered activation of the
NLRP3 inflammasome was dependent on MAC endocytosis. Internalization of the MAC
also caused dispersion of the trans-Golgi network. Thus, these data uncover a role for the
MAC in activating the inflammasome and triggering IL-1b release in human macrophages.

Keywords: membrane attack complex, inflammasome, macrophage, IL-1b, complement, NLRP3
INTRODUCTION

Interleukin 1b (IL-1b) is a pro-inflammatory cytokine with multiple roles in inflammation. When
dysregulated, however, IL-1b also underlies the pathology observed in several inflammatory diseases
including toxic shock syndrome, rheumatoid arthritis, and type 2 diabetes (1). Thus, production of
its active form is tightly regulated by a multi-protein complex termed the inflammasome. The best
studied inflammasome is the NOD-like receptor pyrin domain-containing protein 3 (NLRP3)
inflammasome and is canonically activated by the detection of two consecutive signals: a priming
signal, such as exogenous lipopolysaccharide (LPS), followed by an activation signal, such as the
toxin nigericin. Oligomerization of the NLRP3 inflammasome results in the recruitment of multiple
proteins to the complex, including the adaptor protein ASC and the effector protease caspase 1,
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resulting in the activation of caspase 1 (2–4). Active caspase 1
processes gasdermin D (GSDMD) to form pores in the cell
membrane and cleaves pro-IL-1b into its mature active form to
be secreted from the cell (5–7).

The complement system is also activated upon recognition of
damage-associated and pathogen-associated molecular patterns
(DAMPs and PAMPs), such as LPS. This acts in a cascade of
protein interactions which results in the formation of the
membrane attack complex (MAC), also known as terminal
complement complex (TCC) (8). The MAC is formed by the
complement proteins C5b, C6, C7, C8 and C9 and has
traditionally been studied for its ability to form pores in the
membrane of pathogens and dysfunctional cells in order to
clear them.

Healthy host cells have mechanisms to prevent lysis by MAC
pores. During homeostasis, CD59 blocks MAC insertion into the
cell membrane. However, this receptor can become exhausted
during prolonged inflammation, allowing MAC pore formation
(9). Additionally, nucleated cells are able to remove the MAC
from the cell membrane by endocytosis, exocytosis or
ectocytosis, also known as outward vesiculation (10–13). In
murine cells and human epithelial and endothelial cells, sub-
lytic levels of the MAC can activate caspase 1 and trigger IL-1b
secretion (14–16). This is important because multiple
inflammatory diseases are characterized by increased levels of
both IL-1b and complement (17–20). However, it is not clear
whether the MAC can directly impact inflammasome activation
in human myeloid cells, a primary source of IL-1b. Here, we
show that LPS-primed humanmacrophages internalize the MAC
into EEA1+ endosomes, which leads to dispersion of the trans-
Golgi network, activation of the NLRP3 inflammasome and
secretion of IL-1b to the extracellular milieu.
MATERIALS AND METHODS

Cell Culture and Differentiation
Human primary macrophages were differentiated from
monocytes isolated from blood provided by the National Blood
Transfusion Service (Manchester, UK) with ethical approval
from the Research Governance, Ethics, and Integrity Committee
at the University of Manchester (REC 05/0401/108). In brief,
peripheral blood mononuclear cells (PBMCs) were isolated from
leukocyte cones by ficoll gradient centrifugation. Monocytes were
isolated using the human CD14 MACS separation kit (Miltenyi
Biotec) and cultured at a concentration of 5 x 105 cells/mL for
7 days in complete RPMI media containing RPMI-1640 (Sigma),
10% FBS (Gibco), 1% L-glutamine (Gibco), 1% penicillin/
streptomycin (Gibco). Media was supplemented with 50 ng/mL
M-CSF (Peprotech) for differentiation into monocyte-derived
macrophages (MDMs).

The THP1 cell lines were cultured using complete RPMI
media at a density of 5 x 105 cells/mL and, differentiated towards
a macrophage-like phenotype using 0.5 µM phorbol-12-
myristate 13-acetate (PMA, Sigma) for 16 hrs. Cells were
rested for 24 hrs in RPMI complete media before cell
activation. THP1 wild type cells (TIB-202) were obtained from
Frontiers in Immunology | www.frontiersin.org 2
ATTC and THP1nlrp3-/- cells were a gift from Prof. Veit Hornung
(Gene Center Munich) (21). These cells were used to generate
THP1nlrp3-/-/eGFP-NLRP3 cells as indicated below.

Virus Production and Transduction of
THP1nlrp3-/-/eGFP-NLRP3
Human NLRP3 was cloned by the Gateway cloning system in a
lentiviral destination vector, pLNT-UbC-eGFP-#, generated by
Dr Pawel Pazek (University of Manchester) (22). Packaging
plasmids psPAX2 and pMD2.G were a gift from Didier Trono
(Addgene plasmid #12260 and #12259). HEK293T cells were
plated at a concentration of 3.5 × 105 cell/mL for 24 hrs and
transfected using Lipofectamine 2000 (Invitrogen) following the
manufacturer’s instructions. In short, 8 µl Lipofectamine, 1.2 µg
pMD2.G, 0.4 µg psPAX2 and 1.5 µg of pLNT-UbC-eGFP-
NLRP3 were used per reaction. The following day, the media
was replaced, and cells were further incubated for 2 days.
Supernatants were then filtered with a 0.45-µm filter to obtain
a cell-free extract of viral particles. Viral particles containing our
vector of interest were used to transduce 5 × 104 THP1nlrp3-/-

cells, with 8 µg/mL polybrene (Sigma). Cells, together with both
the viral particles and polybrene, were centrifuged at 1000 g for
1 hr at 30°C. Pelleted cells were then re-suspended in fresh
complete RPMI media.

