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VITT is a rare, life-threatening syndrome characterized by thrombotic symptoms in
combination with thrombocytopenia, which may occur in individuals receiving the first
administration of adenoviral non replicating vectors (AVV) anti Covid19 vaccines. Vaccine-
induced immune thrombotic thrombocytopenia (VITT) is characterized by high levels of
serum IgG that bind PF4/polyanion complexes, thus triggering platelet activation.
Therefore, identification of the fine pathophysiological mechanism by which vaccine
components trigger platelet activation is mandatory. Herein, we propose a multistep
mechanism involving both the AVV and the neo-synthetized Spike protein. The former
can: i) spread rapidly into blood stream, ii), promote the early production of high levels of
IL-6, iii) interact with erythrocytes, platelets, mast cells and endothelia, iv) favor the
presence of extracellular DNA at the site of injection, v) activate platelets and mast cells
to release PF4 and heparin. Moreover, AVV infection of mast cells may trigger aberrant
inflammatory and immune responses in people affected by the mast cell activation
syndrome (MCAS). The pre-existence of natural antibodies binding PF4/heparin
complexes may amplify platelet activation and thrombotic events. Finally,
neosynthesized Covid 19 Spike protein interacting with its ACE2 receptor on
endothelia, platelets and leucocyte may trigger further thrombotic events unleashing the
WITT syndrome.

Keywords: VITT, IL-6, PF-4, adenoviral vectors, erytrocyte, platelet, endothelia, mast cell
INTRODUCTION

Coronavirus disease 2019 (COVID-19) has been associated with more than four million deaths
documented worldwide, thus vaccination against SARS-CoV-2 is the most relevant resource against
the COVID-19 pandemic (1, 2).

At present, the European Medicines Agency (EMA) has approved two vaccines based on the
messenger RNA (mRNA) technology: Pfizer BioNTech (BNT162b2) and Moderna COVID-19
(mRNA-1273). EMA has also approved two adenoviral vector (AVV)-based vaccines encoding the
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spike glycoprotein of SARS-CoV-2, namely COVID-19 Vaccine
Janssen employing recombinant human adenovirus type 26
vector (Ad26.COV2.S b) and COVID-19 Vaccine AstraZeneca
(Vaxzevria) employing the recombinant chimpanzee adenoviral
[ChAdOx1-S] type 5 vector (3). At the beginning of April 2021,
more than 82 million people in the European Union have been
vaccinated and, among them, 20 million people have received
Vaxzevria and Janssen vaccines (4). In addition, an
undetermined number of Europeans received a vaccine other
than the four EMA-approved vaccines, namely the Russian
Sputnik employing the two different human Adenoviral vectors
(type 5 and type 26). In this context, the chimpanzee adenoviral
vectors have the desirable vector characteristics of human
adenoviral vectors, but with negligible seroprevalence in the
human population. Indeed, their employ in several Phase I
clinical trials have shown good safety and immunological
profiles. However, certain Chimpanzee AVVs may not be
suitable for some populations since neutralizing antibodies to
some chimpanzee adenovirus serotypes have been detected in
humans from sub-Saharan Africa, Brazil and China (5).

With such a widespread diffusion of anti-COVID-19
vaccines, the detection of severe side effects associated with
vaccine administration should be rapidly documented. In this
context, from late February 2021, following the first report by
Greinacher and coll., different groups highlighted several cases of
an unusual syndrome termed vaccine-induced immune
thrombotic thrombocytopenia (VITT) after vaccination with
ChAdOx1 nCov-19 and Janssen vaccine but not with RNA
vaccines (6–9), with a single exception. Indeed, a recent paper
describes a VITT case after vaccination with mRNA Moderna
vaccine that seems somehow atypical, since the patient was a 65
year old man, who developed the VITT syndrome after the
second vaccine injection (10).

