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The active form of vitamin D3 (1,25(OH)2D3) has a great impact on T cell effector function.
Thus, 1,25(OH)2D3 promotes T helper 2 (Th2) and regulatory T (Treg) cell function and
concomitantly inhibits Th1 and Th17 cell function. Thus, it is believed that vitamin D exerts
anti-inflammatory effects. However, vitamin D binding protein (DBP) strongly binds both
1,25(OH)2D3 and the precursor 25(OH)D3, leaving only a minor fraction of vitamin D in the
free, bioavailable form. Accordingly, DBP in physiological concentrations would be
expected to block the effect of vitamin D on T cells and dendritic cells. In the present
study, we show that pro-inflammatory, monocyte-derived M1 macrophages express very
high levels of the 25(OH)D-1a-hydroxylase CYP27B1 that enables them to convert 25
(OH)D3 into 1,25(OH)2D3 even in the presence of physiological concentrations of DBP.
Co-cultivation of M1 macrophages with T cells allows them to overcome the sequestering
of 25(OH)D3 by DBP and to produce sufficient levels of 1,25(OH)2D3 to affect T cell effector
function. This study suggests that in highly inflammatory conditions, M1 macrophages
can produce sufficient levels of 1,25(OH)2D3 to modify T cell responses and thereby
reduce T cell-mediated inflammation via a vitamin D-mediated negative feed-back loop.

Keywords: Vitamin D, DBP, macrophages, T cells, cytokines
INTRODUCTION

Upon antigen recognition, naïve CD4+ T helper (Th) cells become activated and differentiate into
various T cell subsets defined by the lineage-specific master transcription factors they express and the
cytokines they produce (1). Several studies have demonstrated that the active form of vitamin D, 1,25
(OH)2D3, modulates the effector function of Th cells in vitro. Thus, 1,25(OH)2D3 promotes Th2 and
Treg cell effector function by increasing expression of the transcription factors GATA3 and FoxP3 and
the production of IL-4, IL-5, IL-13 and IL-10 (2–11), while it concomitantly inhibits Th1 and Th17 cell
effector function by reducing expression of Tbx21 and RORgt and the production of IFN-g and IL-17A
(5–9, 12–18). Thus, it is believed that vitamin D exerts anti-inflammatory roles during immune
responses in vivo, which is in line with the observations that vitamin D deficiency is associated with
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increased risk of autoimmune disorders such as lupus
erythematous, multiple sclerosis and type I diabetes mellitus
(19–21). The inactive precursor of 1,25(OH)2D3 is 25-
hydroxyvitamin D3 (25(OH)D3) and its serum concentration is
regarded as the best clinical indicator for the vitamin D status of a
subject (22). Serum concentrations of 25(OH)D3 is normally
between 50 and 125 nM, whereas the serum concentration of
1,25(OH)2D3 is approximately 1000-fold lower being between
60-110 pM. It is estimated that more than 99% of 25(OH)D3