Cell Stimulation
For inflammasome activation, MDMs or THP1 cells were
primed with 1 µg/mL LPS (lipopolysaccharide from
Escherichia coli O26:B6, Sigma) in complete media for 3 hrs,
washed with serum-free RPMI media, and treated with 10 µM
nigericin for 45 mins or the Membrane Attack Complex (MAC)
for the indicated time in serum free RPMI media. To form the
MAC, cells were treated for 15 mins with 10 µg/mL C5b6, unless
otherwise specified, and 10 µg/mL anti-CD59 mAb followed by
treatment with 10 µg/mL C7, 10 µg/mL C8 and 10 µg/mL C9
(Complement Technologies). NLRP3 inflammasome activation
was impaired using 1 µM MCC950 (Pepreotech). GSDMD
processing was blocked using 10 µM NSA (Calbiochem).
Endocytosis was blocked with 0.1 µg/mL nystatin (Merck),
10 µM cytochalasin D (Merck), or 10 µM dynasore
(Calbiochem), unless otherwise specified. All inhibitors were
used for 30 mins before and during stimulation with nigericin
or the MAC in serum free RPMI media.

Cell Death Assay
Cell death was established by measuring lactate dehydrogenase
(LDH) release in supernatants. Upon treatment, supernatants
were collected, centrifuged at 500 g to remove cell debris
and LDH release was assessed using a quantitative colorimetric
assay (CytoTox96® Non-Radioactive Cytotoxicity Assay,
Promega), following manufacturer’s instructions. Results were
expressed as cell death percentage, relative to a lysis control
representing 100%.

Caspase-Glo® 1 Inflammasome Assay
The activity of caspase 1 was assessed using a quantitative
luminescence assay (Caspase-Glo® 1 Inflammasome kit,
September 2021 | Volume 12 | Article 720655
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Promega). In brief, cell supernatants were combined with the
aminoluciferin substrate Z-WEHD for 1 hr and luminescence
was measured. Results were expressed as fold-increase relative to
vehicle-only treated cells.

Enzyme‐Linked Immunosorbent Assay
(ELISA)
Cytokine release was measured in supernatants using the
Human IL-1b or IL-18 DuoSet ELISA kit (R&D) following
manufacturer’s instructions.

The amount of MAC, also known as terminal complement
complex (TCC), was measured in cell lysates using a
human TCC ELISA kit (Hycul tBiotech) fo l lowing
manufacturer’s instructions.

Immunoblot
Cell lysates were prepared in RIPA buffer (50 mM Tris-HCl pH
7.4, 1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCl and
1 mM EDTA in miliQ dH2O) supplemented with protease
inhibitor cocktail (Calbiochem) for 30 mins on ice. Lysates
were centrifuged at 18,000 g for 20 mins at 4°C to eliminate
the insoluble fraction. Protein concentration in cell lysates was
determined using a Bicinchoninic Acid Protein Assay (Pierce™

BCA Protein Assay Kit, Life Technologies) and samples were
diluted to an equal protein amount of 30 µg. Cell supernatants
were centrifuged at 500 g for 5 mins to remove cell debris and
concentrated using centrifugal cellulose filters (10 kDa MW
Amicon centrifugal filter devices, Merck Millipore), as
indicated by the manufacturer. Cell lysates and supernatants
were diluted to 1x reducing Laemmli buffer containing 10 mM
1,4-Dithiothreitol (Sigma), heated at 95°C for 10 mins, and
separated by 4-12% Bis-Tris NuPAGE gels (Invitrogen) in
NuPAGE MES buffer (Invitrogen) at 165 V for 35 mins. A
color protein standard (P7719, New England Biolabs or
Precision Plus, Bio-Rad), was used for MW references.
Proteins were transferred onto 0.2 µm PVDF membranes (GE
Healthcare), blocked with 5% Bovine Serum Albumin (BSA,
Sigma) in TBST (10 mM Tris-HCl, 15 mM NaCl, 0.05% Tween®

20 at pH 7.5) for 1 hr at room temperature and incubated with
the indicated primary antibody in blocking buffer overnight at
4°C. Membranes were washed and incubated for 1 hr at room
temperature with the appropriate HRP-conjugated secondary
antibody. Membranes were washed and developed using the
Clarity Western ECL Substrate (Bio-Rad) and protein bands
were visualized using a ChemiDoc™ MP Imager (Bio‐Rad).

The primary antibodies used for immunoblotting and their
final concentrations were goat Ab anti-human IL‐1b (0.1 µg/mL,
R&D Systems), rabbit Ab anti-human GSDMD (0.14 µg/mL,
Novus Biologicals), rabbit mAb anti‐human caspase‐1 (1:1000,
D7F10, Cell Signalling Technology), mouse mAb anti‐human
NLRP3 (1 mg/mL, Cryo-2, Adipogen), mouse mAb anti‐b‐actin‐
HRP (0.2 mg/mL, AC-15, Sigma). HRP conjugated secondary
antibodies used were rabbit Ab anti‐goat‐HRP (0.13 µg/mL,
Sigma), goat Ab anti‐rabbit‐HRP (1:3000, Bio-Rad), and goat
Ab anti‐mouse‐HRP (1:3000, Bio-Rad).
Frontiers in Immunology | www.frontiersin.org 3
Confocal Imaging
Cells were cultured in chambered coverglasses (Nunc™ Lab-
Tek™ II, Thermo Scientific™) at a concentration of 2 x 105 cells/
mL. Cells were differentiated, primed with LPS and activated with
the MAC or nigericin, as above, fixed with 4% PFA for 15 mins,
blocked and permeabilized with 2% BSA and 0.1% Triton
(Sigma) in PBS for 30 mins and stained overnight at 4°C with
the indicated primary antibody in 2% BSA in PBS. Cells were
washed, and matched secondary antibodies were added for 1 hr
in 2% BSA in PBS when needed. Samples were then washed 3
times with PBS before being imaged. For all imaging experiments
C9 was conjugated in-house with Janelia Fluor 549 NHS ester
(Tocris, 6147) or Alexa Fluor 647 NHS ester (Thermo Fisher
Scientific, A20006). In brief, 50 µl of C9 (1 mg/mL) was mixed
with 5 µl of Janelia Fluor 549 or Alexa Fluor 647 NHS ester (1
mg/mL) in 100 µM NaHCO3 in PBS and incubated for 1 hr at
room temperature on a rotator. The excess dye was removed
using size-exclusion chromatography (7K MWCO Zeba™ Spin
Desalting Column Thermo Scientific) by centrifugation at 1500 g
for 2 mins. Protein concentration and degree of labelling were
measured by absorption and calculated according to the
manufacturer’s instructions. Imaging was performed with an
inverted confocal microscope (Leica TCS SP8) using a 100x/
1.40NA oil-immersion objective or a 63x/1.20NA oil-immersion
objective. Excitation was performed with a pulsed white-
light laser and emission was detected using time-gated HyD
detectors functioning in standard mode. Images were exported
and analyzed using ImageJ (23). The proportion of NIK
fluorescence within the cytoplasm was calculated by subtracting
the nuclear fluorescence from the cell total fluorescence and
expressing this relative to the fluorescence of NIK within the
entire cell. Nuclei and cell outlines were identified manually using
brightfield images.

