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With the expansion of our knowledge on inborn errors of immunity (IEI), it gradually
becomes clear that immune dysregulation plays an important part. In some cases,
autoimmunity, hyperinflammation and lymphoproliferation are far more serious than
infections. Thus, immune dysregulation has become significant in disease monitoring
and treatment. In recent years, the wide application of whole-exome sequencing/whole-
genome sequencing has tremendously promoted the discovery and further studies of new
IEI. The number of discovered IEI is growing rapidly, followed by numerous studies of their
pathogenesis and therapy. In this review, we focus on novel discovered primary immune
dysregulation diseases, including deficiency of SLC7A7, CD122, DEF6, FERMT1, TGFB1,
RIPK1, CD137, TET2 and SOCS1. We discuss their genetic mutation, symptoms and
current therapeutic methods, and point out the gaps in this field.

Keywords: inborn errors of immunity, immune dysregulation, primary immune dysregulation disease, autoimmunity,
hyperinflammation, lymphoproliferation
INTRODUCTION

The immune system is under regulation of several checkpoints during central and peripheral
development. Disorder of regulation can cause abnormal activation and expansion of immune cells,
leading to autoimmunity, hyperinflammation and even malignant proliferation. Inborn errors of
immunity (IEI), used to widely known as primary immunodeficiency (PID), was historically defined
by higher susceptibility to infections due to monogenic germline mutations. However, recent studies
reveal that immune dysregulation accounts for a large proportion of manifestations in PID patients
(1, 2). Additionally, it results in a worse prognosis in patients with immune dysregulation compared
org August 2021 | Volume 12 | Article 7255871
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to those with only high infection susceptibility (3). International
Union of Immunological Societies (IUIS) lists “Diseases of immune
dysregulation” as an independent category of IEI (1), including
familial hemophagocytic lymphohistiocytosis (FHL syndromes),
FHL syndromes with hypopigmentation, regulatory T cell defects,
autoimmunity with or without lymphoproliferation, immune
dysregulation with colitis, autoimmune lymphoproliferative
syndrome (ALPS, Canale-Smith syndrome) and susceptibility to
EBV and lymphoproliferative conditions. Patients with these
diseases suffer a combined manifestation of immune deficiency,
autoimmunity, recurrent inflammation, lymphoproliferation and
even predisposition to malignancy. Their immune cells like B cell,
T cell and NK cell have abnormal amounts and functions. Due to
the coexistence of autoimmunity and immunodeficiency in some
cases, clinical treatment requires a delicate balance. Hematopoietic
stem cell transplantation (HSCT) is a potential therapy, but
improving survival rate still remains an issue (4). Considering its
poor prognosis and difficult treatment, a deeper understanding of
immune dysregulation in IEI is required for precise and timely
diagnosis, disease monitoring and therapy.

Since the number of cases for any particular disease is usually
few, a large-scale study of IEI can hardly be carried out. Thus, there
is difficulty in studying and curing these diseases. With technical
advancements in whole-exome sequencing/whole-genome
sequencing (WES/WGS), tremendous progress has been made in
the identification of mutations causing IEI, whose number has
doubled in ten years (from 2009 to 2019) and continues to increase
rapidly (1, 2). Here, we review novel discoveries of immune
dysregulation in IEI, based on the genes listed in the Table 4 of
IUIS 2019 IEI report (1) and its 2020 interim update (2), including
SLC7A7 deficiency (FHL syndromes), CD122 deficiency (regulatory
T cell defects), DEF6 (regulatory T cell defects), FERMT1
(regulatory T cell defects), SOCS1 (autoimmunity with or without
lymphoproliferation), TGFB1 (immune dysregulation with colitis),
RIPK1 (immune dysregulation with colitis), CD137 (susceptibility
to EBV and lymphoproliferative conditions) and TET2
(susceptibility to EBV and lymphoproliferative conditions)
(Table 1). We make a thorough review about their genetic
mutations, clinical phenotypes and possible treatments.
SLC7A7 DEFICIENCY

Solute carrier family 7A member 7 (SLC7A7) encodes y+L amino
acid transporter-1 (y+LAT-1). It is expressed mainly in
monocyte‐derived macrophages, as well as intestinal and renal
cells, while its homolog y+LAT-2, encoded by SLC7A6, is
expressed ubiquitously, but with low levels in the cells
mentioned above, explaining its inability to compensate for
y+LAT-1 in LPI (26).

