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The newborns of women infected with the parasite Trypanosoma cruzi (the agent of
Chagas disease) can be infected either before birth (congenitally), or after birth (as e.g., by
vector route). Congenital Chagas disease can induce high levels of neonatal morbidity and
mortality. Parasite-infected pregnant women transmit antibodies to their fetus. Antibodies,
by opsonizing parasites, can promote phagocytosis and killing of T. cruzi by cells
expressing FcgR, on the mandatory condition that such cells are sufficiently activated in
an inflammatory context. Antibody-dependent enhancement (ADE) is a mechanism well
described in viral infections, by which antibodies enhance entry of infectious agents into
host cells by exploiting the phagocytic FcgR pathway. Previously reported Chagas disease
studies highlighted a severe reduction of the maternal-fetal/neonatal inflammatory context
in parasite-transmitting pregnant women and their congenitally infected newborns.
Otherwise, experimental observations brought to light ADE of T. cruzi infection
(involving FcgR) in mouse pups displaying maternally transferred antibodies, out of an
inflammatory context. Herein, based on such data, we discuss the previously
unconsidered possibility of a role of ADE in the trans-placental parasite transmission,
and/or the development of severe and mortal clinical forms of congenital/neonatal Chagas
disease in newborns of T. cruzi-infected mothers.

Keywords: Trypanosoma cruzi, chagas disease, congenital/neonatal infection, antibodies, FcR, antibody-
dependent enhancement
INTRODUCTION

Antibody-dependent enhancement (ADE) is a mechanism by which certain viral infections are
enhanced in the presence of antibodies mediating entry of infectious agents into host cells by
exploiting the phagocytic FcgR pathway. A lot of studies emphasized the role of ADE in infections
with dengue-, zika-, influenza-, Ebola-viruses, HIV, RSV and more recently coronaviruses (reviewed
in 1). ADE can occur when non-neutralizing antibodies or antibodies at sub-neutralizing levels bind
to viral antigens without blocking or clearing infection. It is particularly relevant in the context of
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pre-existing immunity, when viruses are in the presence of
circulating antibodies resulting from either a previous infection
or maternal transmission to neonates. Interestingly, ADE was
initially mentioned to explain an increased incidence of dengue
hemorrhagic fever in Thai infected infants born to immune
mothers that ostensibly had pre-existing antibodies to dengue
virus (2, 3).

The ADE concept can be extended to infections with
intracellular protozoan parasites and particularly to the infection
with the hemoflagellate Trypanosoma cruzi. This parasite comes in
two forms: the trypomastigote (the free circulating parasite form)
and the amastigote (the intracellular multiplication form) (4). It is
the agent of the tropical Chagas disease (CD), transmitted in
humans by insect vectors, blood transfusion, organ
transplantation, orally (by ingestion of food or liquid
contaminated with T. cruzi), or by maternal-fetal route (5).
Congenital CD (CCD) remains an important global and
neglected public health problem. In the currently 21 endemic
Latin American countries, 1,125,000 women in fertile age are
estimated infected with T. cruzi (mainly since childhood through
insect vector transmission), with an incidence of congenital
infection of 8668 cases/year (6). About 5% of pregnant women
chronically infected with T. cruzi (the most frequent clinical phase
of CD) give birth to infected newborns (7). Through migrations of
Latin American people, cases of CCD are also reported in North
America, Europe, Australia and Japan, where vector transmission
does not occur (or is extremely rare) (8). Beside asymptomatic
cases, T. cruzi-infected newborns can exhibit fever, low birth
weight, prematurity, hepatosplenomegaly, pneumonitis,
premature rupture of membranes, until presenting pejorative
outcomes wi th high leve ls o f neonata l morbid i ty
(meningoencephalitis, myocarditis) and mortality. Left
untreated, the neonatal infection can progress to chronic CD
later in life (susceptible to induce myocardiopathy or digestive
megaviscera) (reviewed in 9, 10).