and 1,25(OH)2D3 is bound to the vitamin D binding protein
(DBP) and albumin with less than 1% in the free form (23, 24).
By use of a mathematical model, it was recently predicted that
at 50 nM 25(OH)D3 and 100 pM 1,25(OH)2D3 only 0.1% of
25(OH)D3 and 1.5% of 1,25(OH)2D3 were in the free form in vivo
(25). Traditionally, the function of converting 25(OH)D3 into
1,25(OH)2D3 has been ascribed to the proximal tubular cells of
the kidneys due to their expression of the DBP transporters
megalin and cubulin and the 25(OH)D3-1a-hydroxylase
CYP27B1 (26, 27). Interestingly, immune cells, such as T cells
and monocyte-derived cells, also express CYP27B1, which in
theory allows them to produce 1,25(OH)2D3 (11, 28, 29).
However, these cells do not have the ability to endocytose DBP
viamegalin/cubulin, meaning that only the very limited fraction of
the free form of 25(OH)D3 is available for immune cells for the
conversion to 1,25(OH)2D3 (10, 30). We and others have shown
that activated CD4+ T cells express CYP27B1 in sufficient high
concentrations to convert 25(OH)D3 to 1,25(OH)2D3 in vitro
(10, 11, 31). Likewise, monocytes and monocyte-derived
dendritic cells express CYP27B1 and can convert 25(OH)D3 to
1,25(OH)2D3 in vitro (30, 32). Importantly, addition of DBP even
in concentrations below the physiological concentration of ∼5 µM
abolished the conversion of 25(OH)D3 to 1,25(OH)2D3 and the
impact of 25(OH)D3 on T cell responses. These studies suggested
that the presence of DPB in vivo excludes the possibility for
immune cells to convert 25(OH)D3 to 1,25(OH)2D3 and thereby
to be affected by vitamin D. However, several observations indicate
that 1,25(OH)2D3 can be generated in vivo even in high amounts
during some types of immune responses involving granulomas
containing high numbers of activated macrophages and T cells.
This has been described in patients with granulomatous disorders,
most commonly in sarcoidosis (33–35) and tuberculosis (36), and
it results in a condition characterized by normal 25(OH)D3,
elevated 1,25(OH)2D3, hypercalcemia and hypercalciuria that
ultimately may lead to renal failure.

The primary cellular components of granulomas are
macrophages and T cells. Macrophages can be broadly
classified in two main groups, namely M1 macrophages that
exhibit potent microbicidal properties and promote strong IL-12-
mediated Th1 responses, and M2 macrophages that support Th2
responses (37). Granulomas can be dominated by both M1 and
M2 macrophages (38). It has been suggested that macrophages
express more CYP27B1 than T cells (28) and that the expression
levels of CYP27B1 is detrimental for 1,25(OH)2D3 production
in vivo (32). However, the expression levels of CYP27B1 in
M1 and M2 macrophages and their capability to convert
25(OH)D3 to 1,25(OH)2D3 in the presence of DBP remain to
be determined.
Frontiers in Immunology | www.frontiersin.org 2
MATERIALS AND METHODS

Reagents and Chemicals
25(OH)D3 (Cat: BML-DM-100-0001) was from Enzo Life
Sciences, Inc., Ann Arbor, MI. 25(OH)D3 stock solution of 2.5
mM was prepared in > 99.5% anhydrous ethanol. DBP (Cat:
A50674H) was from Meridian Life Science and diluted in sterile
PBS. TNFa (Cat: 210-TA), IL-1b (Cat: 201-LB), IL-6 (Cat: 206-
IL) and IL-23 (Cat: 1290-IL) were purchased from R&D systems.
Galunisertib (Cat: LY2157299) was purchased from Selleckchem
and the AhR agonist FICZ (Cat: 5304) was from TOCRIS Inc.