SLC7A7mutations contribute to lysinuric protein intolerance
(LPI), whose symptoms compose of growth retardation, muscle
hypotonia and hepatosplenomegaly (27). More related
manifestations were revealed in later studies, such as
pulmonary diseases, cardiovascular diseases, hemophagocytic-
lymphohistiocytosis (HLH) and autoimmune diseases, especially
Frontiers in Immunology | www.frontiersin.org 2
lupus nephritis, vitiligo and immune thrombocytopenic
purpura (5). It was initially thought that y+LAT-1 deficiency in
polarized cells such as intestinal and renal tubular epithelium
cells is the pathogenesis of LPI, since impaired absorption of
cationic amino acids (CAAs) in the intestinal epithelium and
impaired resorption in the kidneys cause an imbalance of amino
acids, reduction of protein synthesis, hyperammonemia and
growth disorders. However, later studies revealed that non-
polarized cells like lymphocytes and macrophages are also
involved, which contributes to renal, pulmonary, and immune
disorders (28, 29). Immune dysregulation in LPI patients appears
as a decrease in leukocyte phagocytic, cytotoxic, and natural
killer (NK) cell activity and an increase in spontaneous
proliferation of lymphocytes (28). Impairment of macrophage
phagocytosis by amino acid transport leads to not only higher
susceptibility to viral infection, but also abnormal inflammatory
state and autoimmune diseases, since aberrant phagocytosis fails
to remove apoptotic cells, which are related to inflammation and
autoimmune responses (29). Furthermore, intracellular arginine
of epithelial cells is accumulated since the influx of CAAs in LPI
cells is intact, while efflux is abolished, possibly producing more
nitric oxide (NO), which induces cell damage and apoptosis.
Finally, cell responses to inflammatory and apoptosis increase
(6). Together, increases in cell apoptosis and decreases in its
clearance result in aberrant inflammation and autoimmunity.
Apart from reduced phagocytosis, studies also demonstrate that
there are other macrophage dysfunctions, such as aberrant toll-
like receptor (TLR) pathways and a rise in serum inflammatory
cytokine levels (30). These findings elucidate a central role of
macrophages and the innate immune system in the pathogenesis
of LPI. Recent studies reveal more functions other than arginine
transposition of y+LAT-1. For example, the SLC7A7 mutation
directly provokes production of proinflammatory cytokines,
IL-1b and TNF-a, in macrophages and airway epithelial cells
in an arginine independent way, partially explaining HLH and
pulmonary diseases in y+LAT-1 deficient patients. This may
ascribe to y+LAT-1’s ability to inhibit the nuclear factor kappa-
B (NF-kB) pathway in a physiological scenario (31). Once this
inhibition is lifted, cytokines are produced and released in large
amounts. Besides, bleeding events were reported in some cases
(7). Patients do not have spontaneous bleeding tendency but
mucocutaneous bleeds can be triggered by invasive and surgical
interventions or postpartum. Possible mechanisms include
reduced NO production (32) and impaired hepatic clearance of
F1 + 2, PAP, and D-dimer (7).

Difficulty in diagnosis lies in the heterogenetic phenotypes. Patients
with the samepointmutation (6) or even fromthe same family (5)may
have different clinical manifestations and prognosis. Therefore, the
SLC7A7 mutation is the only precise diagnostic method, but it still
cannot predict the symptoms and disease development (5). Current
therapy consists of three parts: ① prevention of hyperammonemia,
meaning that hypoproteinemic regimen is required; ② nutritional
supplementation, including L-citrulline, L-carnitine, vitamins and
other nutritional supplementation; ③ prevention of specific
complications, like renal and cardiovascular manifestations (5). With
the development of our knowledge of LPI, new therapeutic strategies,
August 2021 | Volume 12 | Article 725587
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TABLE 1 | Newly reported primary immune dysregulation diseases.

Treatment Outcomes

(alive/

dead)

Reference

HSCT Target treatment Others

NR Anti-cytokines

drugs

Prevention of

hyperammonemia;

nutritional

supplementation;

prevention of specific

complications, such as

renal and

cardiovascular

manifestations

38/6 (5–7)

Yes,

2 alive and

2 dead

Hyper-stimulate

residual surface

IL-2Rb using IL-

2 anti–IL-2

antibody

complexes, IL-2

superkine,

orthoIL-2

analogues or

IL-2 Fc fusion

proteins

Methylprednisolone for

management of

autoimmunity

3/7 (8, 9)

Yes,

Auto-HSCT

1alive

CTLA-4-Ig

therapy,

Immunosuppressants,

plasma exchanges

6/1 (10, 11)

NR NR Gene therapy and

protein replacement

may be useful

19/2 (12–14)

NR SOCS1 mimetic

peptide and

JAK1/2 inhibitor

baricitinib

Corticosteroids,

mycophenolate mofetil

12/0 (15, 16)

NR Recombinant

TGF-b1
replacement

Surgery, nutritional

therapy and fecal

microbiota

transplantation

targeting early onset

IBD; anti-inflammatory

therapy

1/2 (17)

Controversial,

1 alive

NR Surgery for IBD,

improvement

pulmonary

hypertension, drugs

protecting liver,

intravenous injection of

globulin and antibiotics

to resist the bacterial

infection

7/6 (18–20)

Yes,

1 alive

Other

costimulators

like CD28

Immunosuppression,

antibiotic prophylaxis,

regular

immunoglobulin

substitution, anti-

6/0 (21–23)
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Disease Gene

defect

Number

of

patients/

families

Consanguinity (numbers

of consanguineous

families/numbers of

non-consanguineous

families)

Mode of

inheritance

Molecular

manifestation

Cellular manifestation Clinical

symptoms

Immune labs

Immunodeficiency Autoimmunity Inflammation Malignancy Lymphoproliferation Others

SLC7A7

Deficiency

SLC7A7 16/9, 28/

NR

6/3 AR Deficiency in

y+LAT-1 causes

manifested

amino acid

transport

Impaired absorption of

CAAs in intestinal

epithelium cells,

impaired resorption in

renal tubular epithelium

cells, increased cell

apoptosis of epithelial

cells, impaired

macrophage

phagocytosis, aberrant

TLRs pathways

Yes,

Organ: pulmonary

diseases

Yes,

especially lupus

nephritis, vitiligo

and immune

thrombocytopenic

purpura

Yes,

HLH

NR Yes,

HM, SM

LPI, cardiovascular

diseases

Cationic amino-acid

levels ↓; BS ↑, D-

dimer↑, PAP↑, F1+2

↑; Leukocyte ↓,

thrombocyte ↓,

anemia

CD122

Deficiency

IL2RB 10/5 5/0 AR Dysfunctional

IL-2R causes

dysregulated

IL-2/15 signaling,

elevated plasma

IL-2/15 levels

Dysregulated innate

and adaptive immune

function

Yes,

Organ: pneumonitis,

otitis media, urinary tract

infection, gastroenteritis

and dermatitis

Infectious microbes:

EBV, CMV

Yes,

AIHA, autoimmune

enteropathy

Yes,

Early onset

IBD

NR Yes,

LAD, HM, SM,

large tonsils

Food allergy,

eczema, failure to

thrive

CD8+ T cells ↑,

memory T cells ↑,

Tregs ↓, NK cells ↑,

Ig ↑, Coombs test +

DEF6

Deficiency

DEF-6 7/3 3/0 AR Disruption in

CTLA-4 traffic

Over-activation of

T cells

Yes,

Organ: sepsis,

respiratory

Infectious microbe:

CMV, EBV, respiratory

syncytial virus, rotavirus,

rhinovirus, influenza B;

S. pneumoniae, S.

aureus, S. epidermis, E.

aerogenes, E. cloacae,

E. faecalis, E.

aerogenes, K. oxytoca,

S. epidermis, E. faecalis

Yes,

AIHA

Yes,

recurrent

fevers, IBD

Yes,

EBV+ nodular

sclerosis

classic

Hodgkin

lymphoma

Yes,

HM, SM

Dilated

cardiomyopathy in

some patients

CD4+ T cells ↓,

thrombocytes ↓,

ANCA and

autoantibodies +

FERMT1

Deficiency

FERMT1 19/10 2/1, 7 NR AR Reduced

integrin

activation,

higher ROS

concentration

Reduced keratinocyte-

ECM adhesion,

reduced epidermal

keratinocytes

proliferation, fibroblasts

stimulated.

NR NR Yes,

colonic

inflammation,

gingivitis,

periodontitis

and mucosal

inflammation

Higher risk of

SCC

NR Skin atrophy,

blistering,

poikiloderma,

photosensitivity,

mucosal stenosis

Immunofluorescence

shows structure

abnormality

SOCS1

Deficiency

SOCS1 12/7 NR AD Enhanced

STAT1

phosphorylation

and a

proapoptotic

transcriptional

signature

Increased sensitivity to

interferons

Only two of the patients

are reported to have

severe infection history,

one with COVID-19 and

one with

bronchopulmonary

Yes,

AIHA, ITP,

polyarthritis,

psoriasis

Yes,

multisystem

inflammation

like fever

NR Yes,

lymphoproliferation

NR Neutrophils ↓,

lymphocytes ↓, Ig ↓,

autoantibodies +,

TGFB1

Deficiency

TGFB1 3/2 1/1 AR Defective

TGFB1 signaling

and reduced

phosphorylation

of SMAD2/3 in

lamina propria

mononuclear

CD45+ CD19+

and CD3+ cells

T cells fail to activate

and proliferate properly

after anti-CD3/anti-

CD28 or specific

antigens stimulation

Yes,

Organ: LRTI, URTI,

retinitis

Infectious microbe: CMV

NR Yes,

infantile IBD

NR NR CNS disease

associated with

epilepsy, brain

atrophy and

posterior

leukoencephalopathy

T cell proliferation

under stimulation of

CD3 ↓

RIPK1

Deficiency

RIPK1 13/10 3/1, 6 NR AR Impaired

proinflammatory

signaling

Dysregulated cytokine

releases such as

increased IL-1b and

decreased IL-10, higher

levels of inflammasome

activity upon

stimulation, enhanced

necroptosis

Yes,

Organ: thrush mycotic

stomatitis, enteritis,

pneumonia,

conjunctivitis.

Infectious microbe:

candida albicans,

NR Yes,

recurrent

fever, early-

onset IBD

NR Yes,

HM, SM

NR Naïve CD4+ T and

naïve CD8+ T, B and

NK cells ↓, IL-1b ↑

CD137

Deficiency

TNFRSF9 6/6 5/1 AR Impaired

cositmulation,

mitochondrial

respiration,

Impaired T-cell survival,

proliferation, and

cytotoxicity; Diminished

NK cell function;

Reduced B cell

Yes,

Organ: sinopulmonary

infections,

bronchiectasis,

Yes,

AIHA

Yes,

persistent

fevers, HLH

Yes,

high

predisposition

to EBV-related

Yes,

HM, SM, LAD

NR Proportions of

transitional and

immature B ↑,

memory B cells and

plasmablasts ↓,
s
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like anti-cytokine drugs are proposed aswell (31).Notably, pulmonary
involvement is highly associated with death (5) and therapy targeting
pulmonary is necessary.

Even though LPI was discovered more than fifty years ago, its
pathogenesis still remains unclear. The relationship between
SLC7A7 and LPI requires further study. The tamoxifen-
induced ablation by UBC-Cre-ERT2 of Slc7a7 in the mouse
(Slc7a7−/−) model reported by Bodoy et al. successfully mimics
the phenotypes in human LPI (33). Viable animal models like
this may accelerate the research of LPI pathogenesis, especially
the complicated immune manifestations and possible
available treatment.
IL-2Rb (CD122) DEFICIENCY

IL-2 is a critical immune regulation cytokine and IL-2Rs are
expressed on the surface of T cells and NK cells, which are
composed of IL-2Ra (CD25), IL-2Rb (CD122) and IL-2Rg
(CD132). IL-2 is bi-functional in immune regulation. First of
all, it boosts the immune response by promoting the
proliferation, differentiation and function of effector T cells
and NK cells (34, 35). Secondly, it participates in the
maintenance and function of Tregs (regulatory T cells) which
act as suppressive regulators (35, 36). In recent years, IL-2 and
related biological production began to be used in the treatment of
cancer and autoimmune diseases (37, 38). For the best
application of these drugs, a full understanding of how IL-2
functions through IL-2Rs is imperative and the study of IL-2R
deficiency can improve it vastly.