Here, based on reported human and experimental data from
our team and others, we aim to discuss the previously
unconsidered possibility of a role of ADE in the development
and/or worsening of CD in neonates born to T. cruzi-infected
mothers. Such newborns display maternally derived antibodies
and can be infected either congenitally (as in endemic and non-
endemic areas) or after birth, by another transmission route (as
e.g. by vector route as occurring in LA endemic countries).
ANTIBODY RESPONSES IN
T. CRUZI INFECTION

Humoral immune response in humans as well as experimental T.
cruzi infection in mice is diverse and complex, including both
parasite-specific and unspecific antibodies (Ab) arising from
polyclonal B cell activation. Parasitemia (blood amount of
trypomastigotes) starts to decrease when T. cruzi-specific Ab
reach their highest levels (in the transition from acute to chronic
phase of infection), suggesting their protective role (reviewed in 11).
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Some Ab have neutralizing functions, e.g. against the
glycoproteins protecting the trypomastigotes from the direct
action of complement, likewise allowing parasite lysis (12).
Others Ab inhibit the activity of major virulence factors of T.
cruzi, such as the proteolytic enzyme cruzipain. Still other Ab,
directed against the parasite trans-sialidases (13), allow the
action of anti-a-Gal Ab, another class of lytic Ab, abundantly
produced during human infection (14).

Ab, by opsonizing trypomastigotes, can also mediate parasite
clearance by promoting their phagocytosis and killing by
activated granulocytes, monocytes and macrophages expressing
FcgR (15, 16). Such cell activation, resulting from intracellular
signals transduced upon FcgR crosslinking and interactions
between cytokine(s) and their membrane receptor(s), promotes
the generation of reactive nitrogen species able to kill
extracellular T. cruzi (17).

IgG Ab appear in acute infection and persist life-long during
the chronic infection. IgG1-, followed by IgG3-Ab isotypes are
mainly produced in human infection, whereas IgG2a-, IgG2b-
and IgG1-Ab are more frequently observed in mouse infection,
all isotypes being able to bind cell FcgR (18, 19).
VERTICAL TRANSMISSION OF T. CRUZI-
SPECIFIC AB

There is a fundamental difference between man and mouse
regarding the transfer of maternal IgG to offspring. It occurs
through the placenta (from the 13-14th week of pregnancy to
delivery) in humans, and by breast milk in mice (from birth to
the weaning on day 21 after birth). Such transfer is carried out by
transcytosis through a FcRn localized on the membrane of
trophoblastic cells in humans or digestive tube cells in mice
(20). Most IgG, whatever their Fab specificities are transferred,
though some isotypes are preferentially transmitted, due to
higher affinities between their Fc portion and the FcRn (21).

In human infection with T. cruzi, the trans-placental
transmission of Ab occurs as in other infections (22–25).
Although few studies have compared the features of
transferred antibodies in infected and uninfected neonates
from infected mothers, their amounts and repertoires appear
similar in infected mothers and their uninfected neonates at birth
(23), whereas congenitally infected newborns seem display lower
Ab levels than their mothers (26). Such transferred Ab persist up
to 8-9 months after birth before becoming undetectable (10, 27).

In murine infection with T. cruzi, maternal-offspring transfer
of Ab occurs through lactation (28–30), but direct kinetic studies
of such transfer are lacking. Our report performed with
uninfected mice having received purified T. cruzi-specific Ab
during gestation and lactation period, showed that Ab levels were
reduced by 4 times in offspring at the weaning time (i.e. 3 weeks
after birth), compared to the maternal Ab level (30). Other
infection models indicate that such transferred Ab can persist
more than 6 weeks after birth, i.e. more than 3 weeks after
weaning in mouse pups (31).
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EXPERIMENTAL EVIDENCES OF ADE OF
T. CRUZI INFECTION IN MOUSE PUPS
DISPLAYING MATERNALLY
TRANSFERRED AB

As shown in various experiments, whatever the used T. cruzi
genotype/strain, acute infection in mice either prevents gestation
or, in case of gestation development, induces high pup mortality
(probably related to the inflammatory storm produced by the
parasite inoculation) with rare congenital infection in the few
surviving pups. When gestation occurs during chronic infection,
congenital transmission is not observed, even after looking for
cryptic infection in pups immunosuppressed by cyclophosphamide
(32, 33).

The mouse model being not suitable for studying T. cruzi
congenital infection, studies were performed using offspring
(uninfected) born to chronically infected or uninfected dams,
and experimentally infected after weaning (on two months after
birth). Higher parasitemia and mortality rates were observed in
offspring of infected mice compared with control offspring. The
most severe infections were noted when offspring were born and
suckled by their mothers, but no more when offspring was
infected 5 (instead of 2) months after birth. Such effect was not
seen if offspring was infected with Plasmodium chabaudi or
Schistosoma mansoni. Such results highlight a maternally
induced T. cruzi-specific enhancement of infection in offspring
of infected dams (34). However, the mechanism of such
enhancement and the nature of what was transferred from
dams to pups to induce it remained unclear.

