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Plasmacytoid dendritic cells (pDCs) are known to respond to viral infections. However, the
activation of pDCs by bacterial components such as lipopolysaccharides (LPS) has not
been well studied. Here, we found that pDCs, conventional dendritic cells (cDCs), and B
cells express high levels of toll-like receptor 4 (TLR4), a receptor for LPS. Moreover, LPS
could effectively bind to not only cDCs but also pDCs and B cells. Intraperitoneal
administration of LPS promoted activation of splenic pDCs and cDCs. LPS treatment
led to upregulation of interferon regulatory factor 7 (IRF7) and induced production of
interferon-alpha (IFN-a) in splenic pDCs. Furthermore, LPS-dependent upregulation of
co-stimulatory molecules in pDCs did not require the assistance of other immune cells,
such as cDCs. However, the production levels of IFN-a were decreased in cDC-depleted
splenocytes, indicating that cDCs may contribute to the enhancement of IFN-a
production in pDCs. Finally, we showed that activation of pDCs by LPS requires the
TLR4 and myeloid differentiation factor 2 (MD2) signaling pathways. Thus, these results
demonstrate that the gram-negative component LPS can directly stimulate pDCs via
TLR4/MD2 stimulation in mice.
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INTRODUCTION

Lipopolysaccharides (LPS) are lipid polysaccharides present in
the outer membrane of gram-negative bacteria and are known to
stimulate the immune system (1, 2). Amongst the three
structural domains, lipid A (also known as the endotoxin) is
primarily responsible for the immunostimulatory activity of LPS
(3, 4). LPS are a classical pathogen-associated molecular pattern
(PAMP) that can be recognized by innate immune cells through
the toll-like receptor 4 (TLR4) (5). Upon interacting with LPS,
TLR4 forms a heterodimer with an extracellular adaptor
glycoprotein named myeloid differentiation factor 2 (MD2)
and induces two distinct signaling cascades (6, 7). The first
signaling pathway depends on myeloid differentiation primary
response 88 (MyD88) and induces to the secretion of
inflammatory cytokines by activating nuclear transcription
factor kB (NF-kB) in innate immune cells, whereas the second
pathway is independent of MyD88 and mediates interferon
regulatory factor 3 (IRF3) activation to induce type-I
interferon (IFN) responses (8, 9).

TLR4 is the crucial receptor of the mammalian innate
immune system and can be expressed by various types of
immune cells (10). Moreover, it is highly expressed by antigen-
presenting cells (APCs) such as macrophages, dendritic cells
(DCs), and B cells (11). Numerous studies have reported that
stimulation with LPS induces the activation of these APCs. To
elaborate, murine B cells show stronger cell proliferation,
cytokine secretion, and class switch recombination in response
to LPS stimulation (12, 13). Whereas in case of macrophages, the
TLR4 stimulation promotes to the activation of these cells, which
leads to the secretion of inflammatory cytokines in the
macrophages (14, 15). Furthermore, after sensing LPS via
TLR4, DCs not only undergo maturation and migration but
also show improved regulation of the adaptive immune
responses (16, 17).

DCs are professional APCs that capture antigens and then
process and present them to T cells (18–21). They can be divided
into two major subsets: plasmacytoid DCs (pDCs), which
specialize in antiviral defense by producing interferon alpha
(IFN-a), and conventional DCs (cDCs), which are essentially
responsible for antigen-presentation and T-cell activation (22–
24). Although it is still controversial, the pDCs may be more
efficient at presenting endogenous antigens rather than
exogenous antigens, such as viral proteins (25). By utilizing
pattern-recognition receptors (PRRs), such as TLR7 and TLR9
that bind to viral nucleic acids, pDCs detect virus invasion and
produce large amounts of IFN-a (26). However, fewer studies
have focused on the response of pDCs against bacterial infection
Abbreviations: LPS, lipopolysaccharide; cDC, conventional dendritic cell;
pDC, plasmacytoid dendritic cell; TLR4, toll-like receptor 4; IFN-a, interferon-
alpha; IL, interleukin; TNF, tumor necrosis factor; MD2, myeloid differentiation
factor 2; IRF7, interferon regulatory factor 7; Ab, antibody; MyD88, myeloid
differentiation primary response 88; NF-kB, nuclear transcription factor-kB; PBS,
phosphate buffered saline; APCs, antigen-presenting cells; MHC, major
histocompatibilitycomplex; CTL, cytotoxic T lymphocyte; PRRs, pattern-
recognition receptors; MPLA, monophosphoryl lipid A; KO, knockout.
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and the expression of TLR4 in the surface of pDCs, and on the
effect of TLR4 ligands on pDC activation.