The primary antibodies used for immunostaining and their
final concentrations were as follows: mouse IgG1 mAb anti-
human ASC (2 µg/mL, O93E9, BioLegend), mouse IgG2a mAb
anti-human TCC (5 µg/mL, aE11, Abcam), sheep Ab anti-
human TGN46 (1.25 µg/mL, Bio-Rad), rabbit mAb anti-
human EEA1 (1:200, C45B10, Cell Signaling Technology),
rabbit Ab anti-NIK (1:200, Cell Signaling Technology). The
secondary antibodies used were goat Ab anti-mouse IgG2a
Alexa Fluor 488 (2 µg/mL, Invitrogen), goat Ab anti-mouse
IgG1 Alexa Fluor 568 or 647 (2 µg/mL, Invitrogen), donkey Ab
anti-sheep Alexa Fluor 488 (2 µg/mL, Abcam) and goat Ab anti-
rabbit Alexa Fluor 488 (2 µg/mL, Invitrogen).
Statistical Analysis
The normality of the results was analyzed by the Shapiro-Wilk
normality test. Normally distributed results were analyzed by
parametrical one-way ANOVA and non-normally distributed
results using Friedman test. Results were expressed as the mean ±
standard deviation (SD). Significant differences between samples
were established where p<0.05 (*), p<0.01(**), p<0.001 (***), and
p<0.0001 (****). Graphpad Prism v9 was used to analyze and
graphically represent all results.
September 2021 | Volume 12 | Article 720655
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RESULTS

The Membrane Attack Complex
Activates the Inflammasome in
Human Macrophages
It is well-established that complement deposition is highly
increased in IL-1b-driven diseases and thus, we set out to test
whether IL-1b secretion may be triggered from human
macrophages by the terminal complement complex, the MAC.
Initially, we used the human monocyte-like cell line, THP1,
which was differentiated with PMA to obtain a macrophage-like
phenotype. Cells were then primed with LPS for 3 hrs and treated
with the complement components C5b6, C7, C8 and C9 added
Frontiers in Immunology | www.frontiersin.org 4
sequentially to form the MAC, and incubated for a further 3 hrs.
To permit MAC deposition on the cell membrane, C5b6
treatment was carried out in the presence of an anti-CD59
mAb (15). As a positive control, cells were primed with LPS
and then treated with nigericin (Nig) for 45 mins, a widely used
potent activator for the NLRP3 inflammasome.

Treatmentwith theMAC resulted in extracellular release of IL-1b
(Figure 1A). In agreement with this, a p17 fragment corresponding
with mature IL-1b was detected in cell supernatants, by
immunoblotting (Figure 1B). Stimulation of LPS-primed cells
with the MAC also led to GSDMD processing as shown by the
detection in cell lysates of a p31 fragment, corresponding with
the pore-forming N-terminal subunit (NT-GSDMD; Figure 1C).
A B C D

F G HE

J KI

FIGURE 1 | The Membrane Attack Complex induces inflammasome activation in human macrophages. (A–K) THP1 cells (A–D) and human MDMs (E–K) were treated
with vehicles or primed with 1 µg/mL LPS for 3 hrs followed by stimulation with 10 µM nigericin (Nig) for 45 mins or with 10 µg/mL anti-CD59 mAb, 10 µg/mL C5b6,
unless otherwise specified, C7, C8 and C9 (MAC) for 3 hrs. (A, E, J) IL-1b secretion was measured by ELISA. (B, F) IL-1b cleavage was analyzed in supernatants by
immunoblot. (C) GSDMD processing was analyzed in lysates by immunoblot. (D, H, K) LDH release was measured as a proxy for cell death. (F) Pro-IL-1b production
was analyzed in supernatants and cell lysates by immunoblot. (G) Caspase 1 activity was measured in cell supernatants and expressed as fold increase vs untreated
cells. (I) TCC (MAC) amount in cell lysates was measured by ELISA. (A, D, E, G–K) Data is plotted as mean ± SD and is representative of three (D, G, I–K), six (A),
seven (E) or eight (H) independent experiments. (E, G–K) Each color represents a matched donor. (A, D) Each dot represents a repeat. (A, D, E, G–K) Statistical
significance was measured by one-way ANOVA (A, D, G–K) or Friedman test (E) (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (B, C, F) Blots are representative
of two independent experiments with similar results.
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Cell death, as measured by LDH release from cells, was not
significantly increased in MAC-stimulated cells, establishing that
cells were not lysed by the complex (Figure 1D). Thus, the
inflammasome can be activated in PMA-differentiated THP1 cells
by the MAC.