Monocyte-Derived M1 and
M2 Macrophages
All procedures involving the handling of human samples in this
study were in accordance with the principles described in the
Declaration of Helsinki and the samples were collected and
analysed according to ethically approval by the Regional
Ethical Committee of the Capital Region of Denmark (H-
16033682). Human monocytes were purified from PBMC using
Easysep Human Monocyte Enrichment Kit (Cat:19059 Stemcell
Technologies) according to the manufacturer’s protocol. To
generate M1 macrophages, 1.5 x 106 monocytes were cultured
in flat-bottomed 6-well culture plates (Cat: 140675, Nunc) for six
days in 3 ml of M1 medium (RPMI-1640 medium (Cat: R5886,
Sigma Aldrich) supplemented with 1% Penicillin/Streptomycin,
1% L-Glutamine, 10% heat-inactivated, endotoxin-free fetal
bovine serum (FBS) (Cat: 10082-147, Gibco) and GM-CSF
(50 ng/ml, Cat: AF-HDC, Peprotech)). To generate M2
macrophages, 1.5 x 106 monocytes were cultured in flat-
bottomed 6-well culture plates (Cat: 140675, Nunc) for six days
in 3 ml of M2 medium (RPMI-1640 medium (Cat: R5886, Sigma
Aldrich) supplemented with 1% Penicillin/Streptomycin, 1% L-
Glutamine, 10% heat-inactivated, endotoxin-free FBS, GM-CSF
and IL-4 (both 50 ng/ml, Cat: AF-HDC, Peprotech)). After three
days, fresh M1 and M2 medium was added to the cultures. On
day five, M1 macrophages were activated with IFNg (50 ng/ml)
(Cat: 285-IF-100/CF, R&D Systems) and LPS (50 ng/ml) (Cat:
5568, Sigma-Aldrich) and M2 macrophages were activated with
LPS (50 ng/ml) (Cat: 5568, Sigma-Aldrich) for 24 hours. At day 6,
activated M1 and M2 macrophages were washed in PBS and
resuspended in X-VIVO 15 for mono- and co-cultures. For
mono-culture, 5 x 105 of M1 or M2 macrophages per ml were
cultured in flat-bottomed, 24-well plates for 0-120 h in the
presence of the indicated concentrations of 25(OH)D3 and
DBP. For co-culture experiments, 1 x 106 naïve human CD4+

T cells were co-cultured with 1 x 105 allogeneic M1 or M2
macrophages per ml in flat-bottomed, 24-well culture plates in X-
VIVO 15 medium in the presence of the indicated concentrations
of 25(OH)D3 and DBP.

T Cell Isolation and Activation
Peripheral blood mononuclear cells (PBMC) were purified from
the blood of healthy donors by density gradient centrifugation
using Lymphoprep (Axis-Shield, Oslo, Norway). Subsequently,
naive CD4+ T cells were isolated by negative selection using
Easysep Human Naive CD4+ T cell Enrichment Kit (Cat:19155
September 2021 | Volume 12 | Article 722806
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Stemcell Technologies) according to the manufacturer’s protocol.
In short, PBMC were incubated with antibodies targeting
undesired cells, and subsequently magnetic particles were used
to bind desired cells. Hereafter, these cells were retained using an
EasySep Magnet (Cat:18000, Stemcell Technologies). The
resulting cell population consisted of > 95% naïve CD4+ T cells
(39). The obtained cells were cultured at a concentration of 1 x 106

cells/ml serum-free X-VIVO 15 medium (Cat: BE02-060F, Lonza,
Verviers, Belgium) and activated with macrophages in a 1:10
macrophage:T cell ratio or with Dynabeads Human T-activator
CD3/CD28 (Cat:111.31D, Life Technologies, Grand Island, NY)
in a 2:5 bead:T cell ratio for 96 hours in flat-bottomed 24 well
culture plates (Cat:142475, Nunc).

RT-qPCR
mRNA levels for various targets were measured by RT-qPCR.
Isolated cells were lysed in TRI reagent (Cat: T9424, Sigma
Aldrich) and mixed with 1-bromo-3-chloropropane (BCP)
(Cat: B9673, Sigma Aldrich). The aqueous phase containing
the RNA sample was precipitated using isopropanol
supplemented with glycogen (Cat: 10814-010, Invitrogen),
washed with ethanol and dissolved in RNase free water. Next,
the synthesis of cDNA was performed with equal amounts of
total RNA using the High-Capacity RNA-to-cDNA™ Kit from
Applied Biosystems (Cat: 4387406) according to manufacturer’s
protocol. For RT-qPCR, 12.5 ng of cDNA was mixed with
TaqMan® Universal Master Mix II with UNG (Cat: 4440038,
Applied Biosystems), the control eukaryotic 18 S rRNA primer
(Cat: 1509311, Applied Biosystems), the target primer and
RNase/DNase free water for normalization. The following
target primers were used: VEGFA (Hs00900055_m1), CCR7
(Hs01013469_m1), CD80 (Hs01045161_m1), IL-1b
(Hs00907314_m1), MRC1 (Hs07288635_g1), PDGFB
(Hs00966522_m1), TIMP3 (Hs00165949_m1), IL-6
(Hs00985639_m1) , TNF (Hs01113624_g1) , IL-12A
(Hs01073447_m1), CYP2R1 (Hs01379776_m1), CYP27A1
(Hs01017992_m1), CYP27B1 (Hs01096154_m1), Tbx21
(Hs00203436_m), GATA3 (Hs00231122_m1), FoxP3
(Hs01085834_m1) and RORC (Hs01076122_m1) all from
Applied Biosystems. The samples were run on a LightCycler ®

