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Hospital Schleswig-Holstein, Kiel, Germany, 6 Department of Pediatric Hematology and Oncology, Hannover Medical School,
Hannover, Germany

Posttransplant smooth muscle tumors (PTSMTs) are rare Epstein—-Barr virus (EBV)-
associated neoplasms, mostly occurring after solid organ transplantation. Current
therapeutic strategies include surgery and reduction of immunosuppressive medication.
We describe for the first time a novel treatment approach for PTSMT by adoptive cell
transfer (ACT) of EBV-specific T cells to a 20-year-old patient with a medical history of
cardiac transplantation, posttransplant lymphoproliferative disease, and muiltilocular
PTSMT. During ACT, mild cytokine release syndrome occurred, while no unexpected
safety signals were recorded. We observed in vivo expansion of EBV-specific T cells and
reduction of EBV viremia. Best response was stable disease after 4 months with reduction
of EBV viremia and normalization of lactate dehydrogenase levels. ACT with EBV-specific
T cells may be a safe and efficacious therapeutic option for PTSMT that warrants
further exploration.

Keywords: posttransplant smooth muscle tumors, PTSMT, smooth muscle tumor, adoptive cell transfer, virus-
specific T cells, alloCELL, T-cell transfer, case report

INTRODUCTION

Adoptive cell transfer (ACT) of virus-specific T cells (VSTs) from healthy donors has been
successfully used for the treatment for transplantation-associated diseases, which were refractory
to first-line therapy, including Epstein-Barr virus (EBV)-associated posttransplant
lymphoproliferative disease (PTLD) (1-5) and cytomegalovirus (CMV) (4, 6) and human
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adenovirus (HAdV) (4, 7-9) infections. In addition, the use of
ACT in the context of infection prophylaxis (2, 10, 11) or
consolidation treatment (5) has been suggested.

ACT is associated with high levels of disease response (11)
while generally being well-tolerated, reflected by a rate of
reported adverse events of 4% (n = 475) (7, 11) that include
local swelling of the tumor site (2), aggravation of preexisting
graft-versus-host disease (GvHD) (9, 10), de novo development
of GvHD (4, 8, 10, 12), and notable cytokine release syndrome
(CRS) grades 2-3 (13).

EBV is a human herpesvirus that can drive the pathogenesis
of both lymphoma and carcinoma. EBV can be detected in up to
30% of Hodgkin’s lymphomas, in 5%-10% of diffuse large B-cell
lymphomas (DLBCLs), and in the vast majority of plasmablastic
lymphomas of immunocompromised patients (14). Important
viral proteins include Epstein-Barr nuclear antigen 1 (EBNA-1)
and EBNA-2, which play important roles for intracellular
persistence of the viral genome, acting as a transcription factor
with crosstalk to PI3K/Akt/mTor (phosphatidylinositol 3-
kinase/protein kinase B/mammalian target of rapamycin)
signaling and for proliferation and survival of infected B cells.
In addition, EBV is characterized by functional RNAs called EBV
small encoded RNA molecules (EBER), whose precise function
remains largely unknown (14).

EBV-associated smooth muscle tumors (SMTs) are rare
neoplasms of indefinite malignancy linked to states of
immunosuppression. Classification differentiates SMT after solid
organ transplantation (PTSMT), SMT with the human
immunodeficiency virus (HIV-SMT), and SMT with congenital
immunodeficiency (CI-SMT). For patients with PTSMT, medical
history of PTLD is not uncommon and most often associated with
solid organ transplantation (15). It is assumed that PTSMT
originates from EBV-infected smooth muscle cells (SMCs) of
venous walls (16). While there is some evidence that the EBV
receptor CD21, which is expressed by SMC, plays an important role
in infection and transformation (17, 18), cases with CD21" PTSMT
cells have been described (19, 20). This implicates that there are
different trajectories toward malignant degeneration in SMT (21).

Symptoms of PTSMT are mainly based on the location of the
tumor(s), including pain and organ dysfunction. Diagnosis is
most frequently made by sonography or computed tomography
(CT) with subsequent needle or laparoscopic biopsy. In case of
colonic involvement, colonoscopy reveals the classical phenotype
of PTSMT.