The clinical picture of moderate-to-severe thrombocytopenia
and thrombotic complications at unusual sites was observed in
healthy individuals under 60 years of age within 5 to 20 days after
the first ChAdOx1 nCov-19 vaccination with a rate of 6.5 events
per million (9). These clinical features characterize a syndrome
that resembles the severe heparin-induced thrombocytopenia, a
well-known pro-thrombotic disorder caused by platelet-
activating antibodies that recognize a neo-antigen in the multi-
molecular complexes formed by the cationic Platelet Factor 4
(PF4) and anionic heparin. The patients who develop VITT are
characterized by high levels of IgG antibodies against PF4-
polyanion complexes, despite they have never been exposed to
heparin (4, 6–9).

Even if the risk of developing VITT symptoms does not
appear to be higher than the basal risks in the general population,
the mortality caused by cerebral venous thrombosis in patients
who received Jannsen or Vaxzevria vaccine is higher than
expected (8), with a rate of 0.37 events per million.
Identification of the fine pathophysiological mechanism by
which vaccine components trigger this rare syndrome
is mandatory.

Firstly, it is important to understand why these thrombotic
events occur at unusual sites. McGonagle and coll. propose a
Frontiers in Immunology | www.frontiersin.org 2
convincing explanation that cerebral sinus- and splanchnic veins,
which drain the nasal sinus and intestines respectively, allow
microbiota and viral products to enter the endothelial networks
of lining vessels. In this context, the undue presence in these sites
of high titers of anti-PF4 pathogenic autoantibodies may lead to
an aberrant immune response including activation of platelets,
mast cells and neutrophils, increased platelet consumption and
thrombosis (11).

Greinacher and coll. ask a series of basic questions wondering
whether these anti-PF4 antibodies are autoantibodies induced in
bystander autoreactive B cells by the strong inflammatory
stimulus of vaccination, or antibodies induced by the vaccine
cross-reacting with PF4 and platelets (4). However, since in
healthy donors PF4 is hidden in the a granules of platelets
(12), an early event leading to a specific anti-PF4 antibody
response would be necessarily a rapid platelet activation with
subsequent release of PF4 outside the platelets soon after the
vaccination. Thus, in our opinion, the preliminary basic question
concerns the mechanism causing platelets activation soon after
vaccine administration.

Regarding this point, Greinacher and coll. speculate that
interactions between the vaccine components and platelets
could play a role in the pathogenesis (4). However, they
exclude a role of the adenoviral vector, arguing that the
amount of adenovirus in a 500-microliter vaccine injection
administered 1-3 weeks earlier could hardly contribute to
subsequent platelet activation observed in these patients (4).

They reiterate this statement although they show enhanced
reactivity of patients’ sera with platelets in the presence of
ChAdOx1 nCov-19 and quote references showing that
adenovirus binds to platelet and causes platelet activation (4).
They rather consider that a possible trigger of these PF4-reactive
antibodies could be free DNA present in the vaccine, since they
had previously shown that DNA and RNA can form multi-
molecular complexes with PF4, which binds antibodies from
patients with heparin-induced thrombocytopenia (4). Once
more, the neglected point is: which event causes platelet
activation and PF4 exposure?

Herein, we discuss about a possible role of the adenoviral
vector in platelet activation, analyzing what was previously
published on this matter and suggesting some relationship
with the induction of VITT.
PRECLINICAL MODELS

Several studies using murine and rabbit models have shown that
soon after intravenous injection of adenoviral vectors the main
target in the blood is represented by platelets as they express the
Cocksackie/Adenovirus receptor (CAR). Adenoviral particles
engulfed by platelets mediate platelet activation, as revealed by
the surface exposure of the adhesion molecule p-Selectin that,
interacting with its ligand PSGL-1 on leukocytes, favors platelet-
leukocyte aggregate formation. At the same time, adenoviruses
induce endothelial cell activation, as shown by VCAM-1
expression on virus-treated cultured endothelial cells and by
August 2021 | Volume 12 | Article 72851
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the release of ultra-large molecular weight multimers of Von
Willebrand Factor (VWF) within 1-2 hours from virus addition
to cultures (13–16). Moreover, CAR expressed on endothelial
cells acts as a mechanic sensor responsive to fluid shear stress,
activating endothelial mechanical transduction, modulating
endothelial function leading to vascular pathophysiologic
events (17). Accordingly, it is conceivable that adenoviral
vectors injected intravenously may rapidly activate both
platelets and endothelia and trigger a complex platelet-
leukocyte-endothel ia l axis result ing in coagulat ion
abnormalities and severe thrombocytopenia from 5 to 24 hours
after adenovirus delivery, in a vector dose-dependent manner
(13–17). Similar effects were observed injecting AVVs to non-
human primates (18–20). Indeed, this treatment causes a rapid
temporal and dose-dependent thrombocytopenia, associated to
the reduction of erythrocytes counts, since erythrocytes could
bind activated platelets and be cleared and/or sequestered along
with them. In addition, these animals show dose-dependent
elongation of clotting times with concomitant increase of
fibrinogen and of the amount and size of VWF multimers,
which, likely, reflect endothelial cell damage (18–20).
HUMAN TRIALS BASED ON
ADENOVIRAL VECTORS