480 II from Roche for real-time PCR amplification.

Cytokine Measurements
IFNg, IL-4, -5, -10, -13 and -17A were measured by ELISA
according to the manufacturer´s instruction (IFNg (Cat: 88-
7316-88), IL-4 (Cat: 88-7046-88), IL-5 (Cat: 88-7056-88), IL-13
Cat: 88-7439-88 and IL-17A (Cat: 88-7176-88) all from
ThermoFisher Scientific).

1,25(OH)2D3 Measurements
To determine the ability of the macrophages and T cells to
convert 25(OH)D3 into 1,25(OH)2D3 in mono- and co-cultures,
the concentration of 1,25(OH)2D3 in the supernatants of cells
cultured in the presence of 25(OH)D3 was measured using the
1,25-Dihydroxy Vitamin D EIA kit (Cat: AC-62F1,
Immunodiagnostics Systems) as previously described (11).
Frontiers in Immunology | www.frontiersin.org 3
In short, supernatants were incubated on immunocapsules
containing anti-1,25(OH)2D3 in order to extract 1,25(OH)2D3.
Following extraction, 1,25(OH)2D3 was eluded into borosilicate
tubes, and the elution reagent was evaporated under gentle flow
of liquid nitrogen. 1,25(OH)2D3 was subsequently resuspended
in buffer and concentrations were determined by a competitive
ELISA with biotin-coupled 1,25(OH)2D3.

Statistical Analysis
Two-tailed, paired Student’s t-tests were used to compare
responses in the same group of cells treated in two different
ways. In other cases, one- or two-way ANOVA tests were used as
indicated in the figure legends. Significance levels are indicated
for the adjusted p-values as *,#,¤,$ p < 0.05; **,##,¤¤,$$ p < 0.01; ***,
###,¤¤¤,$$$ p < 0.005; ****,####,¤¤¤¤,$$$$ p < 0.001. Data are
presented as mean values with one standard error of the mean
(SEM). The number of donors and the number of independent
experiments are indicated in the figure legends.
RESULTS

Differentiation of Human Monocyte-
Derived M1 and M2 Macrophages In Vitro
We differentiated monocytes towards M1 macrophages with
GM-CSF followed by activation with LPS and IFNg and
towards M2 macrophages with GM-CSF and IL-4 followed by
activation with LPS as previously described (40, 41). We
subsequently measured the mRNA expression levels of the four
pro-inflammatory genes VEGF, CCR7, CD80 and IL1B and the
three anti-inflammatory genes MRC1, PDGFB and TIMP3 that
have been identified to be differentially expressed in M1 and M2
macrophages (40, 41). In line with previous studies, we found
that the pro- and anti-inflammatory genes were higher expressed
in M1 and M2 macrophages, respectively (Figure 1A). This was
also reflected in the M1/M2 score as defined in (41) (Figure 1B).
We next determined the expression of pro-inflammatory
cytokines and enzymes involved in 1,25(OH)2D3 synthesis in
resting and activated M1 and M2 macrophages. We did not find
any significant differences in the expression levels of the selected
genes in resting M1 and M2 macrophages (Figures 1C–H). In
contrast, activated M1 macrophages expressed significantly more
IL-6 and most importantly CYP27B1 than activated M2
macrophages (Figures 1C–H). Taken together, these data
demonstrated that activated, pro-inflammatory M1
macrophages express more CYP27B1 than activated M2
macrophages, indicating that M1 macrophages might have the
highest capacity to convert 25(OH)D3 to 1,25(OH)2D3.