Of 36 previously published cases, eight (22%) were monocentric
SMTs, while 28 (78%) showed multilocular occurrence, which
mostly evolved in a synchronous manner (19, 20, 22-31).

While therapeutic standards are currently lacking, the therapeutic
mainstay consists of surgery, decreasing immunosuppression, and
medical therapies. Surgery is the therapy of choice but is only
achievable in about 25% of the cases (22, 25, 28-30). Tapering of
the immunosuppressants is pivotal for disease control and should be
attempted in all patients, especially since responses have been
achieved by dose modification only in selected cases (2 of 36,
5.5%), indicating immunological antitumor effects like those seen
with PTLD (20, 24).

In four of the 36 published cases, tapering of immunosuppression
was combined with different chemotherapy regimens. Cytotoxic
drugs included vincristine (19), dactinomycin (19), and
cyclophosphamide (19), trabectedin (24), gemcitabine (24),
temozolomide (23), and isotretinoin (26). Although a systematic
analysis is lacking, reported effectiveness was very limited, with
response rates below 10%.

Of note, the mTOR inhibitor sirolimus was successfully
used to achieve complete remissions in four out of six PTSMT
patients with a mean follow-up of 3.8 years (28, 30, 31). Here,
sirolimus may interfere with the malignant transformation in
SMT, as the PI3K/Akt/mTOR pathway plays a crucial role in
SMTs (32).

Prognosis of PTSMT's was defined as a function of therapeutic
regimen, cerebral involvement, onset time, and accompanying
diseases (24). Median overall survival was estimated at 6 months
when chemotherapy or radiotherapy was initiated, 28.5 months
when reduction of immunosuppression sufficed, and up to 108
months when surgery and reduction of immunosuppression
were realized (33).

Here, we present a case of a 20-year-old female with
refractory multilocular PTSMT (Figure 1). The patient
underwent cardiac transplantation in 2017 after diagnosis of a
dilated cardiomyopathy and borderline myocarditis with
end-stage heart failure in 2016. After transplantation, she
received prophylactic immunosuppression with everolimus and
tacrolimus. In 2018, the patient was diagnosed with EBV" CD19"
CD30" polymorphic PTLD with pulmonary manifestations and
monomorphic PTLD with the histological picture of EBV*
DLBCL in an esophageal biopsy. The patient received four
courses of rituximab after tapering of the immunosuppression
in October 2018. Due to poor response, therapy was augmented
with CHOP (cylophosphamide, hydroxydaunorubicin,
vincristine (oncovin), prednisolone) polychemotherapy without
vincristine and three courses of rituximab, carboplatin, and
etoposide, which resulted in complete remission with an event-
free survival of 12 months.

In April 2020, CT revealed new suspicious hepatic
lesions. Needle biopsy of the liver revealed the diagnosis of
EBV" PTSMT. Fluorodeoxyglucose (‘*F) positron emission
tomography-CT demonstrated masses in both lungs, liver, and
the colosigmoid junction. Colonoscopy showed multiple nodular
mucosal tumors with erythematous margins and a maximum of
1.5 cm in diameter (Figure 2A) that were histologically confirmed
as latency type III (34) EBV" PTSMT. Immunohistology revealed
low proliferating (Ki-67 <5%) spindle cells with expression
of calponin and caldesmon as well as EBNA-2, lacking the
expression of CD34 and S100. Furthermore, positivity for
EBER was detected by in situ hybridization (Figures 2B-F).
Moreover, PCR analysis revealed EBV viremia (EBV DNA
copies: 43,258 U/ml). HIV serology was negative; lymphocyte
counts and quantitative immunoglobin levels were in range
throughout the medical history. No opportunistic or recurrent
infections were reported prior to the heart transplantation,
and therefore we clinically rule out HIV-SMT or CI-SMT as
differential diagnoses.
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A October 2016 - December 2019
. . Initial diagnosis DCM with end stage
=5 months . heart failure; LVAD implantation
-45 months
-40 months— ¢ Heart transplantation
-35 months—} 0 Humoral transplant rejection
-30 months
-25 months
n ‘ ID esophageal and pulmonary PTLD
. Therapy: 4 cycles of Rituximab
- 0 Staging: PR/ SD; 4 cycles
-20 months
- e Staging: Pulmonary PR, esophageal CR
n . Pulmonary wedge removal;
. Histology: EBV-pos. PTLD;
Pulmonary and hepatic PTLD relapse;
Therapy: 3 cycles of R-CE
-15 months 8
-1 ¢ Staging: CR
-10 months— 6 Staging: CR