While the roles of IL-2Ra and IL-2Rg deficiency in IEI have been
known for a long time, IL-2Rb deficiency in humans was just
reported recently. Apart from IL-2R, IL-2Rb also participates in the
formation of IL-15R. Early studies revealed a connection between
IL-2Rb and autoimmune diseases like rheumatoid arthritis (RA)
and type 1 diabetes (TID) (39, 40). Additionally, studies on IL-2Rb
deficient patients further confirm the connection and enrich the
spectrum of primary diseases of immune regulation. Fernandez
et al. reported a pair of siblings with homozygous IL2RBmutations
which decrease IL-2Rb expression and dysregulate IL-2 and IL-15
signaling. Plasma levels of IL-2 and IL-15 are increased, thus
explaining the elevated CD8+ T cells and NK cells, while other
proinflammatory cytokines are almost equal to healthy controls.
Although the total number of NK cells in the patients is elevated,
there is a block in the transition from immature ones to functional
ones, contributing to higher susceptibility to cytomegalovirus
(CMV). As for T cell subsets, there is a skew to memory T cells
with reduced Tregs (8). Another group (9) reported patients
with different mutations in IL2RB. Despite a slight difference in
phenotypes and severity, all patients share common manifestations,
namely immunodeficiency and autoimmune diseases including
enteropathy, skin abnormalities, autoimmune hemolytic anemia,
hypergammaglobulinemia and high susceptibility to infections,
proving the pleiotropic functions of IL-2R signaling.

HSCT has a therapeutic effect on IL-2Rb deficiency, but also
causes a risk of complications of thrombotic microangiopathy,
which can be lethal (8, 9). Another potential treatment is to
T
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hyper-stimulate residual surface IL-2Rb, since expression of IL-
2Rb is decreased rather than abolished and downstream
signaling pathways remain intact (9).
DEF6 DEFICIENCY

Differentially expressed in FDCP6 homolog (DEF6), also known
as IRF4 binding protein (IBP) or SWAP-70-like adaptor of T
cells (SLAT), is a TCR downstream guanine nucleotide exchange
factor (GEF).

Variations in phenotypes of DEF-6 knockout mice made its
immune function mysterious (41–43). However, studying inborn
DEF6 deficient patients clarified its role. Clinical manifestations
of DEF6 deficient patients consist of T-cell lymphopenia, low
class-switched B cells, hepatosplenomegaly, autoimmunity, bowel
inflammation and susceptibility to EBV (10, 11). Cytotoxic T
Lymphocyte antigen 4 (CTLA-4), expressed by activated T cells
and Foxp3+ Tregs, is an antagonist of co-stimulator CD28 and
competes with it in combination with CD80/CD86. Therefore, it
has a negative role in co-stimulation of T cells (44). Membrane
expressed CTLA-4 undergoes endocytosis constitutively and
therefore CTLA-4 in healthy people is dominantly located in
intracellular vesicles. Internalized CTLA-4 either goes back to the
plasma membrane or is degraded (44). Previous studies have
already shown that deficiency in lipopolysaccharide-responsive
and beige-like anchor protein (LRBA), a protein involved in
CTLA-4 traffic, causes increased CTLA-4 degradation and
patients with LRBA deficiency have autoimmune and
inflammatory symptoms just like those with DEF6 deficiency
(45). Patients with DEF6 deficiency also show reduced availability
of surface CTLA-4. DEF6 directly interacts with the small
GTPase, RAB11, on recycling endosomes and therefore affects
CTLA-4 shuttling. The attenuated availability of CTLA-4
accounts for defected CD80 uptake and autoimmune symptoms
of the patients (10). In addition, it may also thwart Tregs
maturation because Foxp3+CD25- regulatory T cells, likely
being immature Tregs or precursors, are over-expanded in
DEF6 deficient patients (11).

CTLA-4-Ig therapy helps to ameliorate these symptoms (10)
and plasma exchanges and immune suppressors like corticosteroids,
rituximab, azathioprine and bortezomib are also shown to be
effective (11).
FERMT1 DEFICIENCY

Mutations in FERMT1 (also known as KIND1), encoding the focal
adhesion protein kindlin-1, cause Kindler syndrome (KS). KS patients
are predominantly offspring of consanguineous couples (12) but there
are exceptions (46). The major manifestation of KS is skin disorder
such as atrophy, blistering, poikiloderma, photosensitivity (12, 13, 47).
There is also increased risk of mucosal stenosis and muco-cutaneous
cancer in KS patients. Extra-cutaneous manifestations mainly lie in
inflammation, including colonic inflammation, gingivitis,
periodontitis and mucosal inflammation (13). FERMT1 is critical
Frontiers in Immunology | www.frontiersin.org 5
to integrin activation. When FERMT1 is deficient, reduced b1
integrin activation causes attenuated keratinocyte-cell-extracellular
matrix (ECM) adhesion, partially explaining the skin blistering in
KS (47). Also, reduced b1 integrin activation is related to lower
epidermal keratinocytes proliferation, accounting for skin atrophy in
KS (47). While atrophy and blistering often occur at young patients,
photosensitivity and squamous cell carcinoma (SCC) happen later.
This is because with the patients aging, the effect of UV irradiation
and chemical stressors accumulates, provoking reactive oxygen
species (ROS). ROS leads to oxidative stress and molecular damage
including DNA damage. Normal people can be protected from these
damages by FERMT1 through activation of ERK pathway and
inhibition of cyclin‐dependent kinase (CDK) activity while in KS
patients, they accumulate and result in photosensitivity and high risk
of SCC (48–50). Others hold the view that FERMT1 exerts a tumor-
suppression role by balancing TGF-b–mediated growth-inhibitory
signals and Wnt–b-catenin–mediated growth-promoting signals.
Loss of balance when FERMT1 is deficient results in higher risk of
muco-cutaneous cancer (51). However, in this animal experiment,
tumors induced are basal cell carcinomas but not SCC. Inflammation
of KS consists of increased cytokine secretion and macrophage
infiltration but the precise mechanisms have not been revealed
(52). Mucosal stenosis indicates the existence of fibrosis. Further
studies reveal paracrine epithelial–mesenchymal signals accounting
for the fibrosis. Keratinocytes lack FERMT1 over express and secret
IL-20 and IL-24 under pressure, which stimulate fibroblasts and
promote fibrosis (52). Genotype–phenotype correlation is not clear in
KS, and possible influential factors consist of environmental, ethnic
and geographical backgrounds (14). Studies on immune system in KS
patients are rare up to now. However, integrin b1 is critical for CD4+

T cells migration (53), indicating that this process is possibly affected
in KS patients.

