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A hallmark of T cell ageing is a loss of effector plasticity. Exercise delays T cell ageing, yet
the mechanisms driving the effects of exercise on T cell biology are not well elucidated. T
cell plasticity is closely linked with metabolism, and consequently sensitive to metabolic
changes induced by exercise. Mitochondrial function is essential for providing the
intermediate metabolites necessary to generate and modify epigenetic marks in the
nucleus, thus metabolic activity and epigenetic mechanisms are intertwined. In this
perspective we propose a role for exercise in CD4+ T cell plasticity, exploring links
between exercise, metabolism and epigenetic reprogramming.
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INTRODUCTION

Exercise can improve the efficacy of certain cancer therapies targeting kidney (1), bladder, testicular,
and head and neck cancers (2). Moreover, exercise alone can improve the outcomes for individuals
with diseases including cardiovascular (3), kidney disease (4, 5) and diabetes (6). It appears that the
mechanism(s) underlying the benefits of exercise on disease outcomes is related to augmentation of
cytokine profiles, however, there is little known about the involvement of immune cells in
this process.

The establishment and maintenance of immune responses, homeostasis and memory depends
on T lymphocytes (T cells). T cells originate from multipotent hematopoietic progenitors that
migrate to the thymus for maturation, selection, and subsequent export to the periphery. The events
in the thymus determine lineage commitment (CD4/CD8+ lineages), as well as the fate of mature T
cells. Commitment to the CD8+ lineage results in cells with specialized cytotoxic potential, while
commitment to the CD4+ lineage (Figure 1) results in naive cells with broader differentiation
potential of T helper (Th) and regulatory T cell (Treg) subsets. Despite previous in vitro studies

Abbreviations: T cells, T lymphocytes; 5caC, 5-carboxylcytosine; 5fC, 5-Formlcytosine; 5hmC, 5-Hydroxymethylcytosine;
5mC, 5-Methylcytosine; 6mA, N6-methyldeoxyadenosine; ACC, Acetyl-CoA carboxylase; ATP, Adenosine triphosphate;
BCL-6, B cell lymphoma 6; CD5L, CD5 antigen-like; DNMT, DNA methyl-transferases; FAD, flavin adenine dinucleotide;
FFA, Free Fatty Acid; HIF1a, hypoxia-inducible factor 1o; HMT, histone methyl-transferases; LDHA, lactate dehydrogenase
A; LSD1, Lysine-specific histone demethylase 1A; PUFA, Polyunsaturated Fatty Acids; SAH, S-adenosyl homocysteine; SAM,
S-adenosylmethionine; SFA, Saturated Fatty Acids; TCA, Tricarboxylic acid cycle; TCR, T-cell Recptor; TF, Transcription
Factor; T-fh, T follicular helper; Th, T helper; Tr1, T regularity type 1; Treg, Regulatoy T cell; aKG, a-ketoglutarate.
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FIGURE 1 | Differentiation of CD4+ T cell subsets from naive T cells. Cytokines required for polarization as well as the transcription factors and cytokines produced
by each subset are indicated. Th1 cells depend on STAT1 activation and expression of transcription factor (TF) TBX217. Th2 depends on IL-4 activation of STAT6
resulting in up-regulation of TF GATAS. Th17 differentiation is associated with IL-6/IL-21 and STAT3 induced expression of RORyT. TGF and IL22 are required for
activating TF FOXP3 in Regulatory T cells (Treg) differentiation. Tfh differentiation is dependent on STATS, IL6 and IL21 to induce BCL6 expression. Th9 polarization
relies on IL4, TGFB and STAT6 activation to induce expression of PU.1 and IRF4. In Tr1 cells, IL-10, IL-27, and IL-21 promote STATS activation, and IL-27 promotes
expression of TF’s IRF1 and BATF. Lastly, STATS3 stimulated by IL-6 and TNF induce expression of AHR in Th22 cells.

emphasizing terminal commitment in T cells, it has become clear
that plasticity is widespread in the CD4+ T cell lineage and
potentially integral for maintaining host immunity (7).