Therapy initiation was complicated by severe sepsis, fungal
pneumonia, and third-stage acute kidney injury [Kidney Disease:
Improving Global Outcomes (KDIGO) guidelines (35)] with
intermittent hemodialysis, drug-induced torsade de pointes, and
resuscitation. Upon clinical stabilization, we initiated therapy with
rituximab and reduced the doses of everolimus and tacrolimus,
aiming for trough blood levels of 2-4 ng/ml for each drug. After four
courses, thoracic CT revealed partial remission. EBV copies also
decreased during therapy to undetectable numbers. Clinically,
however, the patient suffered from severe pain of the upper right
abdomen, and abdominal magnetic resonance imaging showed
multiple new lesions of the liver and spleen.

B April 2020 - December 2020
-6 months— 0 Chest-CT: Suspicious hepatic lesions
-5 months
-1 0 Initial diagnosis: Hepatic PTSMT
-4 months
-3 months
-2 months— 0 Torsade de Pointes with CPR
. PET-CT: Pulmonary (bilateral), hepatic
:and sigmoid lesions;
- 6 Colonoscopy: Multiple mucosol tumors;
:  Histology: PTSMT; Therapy: 4 cycles of
. Rituximab
“Imonth1 @ Staging: Pulmonary PR, hepatic, splenic
and subcutaneous progression
Day 14 @ Adoptive T cell transfer #1
+1 month 0 Adoptive T cell transfer #2
- @ Adoptive T cell transfer #3
- ¢ Staging: Stable disease
+2 months
- ® Adoptive T cell transfer #4
+3 months{ ¢ Adoptive T cell transfer #5
-4 e Staging: Stable Disease

FIGURE 1 | Medical history of the patient. (A) October 2016 until December 2019. (B) April 2020 until December 2020.

Interferon-gamma enzyme-linked immuno spot (IFN-y-
EliSPOT) assay of the patient’s T cells revealed lack of
reactivity against EBNA-1 in our patient, with 1.5 spots/
250,000 peripheral blood mononuclear cells. This indicated an
immunological gap against EBV and the PTSMT. Lacking other
therapeutic options in the case, we decided to offer adoptive
transfer of EBV-specific T lymphocytes to the patient as
compassionate use. Informed consent was obtained from the
patient using shared decision-making. The patient and her
family explicitly consented to future publications regarding her
case. The compassionate use of this novel therapeutic regimen
was in accordance with the ethical standards of our institution
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Barr virus nuclear antigen 2 (EBNA-2) stain.

FIGURE 2 | Macroscopic and microscopic images of posttransplant smooth muscle tumor (PTSMT). (A) Colonoscopic image of PTSMT depicted as a nodular
mucosal tumor with erythematous margin and a mucous cap. (B-F) Histopathological stainings from the tumor depicted in panel (A), x100 magnification applied.
Staining: (B) hematoxylin and eosin stain; (C) caldesmon stain; (D) Ki-67 stain; (E) Epstein—Barr virus-encoded small RNAs (EBER) in situ hybridization; (F) Epstein—

TABLE 1 | HLA genotypes of patient, heart allograft, and T-cell donor of ACT.

ID/HLA allele A A B B C C DRB1 DRB1 DQB1 DQB1 Match
Patient 01 03 08 35 04 org 01 11:02 05:01 03:01 5/10
Heart transplant 02 24 52 35 12:02 09:01 1Al 03:03 03(7) 1/10
VST cell donor 03:01 03:01 35:01 35:01 04:01 04:01 01:01 01:01 05:01 05:01

ACT, adoptive cell transfer; VST, virus-specific T cells; HLA, human leukocyte antigen, bold values indicate HLA allele matches.

and the Declaration of Helsinki. No other participants
were included.