In order to study more specifically the role of Ab in the
previously demonstrated enhancement of post-natal infection in
progeny of infected mice, another experiment was performed by
injecting either serum from chronically infected animals or
purified T. cruzi-specific Ab into uninfected mice (born to
uninfected dams) during gestation and lactation periods. It was
verified that injected Ab were transferred to offspring. When
infected two months after birth (as in the experiments
mentioned above), offspring of mice treated with chronic
serum or purified Ab displayed significantly higher parasitemia
and mortality rates than offspring from mothers receiving
control serum or immunoglobulins unrelated to T. cruzi (30).
These results indicate an ADE-like phenomenon in experimental
T. cruzi infection, and particularly in mice receiving maternally
derived Ab.
EXPERIMENTAL EVIDENCES OF A FCgR-
INVOLVEMENT IN ADE OF T. CRUZI
INFECTION IN MICE

Flow cytometry studies were performed in mice using the 2.4G2
monoclonal Ab (MoAb), specific to the extracellular domains of
low-affinity Fc receptors for IgG (FcgRII/III, CD31 and CD16
respectively). Membrane of splenic and mesenteric lymph nodes
cells of T. cruzi-infected mice displayed higher expression and
Frontiers in Immunology | www.frontiersin.org 3
absolute number of FcgR in the early and late parasitemic phase
(before and after the rise of Ab), compared to uninfected
mice (35).

In order to investigate the role of such FcgR, the 2.4G2 MoAb
was injected into mice (2 months old). Repeated injections every
3-4 days decreased the availability of FcgR on peritoneal, lymph
node, and spleen cells in control uninfected mice. Injections of
2.4G2 MoAb just before parasite inoculation and during the
acute phase of T. cruzi infection strongly reduced mortality and
parasitemia in comparison to control animals receiving an
unrelated MoAb, whereas the levels of immunoglobulins and/
or T. cruzi-specific Ab remained similar in infected and control
mice (36).

These results, associated with those mentioned above,
indicate that FcgR play a role in the ADE-like phenomenon
observed in mice infected with T. cruzi. They confirm previous in
vitro experiments showing the role of parasite-opsonizing Ab in
the enhancement of cell parasitic infection (37), besides the
various other mechanisms allowing invasion of phagocytic and
non-phagocytic host cells by the infective trypomastigote form of
T. cruzi (38).
PREGNANCY/GESTATION, PLACENTAL
AND NEONATAL INFLAMMASOMES
DURING T. CRUZI INFECTION

It is important to note that in the experiments mentioned above
(30), apart the Ab, no inflammatory- or other immunological-
components were transferred to the offspring. Moreover, there
was neither placental inflammation, nor other disturbances likely
to be a source of interference in offspring, since dams were
uninfected. This suggests that the absence or, at least, a severe
reduction of the maternally-derived inflammatory environment
might be a key factor promoting ADE by limiting in offspring the
cell activation necessary to the protective role of parasite
opsonizing Ab (see above). This raises the question of the
maternal/fetal/neonatal inflammatory status in case of T.
cruzi infection.

Although few studies were performed in experimental
models, it was shown that gestation associated with acute or
chronic T. cruzi infection in mice promotes a strong
inflammatory response (32, 39, 40), and that an inflammatory
status induced in mother rat contributes to the control of T. cruzi
infection in offspring (41).

The first and third trimesters of human pregnancy are known
to induce a strong physiological inflammation status (42). Recent
studies showed that the second trimester of pregnancy also
induces inflammasome signaling in placental trophoblasts to
promote fetal and maternal antimicrobial defenses (43).

Infection during pregnancy increases still more such
inflammatory context. Indeed, T. cruzi-infected pregnant
women display a hyperactivation of blood cells releasing
various pro-inflammatory cytokines such as IL-1b, IL-6, TNF-
a and IFN-g, in response to T. cruzi or LPS/PHA, compared to
non-infected pregnant women (44, 45). IFN-g is the key cytokine
September 2021 | Volume 12 | Article 723516
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controlling T. cruzi infection, as other intracellular pathogens. It
activates monocytes/macrophages and stimulates, in synergy
with TNF-a, the generation of NO which kills parasites (11,
17). However, there is an important difference in the
inflammatory status, between pregnant women having given
birth to either infected or uninfected neonates. Cells from
transmitting pregnant women are phenotypically less activated,
and produce less inflammatory cytokines compared to mothers
of uninfected newborns (44, 46, 47). Indeed, cells of such
mothers produce 3 times less IFN-g when stimulated with T.
cruzi, and such defective response persist after delivery. The
observation that mothers of infected newborns harbor higher
parasitemia than those delivering uninfected babies (9, 47, 48),
argues still more for the lower inflammatory capacity of
these firsts.