In humans, natural adenovirus infections have not been
associated to altered coagulation, even if a viremic phase has
been described, with the exception of rare severe cases of
detectable high levels of the virus (21–24). Some human
adenovirus serotypes persist in lymphoid tissues for several
years, through a form of low-grade replication, and the
Group C adenovirus DNA has been identified in peripheral
blood lymphocytes during fatal acute infection and in
immunosuppressed patients (25, 26). Moreover, in vitro
experiments performed with blood from healthy donors show
that the main target of the adenoviral vectors is human
erythrocytes and, at a much lesser extent, platelets (27). This
occurs since, differently from murine and monkey red blood
cells, human erythrocytes express CAR and Complement
Receptor 1 (CR1), which mediate their binding to adenoviral
vectors (28, 29). In another study, despite a variable pattern of
distribution between donors, the relative amount of virus
associated with platelets in vitro was significantly higher than
that recovered in erythrocytes (30). This difference is possibly
due to the different type of anti-coagulant drugs employed in
blood sampling (29, 30).

In neoplastic patients treated with intra-tumor infusions of
adenoviral vectors, the number of viral genome copy number
generally peaks between 9 to 12 hours after infusion and is
followed by viral shedding into the blood stream within 24 hours.
By comparing serum and blood clots, it was showed that in these
patients viral DNA detection was higher in blood clots. Analysis
of interactions between oncolytic adenoviruses and blood cells
was performed in vivo and viruses resulted mainly associated
with erythrocytes or granulocytes, but poorly associated with
Frontiers in Immunology | www.frontiersin.org 3
platelets. Nevertheless, in cancer patients, the absence or low
amount of virus in the platelet compartment 24 hours after
treatment was associated with decreased thrombocyte and
leukocyte counts (29).

Even though these results could apparently recall data of
preclinical models, we propose an alternative mechanism. It has
been shown that damaged erythrocytes can modulate
platelet reactivity directly through either chemical signaling or
adhesive erythrocyte-platelet interactions, contributing to high
risk of thrombotic complications (31). Adenovirus may bind
vitamin K-dependent coagulation factors and several
complement (C’) components. For instance, AVV can induce
the alternative C’ pathway by binding C3 directly, subsequently
C3–AVV complexes can be delivered to CR1 clustered on the
surface of human erythrocytes (24). In addition, some
adenovirus types binding CAR induce hemagglutination of
human erythrocytes (32). Thus, we propose that the above
mentioned adenovirus-erythrocytes complexes, which may per
se trigger the clotting pathway (24), could also indirectly or
directly activate platelets that (24, 29, 31), in turn, could form
aggregates with leukocytes leading to subsequent clearance from
the blood stream and blood clots formation.

Results of a phase I clinical trial with AVV administered into
the right hepatic artery of subjects with a partial deficiency of
ornithine trans-carbamylase (OTCD) show that patients
exhibited reversible thrombocytopenia and anemia. Viral blood
dissemination was detected during vector infusion and was still
detectable eight hours after infusion but not later (30).
A MULTISTEP PROCESS INVOLVING
THE ADENOVIRAL VECTOR MAY
LEAD TO VITT

Overall, these data indicate that adenoviral vectors may cause
thrombocytopenia and coagulopathies both in pre-clinical
models and in human individuals, even though the blood cell
targets are not the same.