We next set to test whether MAC-mediated inflammasome
activation occurs in primary human cells. To test this, human
monocyte-derived macrophages (MDMs) were activated with LPS
and the MAC, which led to processing and secretion of IL-1b
(Figures 1E, F and Supplementary Figure 1A). Furthermore,
pro-IL-1b was also detected in lysates of MDMs treated with the
MAC alone, indicating that the MAC can regulate IL-1b
production (Figure 1F). A p20 fragment of IL-1b was also
released in LPS-primed MDMs upon MAC activation which
could indicate a caspase 1-independent cleavage of this cytokine
(Figure 1F) (24). To directly test whether stimulation with the
MAC triggered caspase 1 activation, treated cells were assayed for
caspase 1 activity using a luminescence assay in cell supernatants.
Caspase 1 activity was significantly increased upon stimulation
with the MAC, as expected (Figure 1G and Supplementary
Figure 1B). Similar to THP1 cells, the MAC did not increase
cell death in human MDMs indicating that this complex had a
sub-lytic effect (Figure 1H). Thus, stimulation of human MDMs
with sub-lytic levels of the MAC triggered IL-1b secretion and
caspase 1 activation indicating inflammasome activation.

To test the dose-dependency of MAC-mediated
inflammasome activation, LPS-primed MDMs were stimulated
with concentrations from 1 to 20 µg/mL of C5b6, which is the
limiting component for MAC formation, in the presence of 10
µg/mL anti-CD59 and followed by 10 µg/mL of C7, C8 and C9
for 3 hrs. The amount of terminal complement complex (TCC or
MAC) was measured in cell lysates by ELISA. As expected, the
amount of MAC detected in cell lysates increased with increasing
concentration of C5b6 (Figure 1I). The greatest levels of IL-1b
release were observed when 10 µg/mL C5b6 was used
(Figure 1J). Cell death was not significantly increased with any
of the concentrations used, indicating that MAC formation was
always sub-lytic (Figure 1K). Subsequent experiments were
carried out with 10 µg/mL C5b6.

MAC-Mediated IL-1b Secretion Is
Dependent on Both NLRP3 and GSDMD
We next set out to establish whether inflammasome activation
triggered by the MAC was dependent on NLRP3. To test this,
MDMs were primed with LPS and stimulated with nigericin or
the MAC as mentioned previously, in the presence or absence of
the NLRP3 inflammasome inhibitor MCC950 (25). The use of
MCC950 significantly reduced IL-1b secretion (Figure 2A). In
contrast, there was no statistically significant change in LDH
release produced by the MAC in the presence of MCC950,
establishing that cell death was not affected by the inhibitor
(Figure 2B). For an alternative approach to test the role of
NLRP3 in MAC-mediated inflammasome activation, we used
THP1nlrp3-/- cells, generated using CRISPR-Cas9 technology as
previously described (21). The lack of NLRP3 in these cells was
confirmed by immunoblotting (Figure 2C). Following LPS and
Frontiers in Immunology | www.frontiersin.org 5
MAC stimulation, IL-1b secretion was impaired in THP1nlrp3-/-

cells (Figure 2D). As in wild-type THP1 cells, the MAC did not
trigger cell death in THP1nlrp3-/- cells, evidenced by no change in
LDH release (Figure 2E). Thus, NLRP3 is essential for IL-1b
secretion triggered by the MAC in human macrophages.

Given the importance of GSDMD for IL-1b secretion upon
canonical activation of the NLRP3 inflammasome and the fact
that GSDMD cleavage was detected in MAC-stimulated THP1
cells (Figure 1C), we next investigated whether GSDMD is
involved in MAC-mediated IL-1b release in MDMs. To test
this, LPS-primed human MDMs were treated with the MAC in
the presence or absence of the GSDMD pore inhibitor
necrosulfonamide (NSA) (26). Stimulation with the MAC
resulted in the cleavage of GSDMD, and GSDMD processing
was impaired by NSA, evidenced by a lack of NT-GSDMD
detection by immunoblotting (Figure 2F). Crucially, NSA-
treated MDMs released significantly less IL-1b upon
stimulation with the MAC (Figure 2G). Cell death, on the
other hand, was not significantly affected (Figure 2H). These
data are consistent with the idea that GSDMD processing, and
therefore pore formation, is important for MAC-mediated IL-1b
release in MDMs.

The MAC Localizes With the NLRP3
Inflammasome in Human Macrophages
As MAC-mediated IL-1b secretion in human macrophages is
dependent on NLRP3 (Figures 2A–E), we next set out to
establish the localization of NLRP3 and the MAC within
human macrophages. The MAC is formed by a single subunit
of C5b6, C7 and C8 and multiple C9 subunits (27). Therefore, to
visualize this complex, C9 was directly conjugated to a
fluorescent dye (C9-AF647 or C9-JF549). Using confocal
imaging, C9 was observed at the cell periphery, indicative of
membrane localization, within minutes of stimulation with the
MAC (Supplementary Figures 2A, B), but after 30 mins C9 was
mainly detected intracellularly (Supplementary Figures 2A, B),
indicating that the MAC was rapidly internalized upon
deposition in the cell membrane.

Given that canonical NLRP3 activation is characterized by the
oligomerization of the adaptor protein ASC into a speck, cells
were stained with an anti-ASC mAb to visualize the
inflammasome complex after stimulation with the MAC using
C9-JF549. Confocal microscopy revealed ASC speck formation in
LPS-primed MDMs after 90 mins of MAC stimulation, indicative
of inflammasome assembly (Figures 3A, B). The percentage of
cells with ASC specks increased over 3 hrs following stimulation
(Figures 3A, B). Likewise, the percentage of cells with readily
detectable intracellular C9 was also increased over 3 hrs
(Figures 3A, C). Surprisingly, C9 accumulated in specific
regions of the cell interior and formed structures with a similar
appearance to the ASC specks (Figures 3A, D). Further research
using specific markers is needed to determine the intracellular
trafficking of C9, but strikingly, after 3 hrs of MAC-stimulation,
ASC and C9 colocalized in the majority of cells containing ASC
specks (Figures 3D, E). The MAC is formed by multiple
complement components and thus, an accumulation of C9 does
September 2021 | Volume 12 | Article 720655
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not necessarily indicate that fully formed MAC structures remain
present intracellularly in the macrophages. To investigate whether
the fully formed MAC is internalized, MDMs were also stained
with a mAb targeting the TCC. This anti-TCC mAb binds a
neoepitope of the MAC, which is only present when C5b6, C7 and
C8 are assembled in the complex. Indeed, this mAb also marked
regions where both C9 and ASC were detected (Figure 3D),
establishing that the complete MAC complex is internalized by
macrophages. Considering that MAC formation and
internalization occurs within minutes of treatment with C5b6,
Frontiers in Immunology | www.frontiersin.org 6
C7, C8 and C9 (Supplementary Figure 2A) and that
inflammasome assembly occurs 90 mins after stimulation, this
implies that the MAC triggers downstream events that over time
activate the inflammasome.