M1 Macrophages Strongly Up-Regulate
CYP27B1 and Produce More 1,25(OH)2D3
Than M2 Macrophages and CD4+ T Cells
To determine the capacity to convert 25(OH)D3 to 1,25(OH)2D3,
we activated M1 and M2 macrophages and naïve CD4+ T cells
for 0 – 120 hours in the presence of 25(OH)D3 and measured
CYP27B1 mRNA levels and the production of 1,25(OH)2D3 in
September 2021 | Volume 12 | Article 722806

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lopez et al. M1 Macrophages and Vitamin D
parallel. We found that M1 macrophages up-regulated CYP27B1
more quickly and strongly than M2 macrophages and T cells
(Figure 2A). In line with the stronger CYP27B1 expression in
M1 macrophages, we found a much higher production of 1,25
(OH)2D3 in M1 macrophages compared to M2 macrophages and
CD4+ T cells (Figure 2B).

T Cells Enhance the Production of 1,25
(OH)2D3 in M1 and M2 Macrophages
Previous studies have demonstrated that activated T cells can
enhance the expression of CYP27B1 in monocytes, dendritic cells
and macrophages (30, 42). To determine whether T cells have the
ability to enhance CYP27B1 and thereby the conversion of 25(OH)
D3 to 1,25(OH)2D3 in M1 andM2 macrophages, we compared the
production of 1,25(OH)2D3 in mono-cultures of activated M1
Frontiers in Immunology | www.frontiersin.org 4
macrophages, M2 macrophages and T cells with co-cultures of T
cells with activated, allogeneic M1 or M2 macrophages. We
cultured the cells for 96 hours in the presence of 25(OH)D3 and
subsequently measured the concentration of 1,25(OH)2D3 in the
supernatants. We found that T cells significantly increased the
production of 1,25(OH)2D3 in the supernatants of co-cultures with
M1 and M2 macrophages (Figure 3A).

Previous studies found that DBP in sub-clinical concentrations
completely inhibited the conversion of 25(OH)D3 to 1,25(OH)
2D3 in T cells and dendritic cells (10, 30). To determine whether
the strong expression of CYP27B1 in M1 macrophages was
sufficient to allow for an effective conversion of 25(OH)D3 to
1,25(OH)2D3 even in the presence of DBP, we compared the
production of 1,25(OH)2D3 in activated M1 macrophages, M2
macrophages and T cells in mono- and co-cultures. We cultured
A B

D E

F G H

C

FIGURE 1 | Differentiation of human monocyte-derived M1 and M2 macrophages in vitro. (A) Relative mRNA expression of M1 (VEGF, CCR7, CD80 and IL-1b) and
M2 signature markers (MRC1, PDGFB and TIMP3) in M1 and M2 macrophages activated with LPS and IFNg and LPS, respectively. (B) M1/M2 score in activated
M1 and M2 macrophages. Data (mean + SEM) were obtained from two independent experiments with four donors and tested by two-tailed, paired Student’s t-tests.
Relative mRNA expression of (C) IL-6, (D) TNF, (E) IL-12A, (F) CYP27A1 (G) CYP2R1and (H) CYP27B1 in resting and activated M1 and M2 macrophages. The
data in (C–H) are normalized to the values obtained from non-stimulated M2 macrophages. Data (mean + SEM) were obtained from three independent experiments
with five donors and tested by one-way ANOVA with post hoc multiple comparisons test (Tukey’s).
September 2021 | Volume 12 | Article 722806
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the cells for 96 h in the presence of 25(OH)D3 and increasing
concentrations of DBP and subsequently measured the
concentration of 1,25(OH)2D3 in the supernatants. As
previously demonstrated, we found that DBP in physiological
concentrations completely abolished 1,25(OH)2D3 production in
isolated T cells and M2 macrophages. However, M2 macrophages
in co-culture with T cells, M1 macrophages in mono-cultures
and, most obvious, M1 macrophages in co-culture with T cells,
produced significant amounts of 1,25(OH)2D3 even in the highest
concentration of DBP tested (Figure 3B).
Frontiers in Immunology | www.frontiersin.org 5
Co-Cultures of M1 Macrophages and T
Cells Produce Sufficient 1,25(OH)2D3 to
Affect T Cell Effector Function in the
Presence of High Concentrations of DBP
To determine whether M1 and M2 macrophages had the
capability to produce sufficient amounts of 1,25(OH)2D3 to
affect T cell effector function in the presence of DBP, we
activated T cells with Dynabeads Human T-activator CD3/
CD28 in mono-cultures or with activated, allogeneic M1 or M2
macrophages for 96 hours in the presence of 25(OH)D3 and
A B