THERAPY AND RESULTS

We selected T cells exhibiting high reactivity against EBNA-1 and a
pool of 43 major histocompatibility complex (MHC) class I and class
I-restricted peptides from 15 different EBV proteins (PepTivator®
EBV EBNA-1 and PepTivat0r® EBV Select, Miltenyi Biotec,
Germany) from an unrelated donor from the alloCELL VST donor
registry (36), exhibiting a 5/10 HLA allele match with the patient and
a 1/10 HLA allele match with the transplanted heart to avoid
cytotoxicity by posttransplant HLA antibodies (Table 1). The VST's
were manufactured using IFN-y-based CliniMACS cytokine capture
system as previously described (5).

Starting in September 2020, ACT was repeated every 2-4
weeks for a total of five infusions.

First, 1 x 10* CD3" T cells/kg body weight (BW) with a purity of
38.5% CD3"/IFN-y" EBV-specific T cells with a CD4/CDS8 ratio of
3:1 were administered. Upon good tolerability, we increased dosing
to 1.8 x 10* CD3" cells/kg BW.

Transfusion of EBV-specific VST was generally well-tolerated.
Treatment-emergent adverse events (TEAEs) included third-grade
anemia requiring transfusion of packed red blood cells (CTCAE
v5.0), exacerbation of pain, nausea, and CRS upon increase in white
blood cell counts. CRS presented with fever, hypotension
responding to intravenous fluids, and hypoxia requiring low-flow
oxygen via nasal cannula [ASBMT consensus grading 2 (37)]. Of
those TEAEs, only CRS was attributed to the ACT; however, dose
reductions regarding the ACT were not necessary. Of note, no signs
of GvHD or transplant rejection were observed.
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To determine the immunological effects of ACT, blood
samples taken before and after ACT were analyzed for EBV-
reactive T-cell responses using antigen-reactive T-cell
enrichment (ARTE), as previously described (38-42). Since the
transferred EBV-specific T-cell product had a CD4/CD8 ratio of
3:1, we focused on specific CD4" T cells. Frequencies of EBNA-1
and EBV consensus pool (PepTivator® EBV EBNA-1 and
PepTivator® EBV Consensus, Miltenyi Biotec, Germany)
reactive T cells were determined after 7 h of antigen
stimulation and magnetic enrichment of CD40L" (CD154")
CD4" T cells (ARTE). Frequencies were calculated based on
the relative cell count of CD40L" (CD154") memory T cells
(Tmem) after gating (Supplementary Figure S1) for CD4" T cells.
Quantification of the activation markers Ki-67 and CD38 was
performed, and expression of the T-cell cytokines tumor necrosis
factor (TNF)-a, IFN-y, and interleukin (IL)-2 was measured to
obtain a broad overview of T-cell activation and functionality.
We found an increase in the frequency of CD40L" (CD154")
T cells after the third ACT that was accompanied with increased
expression of CD38 and Ki-67 and of TNF-a and IL-2 after the
fourth ACT (Figure 3). Notably, in vivo expanded T cells
displayed reactivity for both EBNA and EBV consensus pool
antigens. An increase of IFN-y"/CD40L*/CD4" T cells was
detected only with reactivity for EBNA antigens, while no
increase of cells with specificity for EBV consensus pool was
identified. Accordingly, we found increasing blood levels of IL-6
from initially 44 ng/l (day 6) up to 148 ng/l (day 37). We also
detected suppression of EBV replication below the quantifiable
detection threshold. Lactate dehydrogenase (LDH) levels
decreased to physiological levels after the fifth ACT (Figure 3)
(43-45). Additionally, we confirmed presentation and
recognition of immunodominant EBNA-1 epitopes by the
shared HLA alleles using the in silico prediction algorithms
SYFPEITHI and NetMHC (Supplementary Tables S2-S5)
(43-45).

Abdominal sonography revealed stable disease at 3 months of
treatment initiation. At that point, the patient’s condition had
improved so that we were able to discharge her with regular
follow-up as an outpatient. However, 4 months after treatment
initiation, the patient’s performance status dramatically
decreased and no further treatment attempt was solicited by
the patient. Unfortunately, the patient deceased due to
progressing hepatic failure.