To further test whether NLRP3 oligomerization could be
directly triggered upon stimulation with the MAC, we generated
a THP1 cell line that stably expressed eGFP-NLRP3 in a nlrp3-/-

background by transducing THP1nlrp3-/- cells with lentiviral
particles containing the vector pLNT-UbC-eGFP-NLRP3.
Expression of eGFP-NLRP3 in these cells, which otherwise
A B

C D E

F G H

FIGURE 2 | MAC-mediated IL-1b secretion is dependent on NLRP3 and GSDMD. (A–H) Human MDMs (A, B, F–H) and wild-type THP1 or THP1nlrp3-/- (C–E) cells
were treated with vehicles or primed with 1 µg/mL LPS for 3 hrs followed by stimulation with 10 µM nigericin (Nig) for 45 mins or with 10 µg/mL anti-CD59 mAb,
C5b6, C7, C8 and C9 (MAC) for 3 hrs. (A, B, F–H) MAC treatment was carried out in the presence or absence of 1 µM MCC950 (A, B) or 10 µM NSA (F–H).
(A, D, G) IL-1b secretion was measured by ELISA. (B, E, H) LDH release was measured as a proxy for cell death. (C, F) NLRP3 (C) and GSDMD (F) production
were analyzed in cell lysates by immunoblot. (A, B, D, E, G, H) Data is plotted as mean ± SD and is representative of five (A, B) or three (D, E, G, H) independent
experiments. (A, B, G, H) Each color represents a matched single donor. (D, E) Each color represents a repeat. (A, B, D, E, G, H) Statistical significance was
measured by Friedman test (A) or one-way ANOVA (B, D, E, G, H) (*p < 0.05, **p < 0.01, ***p < 0.001). (C, F) Blots are representative of two independent
experiments with similar results.
September 2021 | Volume 12 | Article 720655

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Diaz-del-Olmo et al. Macrophage IL-1b Secretion by Complement
lacked NLRP3, restored their ability to form an active
inflammasome upon stimulation with nigericin as shown by
IL-18 secretion (Supplementary Figure 3A), increased cell
death (Supplementary Figure 3B), and NLRP3 and ASC speck
formation (Supplementary Figures 3C, D). Moreover, the use of
the NLRP3 inhibitor MCC950 impaired IL-18 secretion, cell death
Frontiers in Immunology | www.frontiersin.org 7
and ASC speck formation (Supplementary Figures 3A, B, D).
Stimulation with LPS and nigericin led to caspase 1 (Casp-1) and
IL-1b processing (Supplementary Figure 3E). These results
demonstrate that eGFP-NLRP3 is functionally active. More
importantly, treatment of these cells with the MAC led to ASC
speck formation. At the speck, there was also an accumulation of
A

B

C

E

D F

FIGURE 3 | The MAC triggers inflammasome assembly and localizes to the NLRP3-ASC speck. (A–F) Human MDMs (A–E) and THP1nlrp3-/-/eGFP-nlrp3 cells
(F) were treated with vehicles or primed with 1 µg/mL LPS for 3 hrs followed by stimulation with 10 µg/mL anti-CD59 mAb, C5b6, C7, C8 and C9 labelled with
JF-549 (MAC) for the indicated time (A–C) or 3hrs (D–F). (A) Representative confocal images of C9 (red) and ASC (cyan) overtime. (B) Percentage of cells with ASC
specks over time. (C) Percentage of cells with C9 over time. (D) Confocal imaging of C9 (red), ASC (cyan) and TCC (green). (E) Percentage of ASC speck positive
cells with C9 in the speck. (F) Confocal imaging of C9 (red), ASC (cyan) and NLRP3 (green). (A, D, F) Dashed lines represent the outline of the cell, arrows point to
specks, magenta lines correspond to the plotted line profiles and scale bars are 10 µm (A) and 5 µm (D, F). (B, C, E) Data is plotted as mean ± SD, each color
represents a matched donor. (B, C) Statistical significance was measured by one-way ANOVA (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (A–F) Data is
representative of 3 independent experiments.
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C9 and NLRP3 (Figure 3F). This provides further evidence that
the MAC triggers ASC oligomerization and NLRP3
inflammasome assembly in human macrophages.

The MAC Is Internalized in EEA1
Positive Endosomes
The observation that the MAC is internalized, led us to
investigate how this complex is taken up by macrophages. To
study this, LPS-primed MDMs were treated with all components
of the MAC including C9-AF647. After 30, 90 or 180 mins,
cells were fixed and co-stained with an Ab against EEA1 to mark
early endosomes. Following 30 mins of MAC treatment, multiple
C9 puncta were distributed in the cytosol of the cell (Figure 4A
and Supplementary Figure 2A). These puncta were encircled
by the early endosomal marker EEA1 (Figures 4A, B). This
suggests that C9 is internalized byMDMs via EEA1+ endosomes.
At later time points, colocalization of C9 and EEA1 was reduced,
concurrent with C9 accumulating in larger puncta resembling
the structure of inflammasome specks (Figures 4A, B). Thus, the
MAC is initially internalized into early endosomes before being
trafficked to the inflammasome.
Frontiers in Immunology | www.frontiersin.org 8
MAC-Mediated Inflammasome Activation
Is Dependent on Endocytosis
Ion fluxes produced by pore formation in the cell membrane can
trigger activation of the NLRP3 inflammasome (28). Therefore,
we next investigated whether pore formation by the MAC in the
cell membrane is what activates the inflammasome or
alternatively, if internalization of the MAC triggers this
process. To test this, LPS-primed MDMs were stimulated with
the MAC for 3 hrs in the presence or absence of different
endocytosis inhibitors: nystatin (Nys), cytochalasin D (Cyt) or
dynasore (Dyn) (29–32). Strikingly, all three inhibitors abrogated
IL-1b secretion triggered by the MAC (Figure 4C), while cell
death was unaffected (Figure 4D).