FIGURE 2 | M1 macrophages strongly up-regulate CYP27B1 and produce more 1,25(OH)2D3 than M2 macrophages and CD4+ T cells. Relative mRNA expression of
CYP27B1 (A) and production of 1,25(OH)2D3 (B) in M1 and M2 macrophages and CD4+ T cells activated with LPS and IFNg, LPS and Dynabeads Human T-activator
CD3/CD28, respectively, for 0 to 120 hours in the presence of 100 nM 25(OH)D3. Data in (A) are normalized to CYP27B1 in CD4+ T cells at time zero and were obtained
from three independent experiments with nine donors (3 T cell donors, 3 M1 macrophage donors and 3 M2 macrophage donors). Data in (B) were obtained from
three independent experiments with 17 donors (6 T cell donors, 6 M1 macrophage donors and 5 M2 macrophage donors). *M1 macrophages versus T cells; #M1
macrophages versus M2 macrophages; ¤ M2 macrophages versus T cells. (A, B) Data (mean ± SEM) were tested by use of two-way ANOVA with post hoc multiple
comparisons test (Tukey’s).
A B

FIGURE 3 | T cells enhance the production of 1,25(OH)2D3 in M1 and M2 macrophages. (A) Production of 1,25(OH)2D3 in mono-cultures of activated CD4+ T
cells, M1 and M2 macrophages and in co-cultures of CD4+ T cells and M1 and M2 macrophages cultured in the presence of 100 nM 25(OH)D3 for 96 hours.
Data (mean ± SEM) were obtained from five independent experiments with 12 donors (8 T cells donors 6 M1 macrophage donors, 12 M2 macrophage donors,
6 donor pairs for T cells in co-culture with M1 macrophages (2 T cell donors and 3 M1 macrophage donors mixed to 6 combinations) and 9 donor pairs for T
cells in co-culture with M2 macrophages (3 T cell donors and 3 M2 macrophage donors mixed to 9 combinations) and were tested by use of one-way ANOVA
with post hoc multiple comparisons test (Tukey’s). (B) Production of 1,25(OH)2D3 in mono-cultures of activated CD4+ T cells, M1 and M2 macrophages and in
co-cultures of CD4+ T cells and M1 and M2 macrophages cultured in the presence of 100 nM 25(OH)D3 and DBP at the indicated concentrations for 96 hours.
Data (mean ± SEM) were obtained from three independent experiments with 8 donors (7 T cells donors 3 M1 macrophage donors, 6 M2 macrophage donors, 6
donor pairs for T cells in co-culture with M1 macrophages (2 T cell donors and 3 M1 macrophage donors mixed to 6 combinations) and 4 donor pairs for T
cells in co-culture with M2 macrophages (2 T cell donors and 2 M2 macrophage donors mixed to 4 combinations) and were tested by use of two-way ANOVA
with post hoc multiple comparisons test (Tukey’s). *T cells + M1 macrophages versus M1 macrophages; #M1 macrophages versus T cells + M2 macrophages;
$T cells + M2 macrophages versus M2 macrophages.
September 2021 | Volume 12 | Article 722806
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increasing concentrations of DBP and subsequently measured
IFNg, IL-4, -5, -10, -13 and -17A in the supernatants by ELISA.
We found that DBP in the highest concentration tested abolished
the effect of 25(OH)D3 on IFNg (Figure 4A), IL-5 (Figure 4B)
and IL-13 (Figure 4C) in T cells in mono-cultures and in co-
cultures with M2 macrophages. However, in co-cultures of T
Frontiers in Immunology | www.frontiersin.org 6
cells and M1 macrophages, sufficient 1,25(OH)2D3 was produce
to allow for 1,25(OH)2D3-mediated inhibition of IFN-g and
stimulation of IL-5 and IL-13 production even in the highest
concentration of DBP tested (Figures 4A–C). We could not
detect IL-4 above the detection limit in any of the cultures.
Likewise, we only detected IL-10 and IL-17A above the detection
A B