Our previous research showed that monophosphoryl lipid A
(MPLA) induces the activation of pDCs and has a synergistic
effect on anti-PD-L1-antibody-mediated anti-cancer immunity
(27). MPLA is a detoxified form of LPS that stimulates TLR4 and
leads to the activation of immune cells. However, the molecular
details of the MPLA dependent activation of pDCs have not been
studied thus far. Therefore, we hypothesized that pDCs may
express considerable levels of TLR4 and that LPS may stimulate
pDCs either directly or indirectly, as a result of the cytokines
expressed by other immune cells. In the following study, we
treated mice with LPS and characterized the molecules
responsible for LPS-dependent activation of pDCs.
MATERIALS AND METHODS

Mice
Female C57BL/6 mice (6 to 8 weeks) were obtained from Korea
Orient Bio Inc. (Gyeonggi-do, Korea) and Shanghai Public
Health Clinical Center (SPHCC, Shanghai, China). TLR2-
knockout (KO), TLR4-KO, and B6.129P2-Ly96-KO (MD2-KO)
mice were provided by SPHCC. The mice were maintained either
in the Laboratory Animal Center of SPHCC or at Yeungnam
University, under 50–60% humidity and at 20–22°C. This study
was approved by the Ethics of Animal Experiments Committee
of Yeungnam University (2020–015) and SPHCC (2018-
A049-01).

Reagents and Antibodies
LPS (O111:B4) and FITC-conjugated LPS were purchased from
Sigma-Aldrich (St. Louis, MO, USA). TLR4 Agonist-Ultrapure
LPS (055:B5) and CpG-1826 were obtained from Invivogen (San
Diego, CA, USA). The following fluorescence-conjugated
antibodies (Abs) were provided by BioLegend (San Diego, CA,
USA) and were used for flow cytometry analysis: anti-B220 (RA3-
6B2), anti-CD11c (N418), anti-CD3 (17A2), anti-CD317 (927),
anti-CD40 (3/23), anti-CD80 (16-10A1), anti-CD86 (GL-1), anti-
IRF7 (MNGPKL), and anti-TLR4 (SA15-21). Anti-IFN-a
(RMMA-1) Ab was purchased from pbl Assay Science
(Piscataway, NJ, USA). Anti-class I major histocompatibility
complex (MHC) Abs (28–8–6) and anti-class II MHC (M5/
114.15.2) Abs were purchased from eBioscience (San Diego,
CA, USA).