Therefore, it is possible that they will play some role in the
cause of the rare VITT syndrome in some individuals after the
first administration of anti-COVID-19 vaccines employing such
vectors. However, in agreement with the hypothesis of
Greinacher and coll. (4), some additional variables should be
considered: i. the vaccine components, ii. the injection site and
bio-distribution of vectors, iii. the timing of symptoms’ onset, iv.
the pre-existence of natural antibodies recognizing the PF4/
heparin complexes, v. the role of the neo-synthetized
Spike protein.
VACCINE COMPONENTS

The ethylene diamino tetra acetic acid (EDTA) enters in the
composition of the Vaxzevria vaccine buffer (33) but not of
Ad26.COV2.S vaccine (9), and it may cause both platelet
activation and capillary permeability (34, 35). However, it
August 2021 | Volume 12 | Article 728513
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seems highly unlikely that the amount of EDTA present in a 500-
microliter vaccine injection administered intra-muscularly may
cause extended damages to platelets circulating in the blood
stream and distant endothelia.

The chimpanzee adenoviral [ChAdOx1-S] vectors are
cultured and expanded by using the immortalized embryonic
kidney cell line - REx HEK293 cells. Even though the product is
nuclease-treated and further purified (33), some vaccine
preparations could still contain very few residual cellular
proteins and nucleic acids that exceptionally could exert
platelet activation.

The AVV itself has the potential to activate platelets and to
damage vessels; therefore, its direct involvement cannot be
excluded, differently from what has been proposed (4).
THE SITE OF INJECTION AND
BIODISTRIBUTION OF VECTORS

Most vaccines are given via the intramuscular route into the
deltoid or the anterolateral part of the thigh. This optimizes the
immunogenicity of the vaccine and minimizes adverse reactions
at the injection site (36). However, we have limited information
on the fate of the vaccine during 48 h post-intramuscular
injection (24). In addition, the muscle environment conditions
the type of cells that are recruited, their cytokines secretion, and
how such recruited cells and extracellular proteins impact on
inflammatory and the immune responses. For instance,
occasional local micro trauma and micro bleeding can favor
the appearance of negatively charged extracellular DNA, which
may act as a powerful adjuvant conditioning the local immune
response (11). Nevertheless, muscle, because of its abundant
blood supply, favors the correct delivery into the circulation
optimizing mobilization and processing of viral vectors (36).

Thus, the AVV of Vaxzevria and COVID-19 Vaccine Janssen
are supposed to efficiently reach the blood stream after
intramuscular injection. In this context, pharmacokinetics
studies on AVV titers and persistence in the blood and inside
the blood cells become mandatory, in order to determine the
extent of their interactions with erythrocytes and platelets.
TIMING OF THE SYMPTOMS ONSET

Initial symptoms of VITT may occur as early as 5 up to 24 days
after vaccination, while IgM to IgG switch does not occur in such
a short interval after the first vaccination. Thus, we postulate that
these patients have pre-existing B cells producing antibodies
recognizing the PF4/heparin complexes. This assumption is
based on recently published results showing the frequent
detection in healthy donors of B cells producing germline
natural anti-PF4/heparin antibodies primarily of IgM isotype,
detectable in cord and adult peripheral blood. These antibodies
are part of the natural IgM germline repertoire and may be
synthesized even without previous antigen contact. These B cells
Frontiers in Immunology | www.frontiersin.org 4
could respond to non-specific stimuli leading to production of
IgM reacting with PF4/heparin complexes. In addition, natural
IgG antibodies able to bind PF4/heparin complexes can be
detected in sera of the 4.3-6.6% of general population usually
associated with the presence of chronic bacterial infections, such
as periodontal disease (37, 38). Importantly, a subset of these
antibodies with high affinity, clustering PF4-molecules, can form
neo-antigenic complexes recognized by polyanion-dependent
anti-PF4/P-antibodies in the absence of heparin. Most
individuals with these anti-PF4/polyanion antibodies remain
asymptomatic, likely because their titers are too low to have
clinical significance or because they are non-pathogenic
“mimicking” antibodies, which are well-known to be frequently
produced by the immune system (39, 40). However, in very rare
vaccinated individuals, such natural IgM or IgG antibodies, if
present at a clinically relevant titer, could bind PF4 or PF4
complexes formed after the release of PF4 from adenovirus-
infected platelets. Alternatively, the AVV present in the blood
stream may interact with red blood cells (27) generating altered
erythrocytes (29, 31) that, in turn, are able to activate platelets
(31), thus starting a vicious circle.