D

E F

G

C

FIGURE 4 | Co-cultures of M1 macrophages and T cells produce sufficient 1,25(OH)2D3 to affect T cell effector function in the presence of high concentrations of DBP. Relative
(A) IFN-g, (B) IL-5 and (C) IL-13 concentrations in the supernatant of CD4+ T cells activated in mono-cultures with Dynabeads Human T-activator CD3/CD28 and CD4+ T cells
co-cultured with allogeneic M1 and M2 macrophages activated with LPS and IFNg and LPS, respectively, for 96 hours in the presence of 100 nM 25(OH)D3 and DBP at the
indicated concentrations. Each series of data was normalized to the cytokine production in the presence of 100 nM 25(OH)D3 and absence of DBP. Relative expression of
Tbx21 (D), GATA3 (E), FoxP3 (F) and RORC (G) in CD4+ T cells co-cultured with allogeneic M1 and M2 macrophages activated with LPS and IFNg and LPS, respectively, for
96 hours in the presence of 100 nM 25(OH)D3 and DBP at the indicated concentrations. Data (mean ± SEM) were obtained from two to five independent experiments with 6
donors (4 T cells donors, 8 donor pairs for T cells in co-culture with M1 macrophages (4 T cell donors and 2 M1 macrophage donors mixed to 8 combinations) and 6 donor
pairs for T cells in co-culture with M2 macrophages (3 T cell donors and 2 M2 macrophage donors mixed to 6 combinations). The data sets were tested using a one-way
ANOVA with post hoc multiple comparisons test (Dunnett’s) to the cell cultures without DBP. *T cells treated with DBP versus T cells without DBP; #T cells + M2 macrophages
treated with DBP versus T cells + M2 macrophages without DBP; ¤T cells + M1 macrophages treated with DBP versus T cells + M1 macrophages without DBP.
September 2021 | Volume 12 | Article 722806
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limit in T cells in mono-culture but not in co-cultures with M1 or
M2 macrophages (Supplementary Figure 1).

These data supported that more of the active form of vitamin
D was produced in T cell/M1 macrophage co-cultures than in T
cell/M2 macrophage co-cultures in the presence of DBP as
shown in Figure 3. To further analyse whether M1 and M2
macrophages had the capability to produce sufficient amounts of
1,25(OH)2D3 to affect the expression of central transcription
factors in the presence of DBP, we activated T cells with
activated, allogeneic M1 or M2 macrophages for 96 hours in
the presence of 25(OH)D3 and increasing concentrations of DBP
and subsequently measured the expression of Tbx21, GATA3,
FoxP3 and RORC by RT-qPCR. As seen for the cytokines, we
found that vitamin D-regulated expression of Tbx21, GATA3
and FoxP3 was more resistant to DBP in T cell/M1 macrophage
co-cultures than in T cell/M2 macrophage co-cultures
(Figures 4D–F). In line with the non-detectable IL-17A
production in T cells in co-culture with M1 and M2
macrophages, RORC was only weakly expressed and regulated
by 1,25(OH)2D3 in these cultures (Figure 4G). Taken together,
these data supported that co-cultures of T cells and M1
macrophages produced sufficient amounts of 1,25(OH)2D3 to
affect T cell effector function in the presence of high
concentrations of DBP.
DISCUSSION