Analysis of Mouse pDCs and cDCs
pDC and cDC activation was analyzed as described elsewhere
(27, 28). The spleens were harvested after intraperitoneal (i.p.)
administration of 0.1 mg/kg LPS or 10 mg/kg CpG to C57BL/6
mice and were then digested with 2% FBS, collagenase IV, and
DNase containing digestion buffer for 20 min at 37°C. After
filtering with 100-nm nylon mash, the cells were resuspended in
3 ml of Histopaque-1077 (Sigma-Aldrich) and layered over 3 ml
of fresh Histopaque-1077, and 1 ml of FBS was then added
above on the top. The cells were centrifuged at 1700 × g for
10 min to harvest the leukocytes (<1.077 g/cm3). Leukocytes were
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incubated with unlabeled isotype control Abs and Fc-block Abs
for 15 min and then stained with anti-CD11c, anti-CD317, and
lineage Abs such as anti-CD3 (17A2), anti-CD49b (DX5), anti-
CD90.1 (OX-7), anti-B220 (RA3-6B2), anti-Gr-1 (RB68C5), and
anti-TER-119 (TER-119). In addition, the cells were stained with
anti-CD40 (3/23), anti-CD80 (16-10A1), anti-CD86 (GL-1), anti-
class IMHC (28–8–6), and anti-class IIMHC (M5/114.15.2)Abs to
determine cell activation. Following a second wash with PBS to
remove the unbound Abs, the cells were resuspended in 50 mg/ml
4’,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) containing
PBS. The cells were analyzed using a Novocyte flow cytometer
(ACEA Biosciences Inc., San Diego, CA, USA) after gating out
DAPI-positive cells as dead cells. The cDCs and pDCs in
splenocytes were identified in live leukocytes by flow cytometry
and defined as lineage−CD11c+cells and CD317+B220+

cells, respectively.

Intracellular Cytokine Staining
Intracellular cytokine production was analyzed as described
previously (29, 30). C57BL/6 mice were injected i.p. with PBS,
0.1 mg/kg LPS, and 10 mg/kg CpG. Twelve hours after the
injection, splenocytes were harvested and incubated with 2 mM
monensin solution (BioLegend) for 2 h. After washing with PBS,
the cells were stained with surface Abs followed by labeling with
the Zombie Violet Fixable Viability Kit (BioLegend) at 25°C for
20 min to remove dead cells. The cells were fixed with a fixation
buffer (BioLegend) at 4°C for 20 min and then stained with
intracellular staining Abs in permeabilization buffer (BioLegend)
at 25°C for 15 min. After washing with PBS, the cells were
analyzed using a Novocyte flow cytometer (ACEA Biosciences
Inc.). IFN-a and IRF7 expression levels were analyzed in
CD317+B220+ pDCs.

ELISA
The IFN-a concentration in serum or cultured media was
measured in triplicates using ELISA kits from BioLegend. For
the serum concentration of IFN-a, the mice received PBS, 0.1 mg/
kg LPS, and 10 mg/kg CpG. Twelve hours after the injection,
blood sera were harvested from the mice. IFN-a concentration in
the cultured media was analyzed from LPS-stimulated enriched
pDCs, splenocytes, or cDC-depleted splenocytes 12 h after
LPS stimulation.

Isolation of pDCs
The pDCs were isolated from splenocytes using a pDC isolation
kit (Miltenyi Biotec, Auburn, CA, USA). The pDC isolation
purity was determined via flow cytometry, and the purity of
CD317+B220+ pDCs was higher than 90%.

Depletion of cDCs
The cDCs in splenocytes were stained with an anti-CD11c-biotin
Ab (BioLegend). The cells were then stained with a microbead-
conjugated anti-biotin Ab (Miltenyi Biotec) for 15 min. The
CD11c+ cDCs were removed by negative selection using an LD
column (Miltenyi Biotec). The efficacy of CD11c+ cDC depletion
was >98%.
Frontiers in Immunology | www.frontiersin.org 3
Statistical Analysis
All data are expressed as mean ± standard error of the mean
(SEM). One- or two-way analysis of variance (ANOVA) followed
by Tukey’s multiple comparison test and Mann-Whitney U-test
were used for the analysis of datasets with the help of SPSS
software (IBM, Armonk, NY, USA). p <0.05 was considered to be
statistically significant.
RESULTS

LPS Binds to pDCs
To identify TLR4-expressing APCs in splenocytes, we gated
TLR4+ and MHC class II+ cells. The TLR4+MHC class II+ cell
population included CD11c+ cDCs, B220+ B cells, and
CD317+B220+ pDCs (Figure 1A). Although, the TLR4
expression levels in pDCs was lower than that in cDCs and B
cells (Figure 1B). In addition, we observed that FITC-conjugated
LPS could efficiently bind to pDCs, cDCs, and B cells
(Figure 1C). Thus, our data indicate that pDCs express
considerable levels of TLR4 on their surface, and that LPS can
bind to pDCs in mouse splenocytes.

