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Long-duration spaceflight is known to cause immune dysregulation in astronauts.
Biomarkers of immune system function are needed to determine both the need for and
effectiveness of potential immune countermeasures for astronauts. Whereas plasma
cytokine concentrations are a well-established biomarker of immune status, salivary
cytokine concentrations are emerging as a sensitive indicator of stress and inflammation.
For this study, to aid in characterizing immune dysregulation during spaceflight, plasma and
saliva cytokines were monitored in astronauts before, during and after long-duration
spaceflight onboard the International Space Station. Blood was collected from 13
astronauts at 3 timepoints before, 5 timepoints during and 3 timepoints after spaceflight.
Saliva was collected from 6 astronauts at 2 timepoints before spaceflight, 2 timepoints
during and 3 timepoints following spaceflight. Samples were analyzed using multiplex array
technology. Significant increases in the plasma concentration of IL-3, IL-15, IL-12p40,
IFN-a2, and IL-7 were observed during spaceflight compared to before flight baseline.
Significant decreases in saliva GM-CSF, IL-12p70, IL-10 and IL-13 were also observed
during spaceflight as compared to compared to before flight baseline concentrations.
Additionally, plasma TGFb1 and TGFb2 concentrations tended to be consistently higher
during spaceflight, although these did not reach statistical significance. Overall, the findings
confirm an in-vivo hormonal dysregulation of immunity, appearing pro-inflammatory and
Th1 in nature, persists during long-duration orbital spaceflight. These biomarkers may
therefore have utility for monitoring the effectiveness of biomedical countermeasures for
astronauts, with potential application in terrestrial research and medicine.

Keywords: cytokine, immune system, spaceflight, saliva, plasma
INTRODUCTION

Spaceflight thrusts astronauts into a unique environment characterized by microgravity, circadian
misalignment, isolation, confinement, and stress, along with a semi-closed food system, and higher
exposure to space radiation. All these factors can cause detrimental effects to the human immune system.
Immune dysregulation, including altered leukocyte distribution, alterations in plasma cytokines, reduced
org August 2021 | Volume 12 | Article 7257481
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T-cell function, and reactivation of latent herpesviruses, persists in
astronauts during long-duration orbital space missions (1–3).
Clinical events including rashes, hypersensitivity and atopic
dermatitis have been reported in astronauts and are potentially
related to immune system dysregulation (2, 4, 5).

Cytokines are a broad group of secreted signaling proteins that
activate distinct cellular functions and affect various types of
immune cells. Chemokines are a subset of small cytokines which
act as a chemoattractants to prompt the migration of leukocyte
subpopulations and non-hematopoetic cells (6, 7). A previous
survey of 22 cytokines in astronauts found significantly increased
plasma IL-8, IL-1ra, Tpo, VEGF, and CXCL5/ENA-78
concentrations during flight (8). These data confirm that in-vivo
hormonal control of immunity is dysregulated during flight.
Cytokines, with pleotropic effects that generally preclude their use
in specific diagnoses, remain informative in determining immune
compromise or general prognosis. For example, Zajkowska et al.
found serum concentrations of IL-17, IL-23, IL-21, IL-4 and IL-12
were significantly higher in herpes zoster patients compared to
controls (9). Astronauts were found to be shedding VZV DNA in
their saliva at levels that overlapped zoster patients (10). Astronaut
plasma cytokine profiles are similar to those of zoster patients (10).

Previous research has shown that long-term stress can
dysregulate immune response and alter the Th1/Th2 cytokine
balance leading to low-grade inflammation (11). Interleukin-6 is
a well-known biomarker of inflammation in response to
psychosocial stress. Therefore, plasma cytokine concentrations
can serve as an indicator of health status and homeostasis. Recent
findings have determined that the immune dysregulation is less
profound in more International Space Station (ISS) astronauts,
as compared to the earlier construction-era crewmembers,
implying stress may be a primary factor in astronaut immune
dysregulation (12).