DISCUSSION

To our knowledge, we present the first report of ACT of EBV-
specific T cells for a patient with PTSMT. ACT has previously
been successfully implemented for patients with PTLD (1-5),
CMV (4, 6), or HAAV infection (4, 7-9, 11) and suggested for
PTSMT treatment (28).

Treatment with VST in this case of a young, heavily pretreated
patient with an unfavorable prognosis of multilocular PTSMT
resulted in stable disease at 3 months and overall survival of
4 months.

The patient succumbed to progressive liver failure most likely
due to progressive disease of PTSMT. Importantly, during ACT,
no safety signal regarding liver function tests was observed, and
liver function tests deteriorated upon withdrawal of ACT. Liver
failure due to EBV reactivation without tumor progression is
unusual (46-48). However, association of hepatic failure to ACT
or EBV reactivation cannot entirely be ruled out.

During the course of therapy, we detected an increase of
EBNA-1 and EBV consensus pool reactive T cells with enhanced
activity and a decrease in serum levels of LDH and EBV viremia.
Increase of IL-6 levels was in line with activation of immune
effector cells by EBV-specific donor T cells (49), which was
clinically associated with a mild second-grade CRS (37).

In order to achieve maximum therapeutic efficacy for future
patients, we would like to address some aspects that we consider
pivotal when applying VST therapies.

In our case, five doses of each 1 x 10*-1.8 x 10* CD3" T cells/
kg BW with a purity of 38.5% CD3"/IFEN-y" EBV-specific T cells
and a CD4/CD8 ratio of 3:1 were infused every 19 days on
average (range: 16-27 days). With regard to previously published
dosages of ACT (Supplementary Table S1), this shows that
while lower cell counts for ACT may work, therapy response may
correlate with the composition of T-cell subsets, such as ratio of
CD4" T cells (1).

Another critical issue is frequency of ACT of VST for
antineoplastic therapy. Little is known regarding the optimal
frequency, since comparative analyzes are lacking. We chose to
quantify “pharmacokinetics” of ACT by assessment of immune
effector cells, EBV viremia, and LDH. Nevertheless, it can be
assumed that a higher frequency of ACT would be necessary to
improve expansion and persistence of VST in vivo. On the other
hand, limited availability of cell products confines therapy
schedules. Therapy frequency should be adapted to tolerability,
efficacy, and the individual VST cell counts in the patient, ideally
accompanied by advanced cell monitoring, as suggested in this
case report, to quantify T-cell activation and functionality.

To address the limited availability and dosing, tabelecleucel
(tab—cel®, ATA129), an “off-the-shelf” allogenic T-cell
immunotherapy, is investigated for EBV-positive leiomyosarcomas
(NCT04554914) at doses of 2 x 10° EBV-specific cytotoxic
T cells/kg BW administered in 35 days lasting cycles on days 1,
8, and 15 for up to 24 months. The doses to be applied in the
trial are notably higher than those in our case report, possibly
leading to increased T-cell expansion and persistence. However,
tabelecleucel contains in vitro expanded cell lines and it is
currently unknown how numbers and function compare to
directly ex vivo selected cells.

HLA matching is crucial in ACT of T cells to prevent GvHD,
transplant rejection, and depletion of the transferred cells.
Previous studies reported good results for PTLD and CMV
infection treatment with 5/10 (5), 8/10 (3), and 9/10 (6) HLA
matching. In a long-term follow-up report comprising of 33
cases of ACT-treated PTLD, a correlation of HLA matching
and treatment response was found (1). In our case, the third-
party T-cell donor matched 5/10 with the HLA genotype of the
patient and 1/10 with the HLA genotype of the heart (Table 1).
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The selected donor offered a compromise between HLA
compatibility with patient and solid organ transplant and
frequency and distribution of EBV-specific T cells. The distinct
mismatch between the HLA genotype of the heart and the donor
was chosen to avoid elimination of transplanted T cells by HLA
antibodies that were bona fide existent after heart transplantation
and to also prevent de novo donor-specific antibody induction by
the activated T cells.