Previous work showed that lysis of K562 cells treated with
human serum increases in the presence of 40-100 µM dynasore
(32). Here, treatment of LPS-primed MDMs with 40-160 µM
dynasore, in the absence of the MAC, induced IL-1b secretion but
did not trigger cell death (Supplementary Figures 4A, B). On the
other hand, 10-20 µM dynasore did not result in cytokine secretion
by itself, and did not trigger cell death, but significantly reduced
MAC-mediated IL-1b release (Supplementary Figures 4C, D).
A B

D

C

F GE

FIGURE 4 | Internalization of the MAC is required for inflammasome activation. (A, B) LPS-primed human MDMs were treated with 10 µg/mL anti-CD59 mAb,
C5b6, C7, C8 and C9 labelled with AF-647 (MAC) for the indicated time. (A) Confocal imaging of EEA1(green) and C9 (red). Yellow squares represent zoom regions
and scale bars are 10 µm in full cell pictures and 1 µm in zoom regions. (B) Pearson’s correlation coefficient of C9 compared to EEA1. (C–G) Human MDMs were
treated with vehicles or primed with 1 µg/mL LPS for 3 hrs followed by stimulation with 10 µg/mL anti-CD59 mAb, C5b6, C7, C8 and C9 for 3 hrs (C–E) or 10 µM
nigericin (Nig) for 45 mins (F, G) in the presence or absence of 0.1 µg/mL nystatin (Nys), 10 µM cytochalasin D (Cyt) or 10 µM dyanasore (Dyn). (C, F) IL-1b
secretion was measured by ELISA. (D, G) LDH release was measured as a proxy for cell death. (E) GSDMD processing was analyzed in cell lysates by immunoblot.
(C, D, F, H) Data is plotted as mean ± SD, each color represents a matched donor and statistical significance was measured by one-way ANOVA (B–D, G) or
Friedman’s test (F) (*p < 0.05, **p < 0.01, ***p < 0.001). (A–G) Data is representative of 3 (A–E) or 5 (F, G) independent experiments.
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The NT-GSDMD fragment was not detected in cell lysates of
cells treated with any of the endocytosis inhibitors (Figure 4E).
This shows that inhibition of endocytosis reduced downstream
caspase 1 activity and prevented processing of GSDMD.
Endocytosis inhibitors did not impair IL-1b secretion in
general, since neither IL-1b secretion nor cell death were
affected by these inhibitors when cells were stimulated with
nigericin (Figures 4F, G). Thus, IL-1b secretion following
complement-mediated inflammasome activation is specifically
dependent on endocytosis of the MAC.

In endothelial cells, endocytosis of the MAC results in the
recruitment of various proteins including NF-kB inducing kinase
(NIK) that can phosphorylate and activate the NLRP3 sensor to
assemble the inflammasome complex (16, 17, 33). To investigate
whether NIK is involved in inflammasome activation in MDMs,
cells were treated with LPS for 3 hrs, followed by the MAC
incorporating C9-AF647 for the indicated time (Supplementary
Figure 5A). Treatment with the MAC resulted in a change of
localization of NIK (Supplementary Figures 5A, B). Specifically,
the relative abundance of NIK in the cytoplasm increased from
early time points after stimulation with the MAC and was
decreased after 90 mins, reaching similar levels to cells treated
only with LPS (Supplementary Figures 5A, B). Whilst NIK
localization clearly changed over time, we did not detect
colocalization with C9 (Supplementary Figure 5C) suggesting
that the MAC and NIK may not directly associate.

MAC-Internalization Results in Disruption
of the TGN
The dispersion of the trans-Golgi network (TGN) and the
recruitment of NLRP3 to the dispersed TGN have been
described as upstream events to NLRP3 inflammasome
assembly, with multiple inflammasome activators, including
nigericin (34). Thus, we next tested if MAC-mediated
inflammasome activation is also preceded by dispersion of the
TGN. MDMs were treated with LPS followed by the MAC,
including the labelled form of C9 (C9-AF647) as previously, for
30, 90 or 180 mins, or nigericin for 45 mins. Cells were then fixed
and stained with an Ab against TGN46, a resident membrane
protein of the TGN. Different structures of the TGN were
revealed by this stain and thus, we classified each cell as
exhibiting one of three specific conformations: (i) an intact
TGN (iTGN), characterized by a compact single structure;
(ii) a fragmented TGN (fTGN), characterized by various
stranded structures; or (iii) a dispersed TGN (dTGN),
characterized by multiple granular-like dispersed formations
(examples shown in Figure 5A).