Like many other IEI, mutation analysis is the most reliable
diagnosis method for FERMT1 deficiency. Disrupted basement
membrane found by indirect immunofluorescence (IIF) and
transmission electron microscopy (TEM) also provides
supportive evidence (54). It is same to other epidermolysis
bullosa(EB) that there has not been a widely accepted, specific,
safe and effective therapeutic method for KS, although gene
therapy, protein replacement and HSCT have been reported (55).
Further studies focusing on the exact pathogenesis of KS and
precise functions of FERMT1 will shed light on this field.
SOCS1 DEFICIENCY

Interferons (IFN) are critical for activating immune responses
and providing antiviral protection. By binding to the receptor
complex, they activate JAK, which then phosphorylates STAT.
Activated STAT translocates to the nucleus and changes the
expression of genes, contributing to phenotype alterations.
However, their roles are not always beneficial to the host.
Excessive IFN signaling causes severe toxicity and even lethal
syndromes (56, 57). Consequently, a balance between activation
and suppression of IFN is required. Suppressor of cytokine
signaling (SOCS) 1 is an essential suppressor for type I and
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type II IFN signaling through inhibiting the JAK-STAT pathway
and its expression can be induced by cytokines including type I
and type II IFN, forming a negative feedback loop (58, 59).
Homozygous deficiency of SOCS1 in mice is lethal with
hypersensitivity to IFN-g (57) and there are no homozygous
SOCS1 deficient patients reported up to now, indicating its
indispensable and uncompensated role in immune homeostasis.
Mechanisms of SOCS1 in inhibiting type I and type II IFN
signaling are quite different. As for type II IFN, both expression
and sensitivity are increased in SOCS1 deficient mice, while only
sensitivity is affected in the case of type I IFN (60). Among 8
family members of SOCS proteins, SOCS1 and SOCS3 are
distinctive in inhibitory mechanisms. They not only inhibit
downstream signaling by facilitating ubiquitination of signal
intermediates, but they also have a kinase inhibitory region
(KIR) that interacts with JAK directly. SOCS1 acts as a pseudo-
substrate of JAK, blocking its interaction with real substrates,
which mediate downstream signals. SOCS1 also binds to
unphosphorylated JAK, which enhances its negative regulatory
role (61). Also, accumulating studies show that SOCS1 can
function in the nucleus in a different mode with JAK-STAT
inhibition. It has a nuclear localization signal (NLS) that accounts
for its directed location to the nucleus (62). Its roles in the nucleus
have not been fully unraveled, but several functions have already
been found, such as activating p53 (63) and limiting NF-kB
signaling (64). Zimmer et al. adopted an elegant tool to study the
nucleus-located SOCS1 by replacing its NLS. They found that
mice lacking nuclear SOCS1, but not cytoplasmic SOCS1, do not
have neonatal lethal symptoms, but have mild airway
inflammation, indicating different roles of nucleus located and
cytoplasm located SOCS1 (65).

SOCS1 is widely expressed in hematopoietic and stromal cells
and therefore has multi-facet roles in immune regulation. In DCs,
SOCS1 prevents aberrant overexpression of BAFF by breaking
IFN induced “DC activation-IFNs release” positive loop,
explaining autoimmune phenotypes, including overexpression
of autoantibodies in SOCS1 deficient mice (66). In T cells,
which are an important source of IFN-g themselves, SOCS1
modulates their differentiation and terminates IFN-JAK-STAT
signals to prevent overproduction of inflammatory cytokines (67,
68). SOCS1 is also found to sustain Foxp3 stability and Treg’s
suppression function by preventing transformation to Th1- and
Th17-like cells under inflammatory circumstances (69, 70).
Deficiency of SOCS1 renders NKT cells abnormally active
caused by loss of cross-talk inhibition of IFN-g and IL-4
signaling, contributing to fulminant hepatitis (71).

Studies have shown a correlation between less SOCS1 serum
levels and SLE. Abnormal activation of STAT1 in SLE patients
contributes to over production of pro-inflammatory factors (72).
Patients with heterozygous mutations in SOCS1 are reported to
have immune cytopenia, autoimmune diseases, multisystem
inflammation and lymphoproliferation (15, 16). Corresponding
with the known function of SOCS1, it is observed that in patients
with SOCS1 haploinsufficiency, phosphorylation of STAT1 after
IFN-b and IFN-g stimulation and basal expression of IFN-
stimulated genes are increased compared to normal people,
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suggesting stronger type I and type II IFN signaling, which
contributes to autoinflammation and cytopenia (15). Some
SOCS1 mutation carriers are clinically asymptomatic, but still
have an abnormal immune cell compartment, autoantibodies
and higher IFN-g-induced STAT1 phosphorylation (16).