LPS Induces the Upregulation of
Activation Markers in pDCs
After establishing that LPS is able to bind to pDCs, we next
examined whether LPS can induce the in vivo activation of these
cells. C57BL/6 mice were treated i.p. with PBS, LPS (0.1 mg/kg),
and CpG (10 mg/kg), and the splenic pDCs and cDCs in the live
leukocytes were defined as B220+CD317+ and lineage−CD11c+

cells, respectively (Figure 2A). LPS administration induced the
upregulation of CD40, CD80, CD86, and class I and II MHC
expression in both pDCs and cDCs, 12 h after injection
(Figures 2B, C). LPS was able to upregulate the co-stimulatory
molecules with a higher efficacy than CpG, a positive control for
pDC activation (Figures 2B, C). In the mouse in vitro study, LPS
exerted a considerably higher effect on the induction of pDC and
cDC activation than CpG (Figure S1). The highest levels of
co-stimulatory molecules in pDCs were recorded 12 h after LPS
treatment, while those in cDCs peaked 18 h after LPS treatment
(Figure S2). However, the expression of MHC class I and II in
both pDCs and cDCs increased dramatically 3 h after LPS
treatment, and there after decreased gradually (Figure S2). In
addition, we examined whether LPS can induce the activation of
liver and thymic pDCs and found that LPS treatment dramatically
upregulated the expression levels of co-stimulatory molecules and
class I and II MHC in both liver and thymic pDCs (Figure S3). In
conclusion, our data suggest that treatment with LPS induces
activation of pDCs in mice in vivo.

LPS Induces IFN-a Production in pDCs
Since it is well known that activated pDCs produce IFN-a (31–
33), we studied IFN-a production in LPS activated pDCs and
observed an increase in the levels of intracellular IFN-a
(Figure 3A). The concentration of IFN-a in serum was also
significantly increased in LPS-treated mice in comparison to the
control mice (Figure 3B). In addition, LPS treatment also led to a
September 2021 | Volume 12 | Article 727161
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remarkable increase in IFN-a regulatory protein interferon
regulatory factor 7 (IRF7) levels in pDCs (Figure 3C).
Although the effect of LPS on IFN-a production was lower
than that of CpG, the increase in IFN-a production in LPS-
treated pDCs was significant (Figures 3A, B). These data suggest
that LPS can promote IFN-a production in mice pDCs.

LPS Directly Upregulates the Surface
Activation Markers in pDCs
Since cDCs can mediate the activation of other immune cells (18,
27, 34), we tried to ascertain if cDCs were required for the LPS-
dependent activation of pDCs. The splenocytes were depleted of
cDCs and then treated with 0.1 mg/ml LPS (Figure S5). In both
total splenocytes (+cDCs) and cDC-depleted splenocytes
(−cDCs), LPS treatment led to a significant increase in the
expression of co-stimulatory molecules, and MHC class I and II
(Figure 4A). Next, we also examined the effect of LPS on isolated
pDCs (Figure S6) and found that LPS promoted their activation
(Figure 4B). These data indicate that the increased expression of
activation markers in pDCs by LPS does not require interaction
with cDCs. In addition, LPS stimulation led to an increased IFN-a
production in isolated pDCs, total splenocytes (+cDCs) and cDC-
depleted splenocytes (−cDCs) (Figure 4C). Moreover, LPS-
activated total splenocytes showed greater IFN-a production
than isolated pDCs and cDC-depleted splenocytes (Figure 4C).
Thus, these data suggest that LPS directly induces upregulation of
Frontiers in Immunology | www.frontiersin.org 4
co-stimulatory molecules in pDCs without interacting with other
cells, especially cDCs. However, IFN-a production in pDCs in
response to LPS may be influenced by the activation of cDCs.