The dispersed TGN structure was observed in LPS-primed
MDMs treated with either the MAC or nigericin but not in
unstimulated cells (Figures 5B, C). This establishes that either
type of stimulation triggers this phenomenon for inflammasome
activation, and indeed provides further evidence of the MAC to
be able to activate the NLRP3 inflammasome. Except in cells
stimulated with nigericin, the percentage of cells with fTGN was
very similar across conditions (Figure 5D). The percentage of
cells exhibiting a dTGN was increased in MAC-treated cells from
Frontiers in Immunology | www.frontiersin.org 9
30 mins of stimulation, although not to the same extent as
nigericin-treated cells (Figure 5B). The percentage of cells with
dTGN remained similar after 90 mins of stimulation (25.5 ± 9%
at 30 mins, 25.8 ± 18.9% at 90 mins) and was reduced by 180
mins (18.7 ± 7.3%) (Figure 5B). This suggests that dispersion of
the TGN occurs soon after internalization of the MAC.
Inhibition of MAC endocytosis using nystatin (Nys) reduced
dispersion of the TGN (Figures 5E, F). However, TGN
dispersion did not decrease with the use of the NLRP3
inhibitor MCC950 (Figures 5E, F). Thus, TGN dispersion
occurs downstream of MAC internalization and upstream of
NLRP3 inflammasome assembly. Together, these data establish
that the MAC can be internalized by human macrophages into
EEA1+ endosomes, which results in disruption of the TGN, the
assembly of the NLRP3 inflammasome, caspase 1 activation,
GSDMD processing and secretion of IL-1b (Figure 6).
DISCUSSION

The terminal pathway of the complement system plays an
important role in the development of multiple IL-1b-mediated
diseases. For instance, C5b-9 is significantly increased in the
serum of patients with bacterial sepsis (19, 20) and in the plasma
and synovial fluid of patients with rheumatoid arthritis and
osteoarthritis (18, 35, 36). However, whether the terminal
complement complex directly impacts macrophage secretion of
IL-1b has not been established. Here, we show that formation of
the MAC triggers NLRP3-dependent IL-1b secretion providing a
link between the terminal pathway of the complement system
and IL-1b release in human macrophages. As inflammation and
complement activation are intricately linked, this mechanism is
likely to be involved in a range of acute and chronic
inflammatory diseases.

Specifically, we found that sequential addition of the
complement proteins C5b6, C7, C8 and C9 in serum-free
media triggered NLRP3-dependent IL-1b release in human
macrophages demonstrating that the MAC can activate the
inflammasome. MAC-mediated NLRP3 inflammasome
activation has been previously described in lung epithelial cells,
endothelial cells and myeloid cells (14–16, 37). As well as using
different cell types, these prior studies used serum as a source of
complement. Bioactive molecules and growth factors present in
serum, such as complement component 5a or fibroblast growth
factor (38, 39), could enhance MAC-mediated inflammasome
responses. Thus, our data clarifies that the MAC can activate the
inflammasome independently of other serum components and
more importantly, that human macrophages are activated in this
way, being a vital source of this cytokine in the human body.

Phagocytosis of particles opsonized by complement-
containing serum can trigger IL-1b release in human
macrophages (37). However, our data show that deposition of
the MAC can directly trigger caspase 1 activation, GSDMD
processing and IL-1b secretion in the absence of phagocytosis.
This gives a broader role for this complex in promoting
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proinflammatory responses, including in the context of sterile
inflammation when inflammasome priming is provided by
endogenous DAMPs such as amyloids aggregates and
cholesterol crystals (40). Moreover, the MAC triggers IL-1b
secretion in the absence of cell death, suggesting that it drives
macrophages into a state of hyperactivation, in which they
secrete IL-1b while maintaining viability (5). Hyperactive
macrophages secrete less IL-1b than macrophages undergoing
pyroptosis, which fits with our observation that IL-1b secretion
upon stimulation with the MAC occurs to a lesser extent than in
nigericin-stimulated cells. Importantly, low levels of IL-1b are
able to activate downstream signaling pathways in target cells
Frontiers in Immunology | www.frontiersin.org 10
(41–45) suggesting that the levels of MAC-mediated
inflammasome activation and IL-1b release seen in our
experiments can be biologically important.

Pro-IL-1b is not considered biologically active. However,
proteases derived from neutrophils and pathogens such as
S. aureus are able to process pro-IL-1b into active molecules
(46, 47). Specifically, in models of acute arthritis, proteinase 3
from neutrophils can cleave pro-IL-1b (48) and MAC deposition
is known to be elevated in the context of arthritis (17, 18). Thus,
the high levels of pro-IL-1b secretion observed after stimulation
with the MAC can be relevant both in the context of sterile
inflammation and during infection.
A

D

B C

E

F

FIGURE 5 | Endocytosis of the MAC triggers disruption of the TGN. (A–D) Human MDMs were treated with vehicles or primed with 1 µg/mL LPS for 3 hrs followed by
stimulation with 10 µg/mL anti-CD59 mAb, C5b6, C7, C8 and C9 labelled with AF-647 (MAC) for the indicated time or nigericin (Nig) for 45 mins. (E, F) Human MDMs
were treated with vehicles or primed with LPS and the MAC for 3 hrs in the presence or absence of 0.1 µg/mL nystatin (Nys) or 1 µM MCC950. (A) Representative
confocal images of the different TGN conformations: intact TGN (iTGN), fragmented TGN (fTGN) and dispersed TGN (dTGN). (B, E) Percentage of cells with dTGN.
(C) Representative confocal images of the results analyzed in panel (B). (F) Representative confocal images of the results analyzed in panel (E). (C, F) TGN46 (green) and
C9 (red) and brightfield images (gray). Dashed lines represent cell outlines and scale bars are 10 µm. (D) Pie charts representing the percentage of cells with dTGN, fTGN
and iTGN in each condition. (B, E) Data is plotted as mean ± SD, each color represents a matched donor and statistical significance was measured by Friedman’s test
(*p < 0.05, **p < 0.01, ***p < 0.001). (B–E) Data is representative of 3 (E, F) or 4 (B–D) independent experiments.
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Intracellular LPS can activate caspases 4 and 5 that in turn
activate the NLRP3 inflammasome (49, 50). Here, macrophages
were primed with LPS prior to MAC treatment. LPS was washed
off before MAC stimulation. However, residual levels of LPS could
feasibly enter the cell through the MAC and activate caspases 4
and 5. LPS from gram-negative bacteria can activate the
complement cascade (51, 52). Therefore, determining whether
the entrance of LPS through MAC pores leads to the activation of
caspases 4 and 5 and downstream signaling pathways would be
interesting to explore further in the context of infection.