If the symptoms occur between 10 and 24 days it is
conceivable that vaccinated people do not possess natural anti-
PF4 antibodies, since, during this period, the immune system
may mount a T cell-dependent anti-PF4 antibody response with
IgM to IgG isotype switching.

The pathological reaction leading to VITT would be similar in
both situations.

We suggest that, essentially in 20% of individuals suffering
from immediate strong local inflammatory reaction (41), an
early event may be represented by a robust production of the
inflammatory cytokine interleukin 6 (IL-6), which has been
shown to be increased in all patients receiving AVVs for the
treatment of the OTCD genetic syndrome (30). In COVID-19
patients, high levels of IL-6 may favor the hyper inflammatory
reaction with further damage of endothelia, likely leading to the
final multi-organ dysfunction associated with severely
dysregulated coagulation (42).

Another early event could be represented by the adenoviral
dissemination into the blood stream few hours after injection
(30). AVV, binding primarily erythrocytes, mast cells and, at a
lesser extent, platelets and endothelia could favor a cascade of
interactions that, in rare instances, could evolve up to severe
thrombotic events.

Erythrocytes may be damaged by the AVV (27–29, 31),
favoring platelet activation and their interaction with
endothelia also damaged by IL-6 and AVV themselves.
Activated platelets degranulate, delivering into the blood
stream the content of their a-granules, mainly PF4, that could
form complexes with natural heparin released by basophils and
mast-cells upon activation by IL-33 produced by damaged
endothelia (43).

In this context, mast cells may be far more integrally involved
in the development of COVID-19 VITT, since they express the
adenoviral receptor (CAR) and AVV infect mast cells with a
great efficiency (44). Moreover, the mast cell activation syndrome
August 2021 | Volume 12 | Article 728513

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Azzarone et al. Multistep Pathogenic Mechanisms in VITT
(MCAS) (45), is characterized by somatic mutations in multiple
mast cell regulatory genes driving chronic aberrant constitutive
and reactive mast cell activation, with excessive inflammatory
reactions and aberrant heparin release (45). Moreover, MCAS in
few instances drives the development of pathogenic
autoantibodies triggering true autoimmune diseases (46).

Thus, MCAS patients, reacting aberrantly with the vector via
its spurious effects on the humoral immune system, may produce
pathogenic anti-PF4/heparin antibodies; this represents a key
factor able to explain the rarity of COVID-19 VITT.

Additionally, positively charged circulating PF4 may interact
with negatively charged extracellular DNA at the site of vaccine
injection, forming positively charged DNA-PF4 complexes
which, taken up by antigen presenting cells, will stimulate
strong interferon response via Toll-Like Receptor 9.
Subsequently, memory B cell engagement in the regional
lymph-nodes, will cause increased PF4 autoantibody
production, that, upon repeated interaction with PF4, will
trigger extensive FcRgII mediated platelet activation, initiating
a vicious circle leading to severe thrombotic events (11). At
present, the epidemiology of MCAS is quite preliminary and its
prevalence has been estimated by various authors (45, 47)
ranging from rare (00.1%) to substantially prevalent (~17%).

A further step may be the presence of natural or T-cell
dependent IgG antibodies in 4.3-6.6% of general population
(37, 38) that bind PF4 or PF4/heparin complexes with
subsequent platelet activation. It has been reported that if the
Frontiers in Immunology | www.frontiersin.org 5
percentage of activated platelets remains below 7.6% threshold,
no events mimicking the pro-thrombotic adverse drug reaction
similar to heparin-induced thrombocytopenia (HIT) would
develop. In contrast, if platelet activation is higher than 7.6%
threshold, a possible evolution to HIT may occur (48).
Combining the frequency of individuals exhibiting anti-PF4/
heparin complexes (37, 38) with the frequency of individuals
presenting the MCAS (45) the probability of individuals
presenting both alterations would range 1 in 200.000 to
400.000 subjects, approaching to the frequency of vaccinated
individuals who may develop thrombotic complications. If we
further restrict this possibility to the 20% of vaccinated subjects
exhibiting a strong local inflammation (41), we will find a
theoretic frequency ranging between 1 in 1x106 to 2x106

subjects, which roughly corresponds to the percentage of
patients developing VITT (8, 9).