LPS-Induced Activation of pDCs Require
TLR4 and MD2
TLR4 and MD2 are the key receptors that are required in LPS-
induced activation of cDCs (6, 7). To determine if this was also
the case for LPS-stimulated pDCs, we i.p. injected 0.1 mg/kg LPS
in C57BL/6, TLR4-KO, and MD2-KO mice. We observed that
FITC-conjugated LPS was unable to bind to the pDCs in TLR4-
KO and MD2-KO mice (Figure 5A). Moreover, LPS treatment
did not lead to an increase in the serum concentration of IFN-a
in TLR4-KO and MD2-KO mice (Figure 5B). The IRF7
expression levels were not increased in TLR4-KO and MD2-
KO pDCs in response to LPS (Figure 5C). Furthermore, LPS did
not affect the expression of co-stimulatory molecules and class I
and II MHC in the pDCs of TLR4-KO and MD2-KO mice
(Figure 5D). LPS from Sigma-Aldrich used in this study could
stimulate TLR4 as well as TLR2. We confirmed this result using
ultrapure LPS and data showed similar effects on the activation of
pDCs by ultrapure LPS as well as that from Sigma-Aldrich
(Figure S4). Moreover, LPS promoted the upregulation of
these molecules in the pDCs of TLR2-KO mice (Figure S7).
Therefore, these data suggest that LPS-induced pDC activation is
dependent on the TLR4/MD2 pathway.
A

B C

FIGURE 1 | Lipopolysaccharide (LPS) bound to the plasmacytoid dendritic cells (pDCs), conventional DCs (cDCs), and B cells in mice. (A) Toll-like receptor 4
(TLR4)-expressing major histocompatibility complex (MHC) class II positive cells were shown. (B) TLR4 expression in pDCs, cDCs, and B cells was analyzed by flow
cytometry (upper panel). Mean fluorescence intensity (MFI) of TLR4 expression levels in pDCs, cDCs, and B cells is shown (lower panel) (n = 6 mice, two-way
ANOVA, mean ± SEM, **p < 0.01). (C) Binding of FITC-conjugated LPS to pDCs, cDCs, and B cells was analyzed (upper panel). MFI of LPS-FITC binding to pDCs,
cDCs, and B cells is shown (lower panel) (n = 6 mice, two-way ANOVA, mean ± SEM,**p < 0.01).
September 2021 | Volume 12 | Article 727161
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DISCUSSION

Being a member of the DC family, pDCs can serve as a
connecting link between the innate and adaptive immune
system (35). Moreover, pDCs typically act as sensors of viral
infections by producing large amounts of type I IFN and
generating strong antiviral responses (24, 26). However, when
Frontiers in Immunology | www.frontiersin.org 5
compared to cDCs, due to the low expression of MHC and
costimulatory molecules, pDCs are not efficient at presenting
antigens and mediating T cell activation. They become potent
APCs upon proper stimulation with TLR ligands, such as the
TLR9 agonist CpG and TLR7 agonist imiquimod (36, 37). In
addition, it has been demonstrated that human pDCs express
TLR1/2. The TLR1 mechanism contributes to the upregulation
A