Interestingly, the inflammatory status observed in infected
pregnant women is also observed in their neonates (maternal
imprinting). Uninfected neonates of infected mothers display
leukocytes releasing more TNF-a and higher circulating levels of
TNF-a, IFN-g and IL-18 compared to infected neonates (49, 50).
They also present a higher proportion of CD56bright NK cells
producing IFN-g (44, 51). Such Th1 pro-inflammatory status
persisted in infant life, with a promoting effect on responses to
vaccines (52).

Altogether, such results indicate that: i) a stronger
inflammatory state than in normal gestation is induced on
both sides of placenta when gestation is associated to acute or
chronic infection with T. cruzi (in mouse and human infection);
ii) such inflammatory context is strongly reduced in case of
congenital parasite transmission (in human CCD).
MIGHT MATERNAL AB ENHANCE TRANS-
PLACENTAL TRANSMISSION OF
PARASITES IN HUMANS?

CCD results from a two step process: i) the parasite transmission
from mother to fetus through the placenta, and, ii) the
development of parasitic infection in the fetus/neonate
(multiplication of parasites resulting in CCD more or less
severe, see above). Both steps depend on specific mechanisms
detailed elsewhere (9, 53, 54). However, as far as we know, the
possible enhancing role of Ab present in maternal blood, in the
trans-placental transmission of parasites through the trophoblastic
FcRn, has not been studied. Interestingly, it has been reported that
human cytomegalovirus co-opt FcRn-mediated transcytosis and
are transported across syncytiotrophoblasts in immune complexes
that infect underlying cytotrophoblasts and are captured by
macrophages in the villus core (55, 56). If this is a plausible
mechanism also for T. cruzi is worth questioning.

This might occur only if parasites are observed in trophoblast
and placental tissues (histopathological studies). Such cases are
encountered only when very high maternal parasitemia have
overwhelmed the placental capacity of defenses, resulting in
abortions or delivery of neonates with severe CCD. By
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contrast, this is unlikely in pregnant women displaying
moderated blood parasite amounts (the most frequent case
nowadays), since the activation of placental innate defenses
(and particularly the trophoblast turnover) is sufficient enough
to prevent the trophoblast crossing. In such cases, the parasite
population remaining present into the intervillous space, infects
the epithelial cells of the marginal zone deprived of trophoblast
to be transferred into the fetal blood vessels (9, 53, 54).

The fact that congenital infection is almost absent in mice in
which there is neither trophoblastic FcRn nor subsequent trans-
placental Ab transfer (see above), might argue for a possible role
of the trophoblastic FcRn in the transmission of Ab-opsonized
parasites in human infection,
MIGHT ADE CONTRIBUTE TO THE
SEVERITY OF HUMAN NEONATAL CD?

Clinical surveys in endemic areas have clearly shown that severe
and lethal CCD are related to high parasitemia in newborns (53,
57, 58).

Indeed, data mentioned above indicate that:

i) Besides their capacity to neutralize essential parasite molecules,
Ab, by opsonizing parasites, can promote their phagocytosis
and killing by cells expressing FcgR on the mandatory
condition that such cells are sufficiently activated in an
inflammatory context;

ii) The maternal-fetal/neonatal inflammatory context is seriously
reduced in the 5% of infected and parasite-transmitting
pregnant women, and their congenitally infected newborns;

iii) The levels of transmitted Ab seems lower in congenitally
infected neonates than in uninfected newborns delivered by
infected mothers;

iv) Experiments in mice clearly indicate the occurrence of ADE
of T. cruzi infection, particularly when parasites are in
presence of low levels of transmitted maternal Ab, outside
of an inflammatory context.