A SOCS1 mimetic peptide alleviates SLE symptoms in MRL/
lpr mice and significantly corrects their immune system by
enhancing Foxp3 expression in Tregs and reducing abnormal
T and B cell effects (73). Such peptides may also have therapeutic
potential in SOCS1 deficient patients. Mycophenolate mofetil
and the JAK1/2 inhibitor, baricitinib, are effective to mitigate
manifestations in SOCS1 deficient patients (15, 16). Since SOCS1
expresses in both stromal and hematopoietic cells, the efficiency
of HSCT remains unclear (15).
TGFB1 DEFICIENCY

Transforming growth factor (TGF)-b1 is encoded by TGFB1 and
is first translated into a precursor form containing an N-terminal
signal peptide, a latency-associated peptide (LAP) and the C-
terminal mature growth factor (TGF-b1). It is a strong
immunosuppressive factor and functions through SMAD
pathways (74). It has multifaceted roles in inflammation,
oncogenic and fibrinogenic modulation. As for inflammatory
regulation, TGF-b1 carried by extracellular vesicle mitigates
inflammation in whole-blood cells by inhibiting IL1B
transcription via upregulating SMAD7, as well as by
amplifying the anti-inflammation role in endothelial cells via
further upregulating TGFB1 transcription (75). Although TGF-
b1 is expressed by many types of cells, Tregs are a non-redundant
source of it, controlling allergic and autoimmune responses in a
microbiota- and dose-dependent way in mice. Dose-dependent
refers to different phenotypes between TGFB1 haploinsufficiency
and biallelic deletion. TGFB1 haploinsufficiency in Tregs leads to
food allergies while biallelic TGFB1 deletion results in
autoimmunity, consisting of autoantibody release and
dysregulations in DCs and effector T cells (76). Apart from
Tregs, TGF-b1 also affects other subsets of T cells. It imposes
constraints on activation-induced cell death (AICD) by
downregulating Fas ligand via inhibiting c-Myc expressing,
which is beneficial to the expansion of effector T cells and
differentiation into memory T cells (77). It has a negative role
in Th2 cell expansion, together with downregulating GATA-3
expression and IL-4-induced STAT6 activation (78). In cell
populations other than T cells, TGF-b1 plays key roles as well.
M2 macrophages not only bind to but also re-release TGF-b1,
which is pivotal to their Treg induction role (79). In addition,
TGF-b1 favors Langerhans cell (LC) differentiation in dendritic
cells (DCs), while it shows a negative role in DC maturation,
preventing DC activation in response to harmless environmental
stimulation and therefore preparing them for response to
dangerous signals (80). TGF-b inhibits maturation and
activation of NK cells as well. It inhibits maturation from two
facets, by preventing cell-cycle and by constraining transcription
factors related to maturation (81). This inhibition has a double-
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sided nature. On one hand, it is useful for preventing harmful
inflammation in early stages of development. And on the other
hand, susceptibility to infection is extended since there is a lack
of NK cells (81). A significant mediator of NK activation is
mTOR induced by IL-2 or IL-15. By antagonizing the mTOR
pathway, TGF-b negatively regulates activation of NK cells (82).

Typical manifestations of TGFB1 deficient patients include
inflammatory bowel disease (IBD) and recurrent infections
which can be lethal are reported as well (17). Numbers and
distributions for T cells, B cells and NK cells can be normal or
disturbed while proliferation of T cells stimulated with anti-CD3
is reduced. The immune dysregulation phenotypes of TGF-b1
deficient patients suggest an indispensable role of TGF-b1 in
immune regulation. Besides, central nervous system (CNS)
dysfunctions are also common in TGFB1 deficient patients.
These dysfunctions include epilepsy, brain atrophy and
posterior leukoencephalopathy (17). Former studies show
reduced neuronal TGF-b signaling promotes Alzheimer’s
disease (AD) and neurodegeneration (83). Mechanisms
underlying neuronal roles of TGF-b has not been totally
revealed. One possible explanation lies in its relationship with
olfactory ensheathing cells (OECs). Clearance of degenerating or
dying neurons and apoptotic neuron debris is critical to neuron
regeneration, that is to say, it benefits the restoration of CNS
injuries and neurodegeneration. TGF-b promotes this process by
enhancing phagocytic activity of OECs through integrin/MFG-
E8 signaling pathway and by shifting OECs shape to increase
cellular surface area (84).

Possible therapies include HSCT and recombinant TGF-b1
replacement, both of which have risks of severe comorbidities,
and thus there is a need for safer and more efficient treatments
(17). As for the symptoms of early onset IBD, surgery, nutritional
therapy and some emerging new methods like complementary
medicine and fecal microbiota transplantation may also be
effective (85).
RIPK1 DEFICIENCY

RIPK1 (receptor-interacting serine/threonine kinase 1) is a
component of signal transduction complexes, mediating signals
from surface receptors like Toll-like receptor 3 (TLR3), TLR4
and tumor necrosis factor receptor 1 (TNFR1) and controlling
cell death and inflammation. RIPK1 can both mediate cell death
and promote cell survival (86). Its role in cell death varies with
cell types and contexts. There are two types of cell death inhibited
by RIPK1 in hematopoietic cells, keratinocytes, epithelial cell and
DCs, namely necroptosis via RIPK3 and pseudo-kinase mixed
lineage kinase domain-like (MLKL), and apoptosis via caspase-8.
These two types can switch from one to the other easily, when
responding to conditional changes (86–88). Because necroptosis
results in proinflammatory danger-associated molecular patterns
(DAMP), RIPK1 can act as an inhibitor of inflammation in
physiological situations (89–91). RIP homotypic interaction
motif (RHIM) of RIPK1 is indispensable in competing with
RIPK3 RHIM in ZBP1 (Z-DNA binding protein 1; also known
Frontiers in Immunology | www.frontiersin.org 7
as DAI or DLM1) binding and thus prevents RIPK3
autophosphorylation that is critical for necroptosis (92, 93). In
the regulation of caspase-8, RIPK1 acts as both scaffold and
kinase (88, 94, 95).