B

C

FIGURE 2 | LPS induced the activation of pDCs and cDCs in mice. C57BL/6 mice were treated intraperitoneally (i.p.) with 0.1 mg/kg LPS and 10 mg/kg CpG. The
mice were sacrificed, and spleen was harvested 12 h after treatment. (A) Gating strategy for splenic pDCs and cDCs was shown. (B) CD40, CD80, CD86, and MHC
class I and II expression levels in pDCs (upper panel) and cDCs (lower panel) were shown. (C) MFI of the indicated surface marker expression in pDCs (upper panel)
and cDCs (lower panel) was shown (n = 6 mice, two-way ANOVA, mean ± SEM,**p < 0.01).
September 2021 | Volume 12 | Article 727161
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of costimulatory molecules and pro-inflammatory cytokine
production in response to gram-positive bacterial lipoproteins.
In contrast, type I IFN production is controlled by TLR2
stimulation (38). However, it is still controversial whether LPS,
the classical TLR4 ligand, can lead to pDC activation. Although it
has been previously reported that pDCs do not respond to LPS
due to a lack of corresponding TLRs (39), a study in mice
demonstrated that LPS can enhance the expression of
costimulatory molecules in pDCs (32). Another study in
humans showed that LPS could upregulate IRF-7 expression
and IFN-a production in pDCs (40). In this study, we found that
pDCs expressed considerable levels of TLR4 on their surfaces,
and that treatment with LPS induced upregulation of
costimulatory molecules in pDCs. These data are consistent
with those from our previous results, which suggest that
MPLA enhanced pDC-mediated anti-cancer immunity in
combination with anti-PD-L1 antibody treatment (27).
Together, this indicates that pDCs can respond to LPS and
suggests that these cells may exert protective effects during
gram-negative bacterial infections.

Type I IFNs, a family of monomeric cytokines, are central
players in the antiviral immune response of the host (26).
Importantly, they have pleiotropic effects on many other
immune cells, linking innate and adaptive immunity (41). IFN-a
and IFN-b are the most well-studied members of the type I IFN
family and have a broad degree of effects on the development of
immune cells and on the regulation of immune response (33).
While IFN-b can be produced by many types of cells, IFN-a is
predominantly produced by pDCs against viral infection (42). In
contrast, cDCs are non-professional IFN-a producers (42).
However, TLR9 and TLR7 agonists are potent inducers of IFN-
a production, and the well-known TLR4 agonist LPS can also
Frontiers in Immunology | www.frontiersin.org 6
upregulate IRF-7 expression and IFN-a production in human
pDCs (40). In line with a study in humans, we found that LPS
upregulated IRF-7 expression and induced the in vivo production
of IFN-a in mice pDCs. Future studies should determine if human
peripheral blood pDCs also express TLR4 and response to
LPS treatment.

Although much remains unresolved about the interaction
between pDCs and cDCs, it is known that this interaction plays
an important role in immune defense (43). To elaborate, the
CD40-CD40L interaction between pDCs and cDCs is necessary
for IL-12 production in mouse cDCs during Listeria
monocytogenes infection (44). In addition, co-culturing pDCs
and cDCs had a synergistic effect on the optimal activation of
both pDCs and cDCs in response to bacterial infections in
human peripheral blood (45). In this study, we demonstrated
that LPS induced the upregulation of co-stimulatory and class I
and II MHC molecules in enriched pDCs as well as pDCs in
cDC-depleted splenocytes, indicating that the upregulation of
activation markers in pDCs was independent of cDCs. However,
we found that LPS treatment caused a significant reduction in
IFN-a levels in cDC-depleted splenocytes, indicating that cDCs
may support IFN-a production in these cells. In addition, there
is the possibility that cDCs can directly produce IFN-a in
response to LPS (46). It is important to understand whether
cDCs themselves produce IFN-a in response to LPS or indirectly
promote the secretion of IFN-a by interacting with pDCs and
cDCs. Therefore, a study on the interaction between cDCs and
pDCs in response to LPS or other bacterial components
is needed.

TLR4 has been established as a receptor for LPS (5). LPS is
initially released from the outer membranes of gram-negative
bacteria by the LPS binding protein (LBP). In serum, the LBP-
A B