Terrestrial clinical findings reveal that saliva cytokines are a
sensitive biomarker for both stress and inflammation (13–15).
Wang et al. found prominent increases in Th1 and inflammatory
cytokines in the saliva of veterans diagnosed with post-traumatic
stress disorder (16). Slavish et al. determined that levels of several
inflammatory cytokines, including IL-1b, TNF-a, and IL-6, were
elevated in saliva in response to acute stress (17). Additionally,
students undergoing acute psychosocial stress have an elevated
saliva IL-6 concentration (18). Salivary IL-6 concentrations are
positively correlated to serum C-reactive protein concentrations,
a key measure of inflammation (19). Studies to correlate saliva
and plasma cytokine concentrations have yielded mixed results.
In normal subjects there appears to be weak correlation, but in
stressed individuals with increased concentration correlation
improves (20, 21). Saliva cytokines have not been investigated
in astronauts to date but represent an appealing area of interest
for spaceflight research because of the non-invasive nature of
obtaining samples and straightforward processing and storage
procedures. During planned missions to the moon and future
long-duration voyages to Mars, obtaining viable venous blood
samples likely will not be an option due to costs, mass and
volume constraints, and most of all, the limited processing and in
situ analysis capabilities of these first exploration missions.
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Understanding the specific nature of immune compromise in
astronauts is essential to the development of potential
countermeasures (22). We sought to further characterize the
immune dysregulation in current ISS astronauts by investigating
13 previously unreported plasma cytokines before, during and
after spaceflight. We also assessed salivary cytokines in astronauts
in an attempt to validate saliva as a viable non-invasive biosample
for astronaut medical monitoring and clinical research.
METHODS

Subjects
The subject pool of astronauts participating in the venous blood
collection consisted of individuals that ranged in age from 38 to
60 years old at the time of launch and spent between 136 and 290
days in space. The astronauts participating in the saliva collection
consisted of individuals who spent between 140 to 290 days in
space and ranged in age from 49 to 56 at the time of launch.
There were 11 males and 2 females participating in the venous
blood collection and 5 males and 1 female participating in the
saliva collection. Of the subjects participating in the collections,
6 individuals provided both plasma and saliva. The protocol was
reviewed and approved by the Institutional Review Board at the
NASA Johnson Space Center, Houston, TX. Subjects provided
informed consent before data collection.

Saliva
Saliva was collected from 6 ISS crewmembers daily for 5
consecutive days at 2 timepoints before launch, designated
launch minus (L-) 180 days and L-45, 2 timepoints during
flight, designated Mid and Late, and 3 timepoints after landing,
designated Return plus (R+) 0 days, R+30 and R+90. For both
ground and flight, and for diurnal consistency, samples from all
subjects were collected just after waking and before eating
breakfast. Samples were collected by saturating a synthetic
‘Salivette’ (Salimetrics, State College, PA) and freezing until
processing. This includes inflight samples, which were frozen
at -96°C, and maintained frozen until returned to Earth and
delivered to the laboratory. Upon delivery, and prior to
processing, all samples were thawed, aliquoted and frozen
at -80°C until batch processing could be completed. Definition
testing confirmed that there is no reduction in cytokine
concentrations using the Salivette methods, as compared to
passive drool samples (unpublished data).

Saliva Cytokine Analysis
A protease inhibiter (Sigma, St. Louis MO) was added to the
samples after thawing. Samples were mixed and then centrifuged
at 10,000 × g for 10 minutes. Samples were diluted 1:2 with assay
buffer and analyzed using an EMD Millipore MILLIPLEX MAP
Human High Sensitivity T Cell Panel Premixed 13-plex
multiplex assay according to the manufacturer’s instructions.
The 13 cytokines analyzed are: IL-1b, TNF-a, IL-6, IL-8, IL-2,
IFN-g, IL-4, IL-5, IL-10, GM-CSF, IL-7, IL-12 (p40/p70), and
IL-13. Samples were analyzed on a Luminex Magpix instrument
August 2021 | Volume 12 | Article 725748
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to determine sample concentrations. Data are presented as pg/
mL to show cytokine concentrations present.

Plasma
Fasting blood samples were collected from 13 crewmembers on
relative days L-180, L-45, L-10, FD15, FD30, FD60, FD120,
FD180, R+0, and R+30 into EDTA vacutainers. For the
assessment of active TGF-b, performed using a separate kit,
analysis was only performed on four crewmembers. Samples
were centrifuged soon after and then plasma aliquots from the L-
180, L-45, R+0, and R+30 timepoints were removed from the
vacutainer and stored in a cryovial at -80°C until batch analysis.
After centrifugation, EDTA vacutainers from the L-10 and
inflight sessions were immediately frozen at -80°C onboard ISS
while still in the gel separator vacutainers until they could be
returned to Earth. The L-10 designation reflects preflight samples
that were frozen in the tube, on the gel separator, until analysis
alongside in-flight samples. While these were often scheduled far
earlier than L-10, and most often were collected at the same time
as the L-45 sample. After samples were returned to Earth,
aliquots of plasma were made and refrozen at -80°C until
batch cytokine analysis could be completed.