Manifestations in human patients include lymphopenia,
susceptibility to infections, early-onset IBD and arthritis.
Numbers of T, B and NK cells diminish to different extents
(18–20). Cellular and molecular studies showed that patients
with loss-of-function mutations in RIPK1 have dysregulation in
cytokine release such as increased IL-1b and decreased IL-10,
contributing to arthritis and IBD together (19). Although RIPK1
conditional deletion animal models show autoimmunity,
patients with RIPK1 deficiency have not been reported to have
autoimmune symptoms (90, 91).

A consensus has not been reached in therapeutic approaches
for RIPK1 deficiency. Cuchet-Lourenço et al. proposed that
HSCT is adequate since it greatly remitted clinical symptoms
and dysregulated cytokine production in a patient (19), while Li
et al. warranted that intrinsic intestinal phenotypes cannot be
mitigated by HSCT (20).

In recent years, RIPK1 inhibitors are considered to be a
curative therapy to diseases related to necroptosis. Studies with
RIPK1 deficient patients further reveal the multi-faceted roles of
RIPK1, so the use of RIPK1 inhibitors should be cautious and its
safety requires deeper research (20). Besides, the lack of
consensus on RIPK1 deficiency treatment also emphasizes the
urgency of revealing the exact functions of RIPK1 in human.
CD137 DEFICIENCY

CD137, also known as 4-1BB or tumor necrosis factor (TNF)
receptor superfamily member 9 (TNFRSF9) is pivotal for immune
homeostasis and tumor suppression. Ligation by CD137L leads to
oligomerization of CD137 and galectin-9 (Gal-9) serves as a
bridge. TRAFs are then recruited and activate NF-kB and PI3K-
AKT pathways (96). Although it is expressed by various types of
cells, its role in T cells as an inducible costimulator has been
studied the most, which is significant for proper T cell survival,
differentiation and cytokine secretion (97). The pro-survival role is
mediated by upregulated anti-apoptosis protein Bcl-xL through
the NF-kB pathway (97, 98). Generally, CD137 positively regulates
the T cell response, but there are some exceptions. In the case of
Tregs, it promotes clonal expansion, yet transiently neutralizes the
suppressive activity of activated Tregs. Also, CD137 inhibits the
expansion of Th17 in both IFN-g dependent and independent
ways, which is important for remission of autoimmunity (99).
CD137 is also expressed on human B cells, but not murine B cells.
Its functional mode in B cells resembles that in T cells in several
facets. First, activation of BCRs/TCRs is a prerequisite for CD137
expression, which enhances survival, proliferation and cytokine
production (97, 100). In invariant NKT (iNKT) cells, iNKT–
monocyte interaction via CD137/CD137L promotes iNKT
survival and proliferation and this interaction also affects
monocytes survival (101). When CD137 is deficient, iNKT
counts are reduced (102) due to at least partially the attenuated
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CD137/CD137L signal. Since iNKTs provide apoptosis signal to
monocytes and prevent their over proliferation during
inflammation, reduced iNKT number may account for the
immune dysregulation of CD137 deficient patients. Additionally,
like many TNF/TNFR superfamily members, CD137/CD137L
evokes reverse signals to CD137L positive cells, making it hard
to determine the respective functions of each one (103).

CD137 deficient mice have enhanced T cell proliferation, while
the CTL response and IFN-g expression are dampened (104).
Patients having reduced or ablated expression of CD137 show
hampered immune regulation, being susceptible to various
pathogens including Epstein-Barr virus (EBV) and predisposed to
EBV-related B-cell lymphoma as well as showing symptoms of
autoimmunity (21, 22). Proliferation and function of both B cells
andT cells are dysregulated, emphasizing the importance ofCD137
inhomeostasis of immune system.Notably,mitochondrial function
is significant inT cell function and it is impaired inCD137 deficient
patients (22). However, it is intriguing that some siblings harboring
the same mutation as the patients do not show clinical
manifestations, suggesting that the overt disease is affected by
some other factors other than genes (21).

Possible therapeutic approaches lie in other costimulators
like CD28, given that elevated CD28 signals ameliorated
deficiency in T cell proliferation (21). Furthermore, the
immunophenotype can be reversed by HSCT. As for patients
with lymphoma, the less toxic and more specific therapies are
recommended before HSCT, which can prevent the use of
radiological treatment (23).
TET2 DEFICIENCY

Ten-Eleven Translocation methylcytosine dioxygenase 2 (TET2)
is a pivotal epigenetic regulatory factor in hematopoietic cells
and it facilitates demethylation by oxidizing 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC) and other oxidation
products (24). Accumulating evidence points out that its
mutations are frequent in clonal hematopoiesis and myeloid
malignancies (25). Therefore, it is reasonable to presume that
TET2 has a crucial role in cell proliferation and differentiation.
Homogeneous or heterogeneous loss of TET2 renders stem cell
renewal more active in a cell intrinsic way, disturbs
differentiation and increases the risk of myeloproliferation
(105–108). CXCR4, a chemokine receptor critical for B cell
development, is elevated in heterozygous TET2 mutant
patients, suggesting a B cell regulatory role of TET2 (109).
TET proteins are also essential for specific points of B cell
development, for example the transition from pro-B to pre-B
and the differentiation to plasma cells. For the former one,
TET2/3 not only augment Igk expression and rearrangement
per se, but also assist the function of transcription factors (110).
By demethylating CpG sites around Irf4, they allow high
expression of IRF4, which is critical for the transition into
plasma cells. However, it is not necessary for the initiation of
Irf4 expression, but only the maintenance of it (111). In Tregs,
TET is crucial for stable Foxp3 expression through regulation on
Frontiers in Immunology | www.frontiersin.org 8
the conserved non-coding DNA sequence-2 (CNS2) region and
‘upstream enhancer’ region. TET2/3 double-knockout Tregs
show abnormal activity in proliferation and the counts of Th17
and Tfh-like cells are increased as well (112).