C

FIGURE 3 | LPS elicited interferon-alpha (IFN-a) production in pDCs. The LPS (0.1 mg/kg) and CpG (10 mg/kg) were i.p. injected in C57BL/6 mice. Twelve hours
after treatment, spleens were harvested and the splenocytes cultured in 2 mM monensin solution for 2 h. (A) Intracellular production of IFN-a in pDCs was shown
(left panel). Mean percentage of IFN-a-producing cells was shown (right panel) (n = 6 mice, two-way ANOVA, mean ± SEM, **p < 0.01, *p < 0.05). (B) Serum
concentration of IFN-a was measured by ELISA (n = 6 mice, two-way ANOVA, mean ± SEM, **p < 0.01, *p < 0.05). (C) Intracellular expression levels of interferon
regulatory factor 7 (IRF7) were measured in pDCs (left panel). MFI of IRF7 expression levels was shown (right panel) (n = 6 mice, two-way ANOVA, mean ± SEM,
**p < 0.01).
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LPS complex transfers LPS to CD14+ cells. LBP and CD14 help
in docking LPS to the TLR4 complex, which is composed of
heterodimer with MD-2 (6). The binding of LPS to the TLR4–
MD-2 complex leads to activation of cells by promoting cytokine
production and induces the expression of activation markers (6,
47). In contrast to cDCs, pDCs are not derived from myeloid
cells and therefore do not express CD14 on their surface. As
mentioned above, CD14 is important for the transfer of LPS to
the TLR4-MD2 complex (Park and Lee, 2013).Therefore, even
though pDCs express TLR4, CD14 is essential for the transfer of
Frontiers in Immunology | www.frontiersin.org 7
LPS to the TLR4-MD2 complex. We speculate that the LPS-
induced activation of pDCs may be due to the contribution of the
soluble form of CD14. To elaborate, it has been shown that the
soluble forms of CD14 can deliver LPS to the TLR4-MD2
complex and contribute to immune activation (48, 49).

In conclusion, we demonstrate that mouse pDCs not only
express considerable levels of TLR4 but also respond to LPS. LPS
treatment induced upregulation of co-stimulatory molecules and
IFN-a production in the pDCs in a TLR4-MD2 dependent
manner. Thus, these data suggest that pDCs can directly react
A

B

C

B

C

FIGURE 4 | LPS upregulated the surface activation markers of pDCs without interacting with cDCs. (A) Total splenocytes (+cDCs) and cDC-depleted splenocytes
(−cDCs) were incubated with 0.1 mg/ml LPS. Expression of the markers indicated above (CD40, CD80, CD86, and MHC I and II) was measured in pDCs by flow
cytometry, 12 h after LPS treatment (n = 6 mice, two-way ANOVA, mean ± SEM, **p < 0.01). (B) The expression levels of co-stimulatory molecules and class I and II
MHC were measured in isolated pDCs 12 h after treatment with 0.1 mg/ml LPS (Upper panels). MFI of co-stimulatory molecules and class I and II MHC was shown
(lower panels, n = 6 mice, two-way ANOVA, mean ± SEM, **p < 0.01). (C) IFN-a concentration in cultured medium was measured by ELISA (n = 6 mice, two-way
ANOVA, mean ± SEM, **p < 0.01, n.s., none significant).
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against LPS and may play a role in shaping the immune response
against gram-negative bacterial infections.
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FIGURE 5 | LPS-induced pDC activation requires TLR4 and myeloid differentiation factor 2 (MD2). (A) LPS binding in pDCs was measured in C57BL/6 (wild type),
TLR4-knockout (KO), and MD2-KO mice by flow cytometry (n = 6 mice, two-way ANOVA, mean ± SEM, **p < 0.01). (B to D) Wild type, TLR4-KO, and MD2-KO
mice were injected i.p. with PBS and 0.1 mg/kg LPS. Twelve hours after LPS injection, spleen and serum were harvested. (B) Serum concentration of IFN-a was
measured by ELISA (n = 6 mice, two-way ANOVA, mean ± SEM, **p < 0.01). (C) Expression levels of IRF7 in pDCs were analyzed by flow cytometry (left panel). MFI
of IRF7 expression levels were shown (right panel, n = 4 mice, two-way ANOVA, mean ± SEM, **p < 0.01). (D) MFI of costimulatory molecules, and class I and II
MHC were shown (n = 6 mice, two-way ANOVA, mean ± SEM, **p < 0.01).
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