Plasma Cytokine Analysis
The samples were analyzed in duplicate using an EMD Millipore
MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead
Panel Premixed 30 Plex Multiplex assay according to the
manufacturer’s instructions. Of this array, 19 cytokines had
been previously published for the ISS astronauts during
spaceflight (8). The previously uninvestigated plasma cytokine
data for this publication consists of the 11 cytokines as detailed in
Table 1. Samples were analyzed on a Luminex Magpix
instrument to assess the concentrations of 30 cytokines and
chemokines. Additionally, plasma was collected from 4
crewmembers and concentrations of active TGF-b1, TGF-b2,
and TGF-b3 were investigated using a Millipore Multiplex kit
and analyzed on a Luminex MAGPIX instrument.

Statistical Analysis
For saliva, an average of data from the 5 consecutive days of
collection was generated for each cytokine. Data were analyzed
by repeated measures 1-way ANOVA with a post hoc Bonferroni
Frontiers in Immunology | www.frontiersin.org 3
t-test where all data were compared against preflight (L-180) data
(SigmaPlot 12.0, Systat Software, Inc., San Jose, CA). Some tests
had to be log or 1/x transformed to achieve normality and equal
variance. The only exception is EGF, where, due to similarity in
findings between flight and the final ground collection, in flight
data were compared to L-10 baseline. For plasma a similar
statistical analysis strategy was employed, with all data
compared to the L-180 baseline.
RESULTS

Plasma Cytokines
Concentrations of IL-3, IL-7, IL-15, IL-12p40, TGF-ß1 and
TGF-ß2 were all higher during flight compared to the L-180
baseline (Figure 1). Concentrations of IL-3, IL-12p40, IL-15,
IFNa2 and IL-7 were determined to peak at FD30 with adaption
to spaceflight beginning at FD60 and continuing throughout the
duration of flight. For all cytokines elevated during flight,
concentrations recovered to baseline levels soon after landing.
The concentration of IL-12p70 was found to be significantly
lower at FD15 and FD30. Eotaxin and EGF were elevated
throughout flight until FD180, although not significantly and
recovered to near baseline at R+30.

Saliva Cytokines
Salivary cytokines were significantly different during spaceflight,
including GM-CSF, IFN-g, IL-12p70, IL-6 and TNF-a
(Figure 2). These cytokines were significantly reduced during
flight, but returned to preflight levels after landing. For IL-2, all
samples had concentrations below the limit of detection,
therefore they are not presented.
DISCUSSION

An earlier assessment of 22 cytokines in astronaut plasma
samples found consistent in-flight elevations in cytokines
associated with inflammation and other processes (8). This
study validated plasma cytokines as a biomarker for in-vivo
dysregulation of the human immune system during spaceflight.
It could not be determined if the causal factor was microgravity,
radiation, stress, circadian shifts, altered nutrition, or some
synergy therein. Saliva cytokines, an emerging excellent
biomarker for stress and inflammation, was not previously
assessed in astronauts. The current study assessed the
concentration of 13 cytokines in saliva, and 14 previously
uninvestigated cytokines in the blood plasma, of astronauts
participating in long duration spaceflight aboard the ISS.

Several cytokines were significantly elevated in astronaut
plasma during spaceflight as compared to pre-flight samples.
These included IL-3, IL-7, IL-15, IL-12p40 and TGF-b. EGF
trended towards an increase during spaceflight. We observed a
similar trend in cytokine profiles between the 2 sample types,
including IL-6, IFNg, IL-8 and IL-12p70. However, IL-7 and IL-
13 did not show any correlation between saliva and plasma. This
TABLE 1 | Cytokines assessed in blood plasma or saliva of ISS Astronauts.

Chemokines Growth Factors Inflammatory Anti-cancer

Plasma Eotaxin EGF IL-12p40 IFNa2
IP-10 IL-3 IL-12p70 TNFb

IL-7 IL-13
IL-15
TGFb1
TGFb2

Saliva GM-CSF IL-1b IFNg
IL-7 IL-6 IL-2

IL-8 IL-4
IL-12p70 IL-5
IL-13 IL-10
TNFa
August 2021 | Volume 12 | Article 725748
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is not surprising considering Williamson et al. found only IL-6,
IFNg and MIP-1b statistically significantly correlated between
passive drool and plasma (23).