Would be the observations in mice extrapolable to human?
The question raised here concerns the potential role of ADE in
neonates infected either before- (congenitally) or after-birth (by
another transmission route), both having previously received
maternally transmitted Ab. In other words, might low amounts
of Ab (likely insufficient to sustain a frank protective activity)
opsonize circulating parasites and favor their entry into FcgR
expressing cells not sufficiently activated to trigger their
protective killing burst? Might such enhancement of their
intracellular multiplication (leading to high parasite load),
worsen infection and lead to more severe and lethal clinical
forms of CCD, in some infected newborns (Figure 1)? Indeed,
such severe forms, though less frequent nowadays, are always
observed in endemic as well as non-endemic areas of CD [see
below; (9)].
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POSSIBLE FACTORS BIASING HOST
TOWARDS ADE

Internal as well as external factors might drive towards ADE.
Beside the weakness of the inflammatory context and the

global availability of Ab, other intrinsic individual factors might
contribute to ADE, such as the distribution of IgG isotypes
(presenting different affinities for FcgR) among available Ab, or
the allelic distribution of FcgR on host cells (1). Information is
lacking on qualitative or quantitative differences in maternal Ab
isotype population transmitted in uninfected vs infected babies
and between the severity gradients of CCD among infected ones.
The allelic distribution of FcgR in human population is not
homogenous and some variants do not allow cell activation.
Whether such a possibility would condition ADE in T. cruzi
infection remains to be investigated by characterizing the Fc
domain structure and allelic distribution of FcgR genetic variants
in neonates of infected mothers. Indeed, epidemiological
elements suggest that genetic traits might be, at least partially,
related to CCD, such as the familial clustering of congenital cases
and the repetition of congenital transmission in successive
pregnancies in the same women (59, 60), as well the persistent
lower capacity of cells of such women to produce IFN-g (47).

In addition, other external factors, such as malnutrition and
poverty, by affecting the features of innate immune response with
cytokine patterns skewed towards a Th2-response, and reducing
the Ab production (61), might contribute to favor ADE of T. cruzi
infection. In line with this possibility, are the reported observations
on the progressive decrease of severity of CCD overtime, which
was much more severe and deadly in the past when malnutrition
and poverty was particularly important in endemic LA countries
(9). For instance, we reported mortality rates up to 13% in a
Frontiers in Immunology | www.frontiersin.org 5
Bolivian cohort of congenitally infected newborns studied between
1992 and 1994, while such rate dropped to 2% in another study in
1999-2001, when Bolivia benefited from improved socio-
economic conditions and better maternal care (62).
CONCLUSIONS AND PERSPECTIVES

Although the ADE concept was initially described in viral infections,
it has been also shown in bacterial infections and diseases (likely
with distinct underlying mechanisms; reviewed in 63). Its extension
to protozoan parasite would open new perspectives on the balance
between protective and enhancing/facilitating Ab in the
immunological homeostasis in response to infections.

Data from clinical surveys, combined with experimental
observations, allow us to propose the working hypothesis of a
role of ADE in the trans-placental parasite transmission, and/or
the development of particularly severe and mortal clinical forms
of congenital/neonatal CD. Such amplification of fetal or
neonatal infection, through the phagocytic FcgR pathway, in
fetuses/newborns having previously received antibodies from
their mothers, might contribute to explain the more
detrimental pole of the large clinical spectrum of CCD, as well
as its historical evolution.

The balance between ADE and Ab-protective responses
might depend on the maternal-fetal/neonatal relationship, and
particularly on the features of the Ab populations and
inflammatory context (with a possible inverse correlation
between ADE and the maternal/fetal/neonatal inflammatory
context), likely associated to other external or genetic factors.
This working hypothesis should stimulate further research works
exploring the potential role of FcRn and ADE in the trans-
FIGURE 1 | Proposed role of ADE in the development and/or worsening of CCD in humans.
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placental transmission of parasites in humans, using ex vivo
infection of placental explants or trophoblastic cell lines with
opsonized T. cruzi parasites, or, perhaps also, humanized mice
expressing placental FcRn. Other investigations would be
particularly welcome on Ab isotype concentrations,
inflammation markers, and allelic distribution of cellular FcgR
in T. cruzi-infected mothers and their neonates, in order to
determine the conditions favoring ADE. A better knowledge of
conditions contributing to the severity of human neonatal CD
might lead to improvements of our diagnosis tools to establish a
prognosis of more severe CCD, and focus more attention on such
risky group of pregnant women (9).
Frontiers in Immunology | www.frontiersin.org 6
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