The absence of severe adverse immune reactions or transplant
rejection was possibly facilitated by continuing the administration
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FIGURE 3 | T-cell subpopulations and dynamic of Epstein-Barr virus (EBV) viremia and lactate dehydrogenase (LDH) during the course of five adoptive cell transfers
(ACTs), indicated by vertical dotted lines. (A) Frequency of CD154* (CD40L*) memory T cells (Trem) Normalized to the count of CD4* T cells with specificity to either
EBNA (solid line) or EBV consensus antigens (dotted ling). (B) Percentage of CD38"* T cells among CD154" (CD40L™") Tem cells depicted in panel (A). (C) Percentage
of Ki-67-expressing T cells among CD154* (CD40L") Tynem Cells. (D) Percentage of Interleukin 2 (IL-2)-expressing T cells among CD154" (CD40L™) Trem cells.
(E) Percentage of tumor necrosis factor alpha (TNF-o)-expressing T cells among CD154* (CD40L*) Tynem cells. (F) Serum levels of EBV (U/ml) and LDH (U/ml).
Remarks: Graphs in panels (A-E) are given for EBNA-1-specific T cells and T cells reactive against the EBV consensus pool of antigens.

of tacrolimus and everolimus, albeit in a reduced dose. Tacrolimus
inhibits calcineurin, a protein phosphatase playing an important
role in T-cell cytokine transcription and release. Everolimus, by
contrast, inhibits the mTOR, a key kinase in cell cycle progression,
leading to impaired T-cell activation and cell cycle arrest (50).
Since both drugs decrease T-cell activity, the potential effect of the
transfer of EBV-specific T cells can be diminished by high serum
levels of these drugs. We attempted to mitigate this by dose
adaptation for both drugs, but more efficacious effects may have
been possible in the absence of tacrolimus and everolimus.
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Previous work suggests another approach: sirolimus, the
predecessor of everolimus, was able to induce and sustain
complete remission in PTSMT patients (28, 30, 31). Interestingly,
these cases have in common that the immunosuppressive therapy
prior to the switch to sirolimus did not include rapalogs. Sirolimus
and everolimus differ mostly in pharmacokinetic and not
pharmacodynamic properties (51). Furthermore, everolimus
inhibits SMC proliferation more efficaciously than sirolimus (52),
which indicates that a treatment attempt with sirolimus will
probably fail when PTSMT evolves in patients under rapalog
treatment like ours.

Another approach in adoptive T-cell transfer is the
combination with immune checkpoint inhibitors. Albeit the
promising results from chimeric antigen receptor T cell (CAR-
T cell) therapy (53), tolerability in transplanted patients is very
low, with transplant rejection rates of 39.8% for solid transplants
(54) and fatal GvHD in 7.7% for patients who underwent
allogenic stem cell transplantation (55).

In this case report, we were able to show for the first time that
ACT of EBV-specific T cells is a safe therapy option for PTSMT
patients with an encouraging signal of effectiveness. We were
able to dissect effectiveness by identification of T-cell
proliferation, cytokine release, clearance of EBV from the
peripheral blood and radiographic findings. Further studies are
needed in order to explore this novel therapeutic option for
PTSMT patients.

PATIENT’S PERSPECTIVE

Upon treatment initiation, and due to the lack of other suitable
therapy options, the patient was in hopeful anticipation of a
novel treatment approach, although she was clearly worried
about TEAEs in light of her medical history. Using shared
decision-making tools, we decided to move forward with the
ACT and identified discharge from hospital with treatment as an
outpatient as treatment objective.

We achieved that goal after three courses of ACT. Although
we feared the long distance between the patient’s home and our
treatment center would be a hindrance, we found her mental
state and compliance much improved upon readmission to
hospital. With the help of intensive physiotherapeutic therapy,
we were able to discharge her again after five courses of ACT,
where she continued to benefit from therapy for about a month.
Unfortunately, 1 month after discharge, her physical and mental
condition decreased dramatically and the patient expressed no
wish in continuing medical therapy. Shortly after, the patient
deceased due to hepatic failure. For this case report, we had the
patient’s explicit consent to publish this report and thankfully
received written informed consent from the patient’s father.
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