Cytokines have diverse roles in regulating immunity.
Interleukin-3 (IL-3) is produced by many cell types, including
monocytes andmacrophages, stroma cells, NK cells, andmast cells
but mainly activated T cells (24, 25). It plays an important role in
hematopoiesis and induces proliferation and differentiation of
Frontiers in Immunology | www.frontiersin.org 4
myeloid lineage cells (26). IL-15 is secreted after viral infection
to induce the proliferation of NK cells to kill virally infected cells
(27). IL-15 is expressed by a variety of cell types and tissues,
including monocytes, macrophages, fibroblasts, kidney, skeletal
muscle, lung, and heart (28). As a pleiotropic cytokine, it plays an
important role in innate and adaptive immunity (27). IL-12 has
been found to be involved in the differentiation of naive T cells
into Th1 cells and is known to play a pivotal role in the activation
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FIGURE 1 | Concentrations of plasma (A) Eotaxin, (B) IP-10, (C) EGF, (D) IL-3, (E) IL-7, (F) IL-15, (G) TGFb1, (H) TGFb2, (I) IL-12p40, (J) IL-12p70, (K) IL-13,
(L) IFNa2 and (M) TNFb before, during and after spaceflight. The TGFb assessments (G, H) represent quantitation of the active form of the molecule. Data are mean
± SD. Significance was evaluated via a Student’s t test by comparing all other data points to L-180 baseline data. Significant differences (P ≤ 0.05) are indicated (*).
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NK cells and CD4+ T helper lymphocytes (29, 30). Due to its role
in the induction of Th1 immune responses, IL-12 has been linked
with Th1 mediated autoimmune diseases (31). Interleukin-7
(IL-7) is a hematopoietic growth factor that is critical for
lymphocyte survival and development and is required by early T
cells and B cells for development in the thymus and bone marrow,
respectively (32–34). It is produced by stromal cells in the
lymphoid tissues including epithelial cells located in the bone
marrow and thymus (35). TGF-b is a family of immunoregulatory
cytokines which are secreted by all immune cells lineages, and
Frontiers in Immunology | www.frontiersin.org 5
which possess many distinct functions. TGF-b has been implicated
as a regulator for bone formation as well as involved in differential
regulation of blood vessel growth in modeled microgravity (36,
37). TGF-b gene expression has been investigated in animals flown
in space and has been suggested as a key master regulator in
response to spaceflight stress factors (36). It plays a primary role in
suppressive and inflammatory immune responses and regulates
thymic T cell selection (38). TGF-b is well known to have
immunosuppressive functions as well as inhibiting cytotoxic
T lymphocytes (CTL) and promoting Th17 cell development
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FIGURE 2 | Concentrations of salivary (A) GM-CSF, (B) IL-7, (C) IL-1b, (D) IL-6, (E) IL-8, (F) IL-12p70, (G) IL-13, (H) TNFa, (I) IFNg, (J) IL-4, (K) IL-5, and (L) IL-10
before, during and after spaceflight. Data are presented in mean± SD. Saliva was collected from crewmembers on 5 consecutive days at the indicated timepoints.
Means were determined by grouping preflight, in-flight and postflight data. Significance was evaluated via a Student’s t test by comparing all other data points to
L-180 baseline data. Significant differences (P ≤ 0.05) are indicated (*).
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(38). Epidermal growth factor (EGF) stimulates proliferation, cell
growth and differentiation by binding EGFR. Basal et al. recently
found that EGF can promote bone formation and
microvascularization in osteonecrosis surgically induced in
rats (39).

Collectively, the pattern of novel cytokine alterations described
herein, particularly growth factors and cytokines associated with
immune mobilization, fits well with previously published findings,
adding to a more complete characterization of space flight
immune system dysregulation. Increases in IL-3 and IL-15 are
consistent with immune mobilization, inflammation or general
upregulated in vivo responses. Increases in IL-7 may be related to
general hematopoietic mobilization. An elevated WBC has been
reported to persist during spaceflight (1). The increase in IL-12 is
also consistent with immune activation, particularly Th1 and
cytotoxic responses. A shift in CTL maturation state has also
been previously reported for ISS astronauts (1).