In general, mechanisms by which complement activates cells
are complex, multi-faceted and vary by cell type. MAC formation
in human lung epithelial cells triggers increased cytosolic Ca2+

and loss of membrane potential in the mitochondria, with both
processes being suggested to be responsible for the activation of
the NLRP3 inflammasome (15). Here, we found that, in human
macrophages, the MAC is internalized in EEA1+ endosomes
from early time points and that endocytosis is required for
Frontiers in Immunology | www.frontiersin.org 11
inflammasome activation. This suggests that ion fluxes caused
by MAC deposition in the cell surface membrane might not be
sufficient to activate the inflammasome in macrophages but may
trigger the internalization of the complex that in turn initiates
inflammasome activation. In support of this, dispersion of the
trans-Golgi network (TGN), an event that occurs with canonical
NLRP3 inflammasome assembly (34), is triggered only upon
internalization of the MAC. Previous work has established that
other pore-forming toxins including a-haemolysin and
streptolysin activate the NLRP3 inflammasome (53). These
toxins are also known to be removed from the cell membrane
through different mechanisms, including endocytosis (40, 54).
Thus, it is possible that internalization of a pore-forming
complex is, broadly, able to trigger inflammasome activation.

In response to antibody-mediated complement activation,
endothelial cells internalize the MAC in Rab5+ and EEA1+
early endosomes, which results in the recruitment of NLRP3 in
a process involving NF-kB–inducing kinase (NIK) (16, 17, 33).
FIGURE 6 | A proposed model for MAC-mediated NLRP3 inflammasome activation in human macrophages. Formation of the MAC in the cell membrane triggers its
internalization via EEA1+ endosomes. Endocytosis of the MAC leads to dispersion of the trans-Golgi network (TGN) and to the assembly of the NLRP3
inflammasome. The roles of TGN dispersion as well as any direct involvement of MAC components on inflammasome assembly remain to be elucidated. Within the
NLRP3 complex, caspase 1 (Casp-1) becomes active and cleaves GSDMD into its pore-forming subunit, NT-GSDMD, and pro-IL-1b into its active form IL-1b.
Multiple NT-GSDMD subunits assemble in the cell membrane to form GSDMD pores resulting in the release of IL-1b to the extracellular milieu.
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We did not observe colocalization of NIK and C9 at time points
where C9 localized to early endosomes or to the inflammasome
speck. However, the observation of a change in localization of
NIK, going from the nucleus to the cytoplasm after stimulation
with the MAC could reflect a role for NIK in MAC-mediated
NLRP3 inflammasome assembly in human macrophages as
shown in endothelial cells (16, 17, 33).

In retinal epithelial cells, MAC internalization in endosomes
and subsequent migration to lysosomes for degradation
contributes to the reduction of lytic effects of membrane-bound
MAC (29). Podocytes target the MAC for degradation through the
autophagic-lysosomal pathway, with the expression of the
autophagy markers LC3 and p62 enhanced during this process
(55). In THP1 cells, LC3, p62 and ASC are found together upon
NLRP3 inflammasome stimulation (56, 57). Overall, this suggests
a crosslink between the autophagic-lysosomal pathway in the
NLRP3 and the MAC signaling cascades. In addition,
internalization of particulate matter such as silica or alum can
lead to lysosomal disruption and K+ efflux, leading to assembly of
the inflammasome (58, 59). Given that MAC endocytosis is key to
triggering inflammasome assembly in human macrophages and
that the level of intracellular C9 is reduced over time, this indicates
that the MAC could be targeted for degradation through the
lysosomal pathway as in podocytes and retinal epithelial cells. As
such, MAC internalization could result in lysosomal damage and
subsequent activation of the inflammasome.

It is also possible that disruption of the TGN triggered by MAC
internalization plays a role in inflammasome assembly. Endosomes
constantly exchangecargowith theTGNandEEA1can localize to the
TGN in various cell types (60). In HeLa cells expressing exogeneous
NLRP3 and EEA1, these proteins colocalized with the TGN protein
TGN38 upon stimulation with NLRP3 activators (34) indicating the
interaction between the endosomal compartment, the TGN and the
NLRP3 sensor. NLRP3 can be recruited to the TGN by interaction
with phosphatidylinositol-4-phosphate that is exposed in the
dispersed TGN (34). In macrophages, NLRP3 activators also
trigger the recruitment of mitochondria-associated endoplasmic
reticulum membranes (MAMs) to the Golgi. At these MAMs,
NLRP3 is phosphorylated leading to its activation (61, 62). Then,
upon activation at theMAMs, NLRP3 sensors can be transported to
the centrosome where inflammasome assembly occurs upon
recruitment of ASC and caspase 1 (56). Considering that our
findings show that dispersion of the TGN occurs before
inflammasome activation, interaction of MAC-containing EEA1+
endosomes with the TGN may trigger its dispersion leading to
NLRP3 recruitment and the consequent assembly of the
inflammasome complex. However, further investigation using
specific cell compartment markers is needed to determine precisely
where the MAC locates within the cell.

These details are important because the complement system
plays a role in the pathogenesis of multiple pro-inflammatory
diseases characterized by increased levels of IL-1b, including septic
shock and rheumatoid arthritis (17–20, 63). Direct or indirect
blocking of IL-1b using drugs, such as anakinra or canakinumab,
has been used in the treatment of such inflammatory diseases (1).
However, the effectiveness of IL-1b blockade is context dependent,
varying among patients and diseases (1). Considering that the
Frontiers in Immunology | www.frontiersin.org 12
complement system plays a role in the development of these
pathologies and that the MAC triggers IL-1b secretion in human
macrophages, one of the main sources of this cytokine, future
therapies for IL-1b-mediated diseases could consider targeting the
upstream events that trigger cytokine secretion. Specifically, the
growing mechanistic evidence of how the MAC modulates
inflammation through activation of the inflammasome may lay
the foundations for a broader application of anti-MAC therapies in
the treatment of inflammatory diseases in which the complement
system and IL-1b play an important role, including osteoarthritis,
rheumatoid arthritis, and diseases of the central nervous system.
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