Finally, the situation could have worsened by the neo-synthesis
of the Spike protein (allowing an efficient vaccination). SARS-CoV-
2 binds through its Spike protein to the angiotensin-converting
enzyme-2 (ACE2), which is expressed by monocytes/macrophages,
mast cells, epithelial and endothelial cells of different organs (48).
In endothelial cells, Spike/ACE2 interaction impairs the activity of
ACE2. This causes the indirect activation of the kallikrein–
bradykinin pathway, with subsequent altered endothelial leakage
and vascular permeability (49). This event triggers a number of
pro-inflammatory mechanisms further increasing vascular damage
and permeability with the potential development of disseminated
FIGURE 1 | Recapitulates the cascade of pathogenic events that could favor the onset of the vaccine-induced immune thrombotic thrombocytopenia in individuals
vaccinated with anti-COVID-19 adenoviral-based vaccines.
August 2021 | Volume 12 | Article 728513
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intravascular coagulation (DIC). Moreover, platelets express high
levels of ACE2 and, as a consequence, purified Spike protein may
directly activate platelets, potentiating the prothrombotic cascade
(9). Finally, since MCAS may be intimately involved in the
pathogenesis of both severe form of acute COVID-19 infection
and of COVID-19 “long-haul” syndrome through ACE2/Spike
protein interactions (50, 51), it may be speculated that the interplay
of altered mast cells with neosynthesized SARS-CoV-2 spike
protein could further contribute to VITT development.

In vaccinated patients, neo-synthesized Spike proteins should
be efficiently processed and degraded by antigen-presenting cells.
However, it cannot be excluded that some neo-synthesized Spike
proteins may escape the immune machinery and be released
under free form in the blood stream.

Thus, in some vaccinated individuals with a predisposing
environment, neo-synthesized Spike protein acting on
inflammatory cells, platelets and damaged endothelia could yield
an additional trigger critical to unleash a delayed onset VITT
syndrome. The set of these events is summarized in Figure 1.
DISCUSSION

In this contribution, based on confirmed data from literature, we
propose a cascade of events that, in very few individuals receiving
the first administration of anti-COVID19 vaccines based on AVV,
could favor the onset of different degrees of coagulopathies up to
the development of the VITT syndrome. Possible checkpoints that
could hinder this multistep process are represented by: i. the
presence of natural antibodies able to bind anti PF4/heparin
complexes, ii. the levels of IL-6 produced in the first hours after
vaccination, iii. the extent and the persistence of the adenoviral
vectors into the blood stream, iv. the percentage of activated
platelets, v. the presence of subjects presenting MCAS, vi. the
amount of neo-synthesized Spike protein interacting with
receptors on endothelial cells. If only some of these events occur
this might lead to the development of intermediate thrombotic
events, while, if all of them occur, the VITT syndrome might
develop. Of note, most of vaccinated individuals undergoing
thrombotic events up to VITT are young fertile women. In these
patients, some events could favor the development of
Frontiers in Immunology | www.frontiersin.org 6
coagulopathies: i. the large use of contraceptive estrogens, which
may facilitate thrombotic events, ii. the recent surgery, which may
lead to spontaneous PF4/heparin antibodies production in the
absence of exogenous heparin (38): it is also questionable if
pregnancy may favor this condition, iii. the autoimmune
disorders associated with anti-phospholipids and anti-platelets
autoantibodies production are much more frequent in women.

This review does not absolutely intend to criticize adenoviral-
based vaccines, which revealed of primary importance in the
COVID19 pandemic. Our goal was to try to clarify the
pathogenic mechanisms leading to VITT with the perspective
of improving the handling of the vaccine-recipients.
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