Autosomal homozygous TET2 missense or nonsense in humans
results in immunodeficiency, growth impairment and autoimmune
lymphoproliferative syndrome (ALPS) like phenotypes of raised
proportion of double negative (CD4-CD8-) T-cells (DNTs), raised
soluble Fas ligand level, lymphadenopathy, hepatosplenomegaly,
autoimmunity and remarkable predisposition to lymphoma, which
is reminiscent of phenotypes of TET2 deficient mice (24). Due to
the loss-of-function mutation of TET2, levels of DNA methylation
increase in hematologic cells, especially in the regions able to bind
master transcription factors that have a strong regulatory effect on
hematopoiesis, accounting for the skew to DNTs and failure of
proper development in B cells (24, 109). Increased soluble Fas ligand
accounts for reduced FasL-induced apoptosis and therefore the
tendency to lymphoproliferation. Haploinsufficiency of TET2 is a
wide spreadmutation related to hematological neoplasia, although it
is not able to induce cancer alone given that TET2 mutations also
occur in healthy groups with clonal hematopoiesis (25, 109, 113,
114). Extrinsic factors may explain the phenotypes, but the
underlying mechanisms have not been fully unraveled. Recent
studies show that infection-induced inflammation is critical for
the onset of malignance in TET2-/- mice, shedding light on the
clinical prevention and treatment of malignancy related to TET2
deficiency (115, 116). In diffuse large B cell lymphomas (DLBCLs),
gene alterations involved in TET2 mutation consist of both losing
enhancer 5hmC and gaining promoter 5mC. Additionally, the
chromatin accessibility and stability are also reduced. Activity of
activation-induced cytidine deaminase (AID) and subsequent
deamination are hampered in TET2-/- mice, which contributes to
the disturbance of demethylation further. Together, these changes
disrupt transcription of genes critical for GC (germinal center) exit,
antigen presentation and differentiation of GC B cells, accounting
for the occurrence of DLBCLs (113). In addition, mutations in
TET2 are also a risk factor for neurodegenerative disorders such as
early-onset Alzheimer’s disease and frontotemporal dementia (117).

Recent studies have shown that vitamin C can mimic
restoration of TET2, implicating a possible effect of high-dose
vitamin C incorporation on TET2 deficient patients. Notably, the
function of vitamin C requires a minimal existence of TET,
meaning that the combined loss of TET2 and TET3 leads to poor
response to vitamin C treatment (107). Besides, since mutations
in TET2 alone are not sufficient for cancer onset, therapy
targeting assistant factors, such as other genetic deficiencies
and immunostimulation, are also effective treatments. As
mentioned before, infection-induced inflammation, which can
be corrected by antibiotics, shows positive correlation with
myeloid expansion in TET2 deficient mice. Inhibition of
bacterial inflammatory signals, such as inhibiting TNF-a,
prevents tumor growth, providing a viable preventive method
for TET2 deficient malignancy (116). With the high level of
methylation being a positive factor for malignancy, it is not
surprising that DNA methyltransferase inhibitors (DNMTi) are
also effective (113).
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CONCLUSION

In recent years, there has been a rapid growth of IEI discoveries
and a deeper understanding of their mechanisms. It has come to
our knowledge that IEI does not merely mean higher
susceptibility to infections. Those patients with a combination
of several types of autoimmune or inflammatory diseases should
be considered for a scan of IEI. As for therapeutic methods,
nonspecific immunosuppressive agents used to prevent
autoimmunity sometimes have many side effects and they do
not fit to the situation where autoimmune and susceptibility
coexist. HSCT has similar shortcomings as well. Morbidity and
mortality related to HSCT are still considerable problems (118).
Besides, although it has a definitive effect in some cases, it acts less
well when stromal cells, but not merely blood cells, are also
affected (15). Thus, safer and more effective therapeutic methods
are required. Pathogenesis studies of these immune
dysregulations will shed light on this field. Clarifying the
relationship between IEI and immune dysregulation helps not
only to diagnose patients as early as possible, but also to improve
the quality of the patients’ life and prolong their survival. Apart
from the direct clinical use, studies on IEI also provide a
wonderful way to understand the mechanism of immune
regulation in our body and produce animal models for related
research (10, 33).

There are several difficulties in identifying IEI: First, since
every single inborn error has a relatively low prevalence rate, it is
hard to figure out its clinical symptoms fully and quickly. Some
patients harboring more than one mutation make it even more
difficult to detect (11). Besides, it is intriguing and confusing that
phenotypes of the same mutation vary from patient to patient,
ranging from mild or even no obvious symptoms to life-
threatening manifestations (21, 119). This complexity may
Frontiers in Immunology | www.frontiersin.org 9
come from both internal and external factors, such as
incomplete penetrance and additional factors like infections
and combination with other gene deficiencies (20, 21, 120).

The most crucial issue in IEI is to identify their pathogenesis
and gene-phenotype relationship. It requires both clinical and
laboratory efforts to address this problem. In clinical treatment,
patients with immune dysregulations should be examined
carefully and genetic identification should be executed if
necessary and possible. By doing so, it can not only avoid
misdiagnosis, but also find new mutations. Considering that
the prevalence of IEI is very low and acquiring enough samples
for studies is difficult, creating proper animal models is a useful
alternative. However, it should be kept in mind that there are
differences between humans and animals. Therefore, results from
animal models only provide us with an indication and they
should be examined on humans later to test the consistency.
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