The fact that these cytokines are elevated confirms the
previous finding that generically, plasma cytokines represent
an excellent biomarker for in-vivo dysregulation of immunity
in astronauts (8). Conversely, their pleotropic nature precludes
their use for specific diagnoses. Changes in clinically relevant
biomarkers, such as the reactivation and shedding of VZV DNA,
have previously been observed in astronauts (2). Certain adverse
clinical events, such as mild infectious diseases or persistent
atopic dermatitis, have also been documented in the ISS
Frontiers in Immunology | www.frontiersin.org 6
crewmembers (2, 4, 5). These clinical outcomes remain likely
related to the immune dysregulation indicated by the alterations
in systemic cytokine concentrations. With an ability to be
assessed by multiplex technology on minimal sample volumes,
we suggest that plasma cytokines therefore represent an
attractive biomarker against which the effectiveness of potential
countermeasures may be evaluated (22).

Potentially problematic for deep space missions, assessing
plasma cytokine concentrations requires a moderately invasive
and time-intensive blood collection. Saliva cytokines therefore
may represent an attractive alternative. Saliva is based on a
filtrate of plasma and was thought potentially useful as a non-
invasive biosample for astronauts. Already, saliva is routinely
used for monitoring stress hormones and latent virus
reactivation in ISS crewmembers. We performed an assessment
of 13 cytokines on crewmember saliva samples collected before,
during, and after spaceflight. The plasma and saliva assessments
were performed as parts of 2 distinct flight experiments;
therefore, the cytokine panels utilized were not the same. The
cytokines selected for saliva analysis are represented in Table 1.
It should be noted that some cytokines may be secreted in saliva
at varying concentrations throughout the day, manifesting a
diurnal variation. A follow up study may advocate for multiple
saliva collections in a single crew day to better address this
limitation. However, for this study, operational constraints
limited the investigator team to a single collection.
FIGURE 3 | Graphical representation of the proposed relationship between health and stress, detectable using biochemical measurements but with no clinical
manifestations, and chronic stress with related adverse clinical events. Stressful conditions, such as spaceflight or various deployment ground analogs of spaceflight,
are represented on the continuum based on research findings. Note that current ISS astronauts general experience less stress due to certain deployed biomedical
countermeasures (consequently less viral reactivation, improved cortisol levels, etc.), than astronauts during the ‘construction phase’ of ISS and therefore are
represented lower on the stress continuum.
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Tominimize the confounder, samples were consistently collected
within 30 minutes after waking. It is known that astronauts lose
their circadian entrainment during flight due to the
environmental conditions. A future study should advocate for
multiple samples, to provide a better assessment of longitudinal
alterations in saliva cytokine concentrations, not due to simple
diurnal variation.

Somewhat surprising considering the literature’s supposition
that saliva cytokines are a sensitive indicator of stress, was the
finding that saliva concentrations of none of the 13 measured
cytokines increased during spaceflight. Both GM-CSF and IL-12
p70 were decreased at one or more in-flight timepoints. This is
potentially explained by the fact that a >12 year survey of
astronaut immunity onboard ISS, from ‘construction era’ to
present day ‘science operations phase’ found that more recent
crews show improved immunity, reduced inflammation, and
reduced concentration of stress hormones (12). This was
ascr ibed to the deployment of severa l biomedica l
countermeasures onboard the ISS. It may be that life onboard
the ISS is simply ‘less stressful’ than during the construction era
and that these biomedical countermeasures were effective.
Importantly, that means that stress, and not radiation and
microgravity, is a primary causal factor in spaceflight immune
dysregulation, and that countermeasures can be deployed to
improve immunity in astronauts. We suggest a ‘stress
continuum’ exists when considering both measurable stress and
clinical disease risk, where construction era astronauts were closer
to the ‘disease threshold’ (Figure 3). Other ground based ‘analogs’
of spaceflight, such as undersea deployment and Antarctica
winterover, may also be placed on this continuum.
Quantification of the asymptomatic reactivation of EBV, as part
of several distinct investigations (via salivary detection of virus
DNA), were found to generally increase along the linear increasing
order of the analogs as represented on Figure 3 (40) [unpublished
data]. Almost all the described countermeasures deployed to ISS
benefiting immunity, including augmented restive and aerobic
exercise, more frequent resupply, etc., do not translate to deep
space vehicle designs based on size and power limitations. We
suggest that continued monitoring during these missions, likely
Frontiers in Immunology | www.frontiersin.org 7
practical given the advent of miniaturized and microfluidics
devices, should include plasma or saliva cytokines, to determine
the need and effectiveness of deep space countermeasures.
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