In this study, we demonstrate that activated pro-inflammatory
M1 macrophages express higher levels of CYP27B1 than M2
macrophages and T cells. This was reflected by the superior
ability of activated M1 macrophages to convert 25(OH)D3 to
1,25(OH)2D3. In addition, we show that T cells could further
enhance the ability of activated M1 and M2 macrophages to
convert 25(OH)D3 to 1,25(OH)2D3. This is in accordance with
previous studies, which found that activated T cells augmented
the expression of CYP27B1 in monocytes, dendritic cells and
macrophages (30, 42). Interestingly, we found that resting
M1 and M2 macrophages expressed similar levels of CYP27B1,
but already 24 h after activation with LPS and IFN-g,
M1 macrophages expressed 5-10 fold more CYP27B1 and
produced 5 times more 1,25(OH)2D3 than M2 macrophages
activated with LPS alone. This suggested that IFN-g played an
important role in the induction of CYP27B1 in M1 macrophages.
Whether IFN-g or other cytokines or alternative forms of
activation could induce similar high levels of CYP27B1 in M2
macrophages as in M1 macrophages would be relevant to
determine in future studies.

DBP plays a key role in the bioavailability of 25(OH)D3 and
1,25(OH)2D3, and it has been calculated that only 0.1% of 25
(OH)D3 and 1.5% of 1,25(OH)2D3 are in the free form in vivo
(25). Mathematical modelling has predicted that 25(OH)D3 even
at 100 nM would have no effect on monocytes in vivo due to the
presence of DBP. Only by increasing the expression of CYP27B1
by a factor 10, an effect of 25(OH)D3 could be detected (32). This
is in good agreement with our observations. We found that
Frontiers in Immunology | www.frontiersin.org 7
mono-cultures of activated T cells and activated M2
macrophages could not convert 25(OH)D3 to 1,25(OH)2D3 in
the presence of 1 µM DBP. In contrast, mono-cultures of
activated M1 macrophages, which expressed ∼10 fold higher
levels of CYP27B1 than activated M2 macrophages, did convert
significant amounts of 25(OH)D3 to 1,25(OH)2D3 even in the
presence of 1 µM DBP. We found that the production of
1,25(OH)2D3 in co-cultures of activated M1 macrophages and
T cells was sufficiently high to affect T cell effector function
even in the presence of 1 µM DBP. Thus, the 25(OH)D3 to
1,25(OH)2D3 conversion was sufficiently efficient to allow for
1,25(OH)2D3-mediated inhibition of IFN-g and stimulation of
IL-5 and IL-13 production in the presence of 1 µM DBP. The
capacity to produce sufficient 1,25(OH)2D3 to affect T cell
effector function was further supported by the observation that
1,25(OH)2D3-mediated regulation of the transcription factors
Tbx21, GATA3 and FoxP3 was more efficient in T cell/M1
macrophage co-cultures than in T cell/M2 macrophage co-
cultures in the presence of DBP.

Previous studies have indicated that high amounts of 1,25
(OH)2D3 can be produced by granulomas in sarcoidosis,
tuberculosis and other granulomatous disorders (33–36). Our
study supports these studies and indicates that it is mainly
granulomas dominated by M1 macrophages and Th1 cells that
produce these high amounts of 1,25(OH)2D3. These kind of
granulomas can cause severe tissue damage and it may be
suggested that the production of 1,25(OH)2D3 is part of a
negative feed-back mechanism to reduce tissue damage, as 1,25
(OH)2D3 both inhibits IFN-g and IL-17A production and
induces a shift from M1 towards M2 macrophages (13–15,
43, 44).
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