Recent evidence has revealed that CD4+ T cell subset stability
can be dependent on coordination between metabolic and
epigenetic mechanisms [reviewed in (8)]. Considering the
profound influence exercise has on metabolism, the role of
exercise on CD4+ T cell stability is poorly characterized.
Furthermore, there is little known about the interplay between
exercise, metabolism, epigenetics and the stability/plasticity of
CD4+ T cells. In this perspective, we highlight recent work
exploring the role of exercise on CD4+ T cells and examine
links between metabolism and epigenetic reprogramming in
these immune cell subsets.

CD4+ T CELL CHARACTERIZATION
AND STABILITY

Each CD4+ T cell subset can be characterized by its ability
to sense different inductive cytokines, program the expression
of distinct transcription factors, and function by producing
select cytokines and chemokine receptors to control specific
pathogens or prevent immune pathology [reviewed in (9) and
summarized in Figure 1]. Thl differentiation is dependent on
STAT1 activation and expression of transcription factor (TF)
Tbx21 (10). Conversely, IL-4 signals activate STAT6 resulting in

up-regulation of TF Gata3 and Th2 polarization (11). Thl7
differentiation is associated with IL-6/IL-21 and STAT3 induced
expression of the TF RORYT (12), and TGF is required to signal
expression of TF FOXP3 for regulatory T cell (Treg)
differentiation. T follicular helper (T-th) differentiation is
dependent on STAT3, IL-6 and IL-21 to induce BCL6 as the
major TF. Presence of IL-4 and TGFp stimulate STAT6 pushing
the differentiation of Th9 cells, expressing TF’s PU.1 and IRF4.
STAT3 stimulated by IL-6 and TNF are needed for
differentiation of Th22 cells expressing AhR as their major TF.
In T regularity type 1 (Trl) differentiation, IL-10, IL-27, and
IL-21 promote STAT3 activation, and IL-27 promotes
pioneering TFs IRF1 and BATF (13), however there are many
TFs that can then be activated in Trls depending on a variety of
factors (14). While lineage commitment to CD4+ T cell subsets
at one time appeared to be stable, emerging evidence has revealed
the capacity of polarized T cells to change their phenotype, and
repolarize towards mixed or alternative fates (15).

CD4+ T CELLS EXHIBIT PLASTICITY

Plasticity of CD4+ T cells can be defined as the ability of a single
cell to take on characteristics of many T cell subsets
simultaneously, or at different times, during the course of its
life cycle. With age, T cells acquire a terminally differentiated
stage, losing plasticity and compromising the capacity of the
immune system to respond to new antigenic challenges (16).
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Understanding the factors that induce/contribute to plasticity are
imperative to determine the mechanism of T cell ageing. Early
studies were able to induce CD4+ T cell re-polarization using
cytokine cocktails in vitro towards almost any fate (Reviewed in
(15)). However, not all effects have been replicated in vivo
models. Those identified, are summarized in Figure 1. Briefly,
Th17 cells are considered highly plastic, with fate mapping
studies indicating they can give rise to Thl cells (17) as well as
intermediate phenotypic cells implicated in disease (18). Th1 and
Th2 cells have displayed interconversion (19). Treg cells have
displayed plasticity towards Th17 cells, but also can co-express
effector cytokines from other Th lineages (20). While this
research has been highly valuable to improving our
understanding of the environmental conditions inducing T cell
plasticity, recent advances in single-cell RNA sequencing has
revealed a great deal of heterogeneity among populations of what
were perceived to be homogeneous T cell subsets based on cell
surface markers. Intra-cell heterogeneity was recently
demonstrated with single Th17 cells that exhibited a range of
phenotypes from pathogenic to regulatory in nature (21).
Therefore, there is a need to better characterize the identity of
immune cell subsets in order to have a clear picture of the
directionality of plasticity. Nevertheless, these studies are fueling
the hypothesis that CD4+ T cells can exhibit phenotypic
plasticity in response to changing contexts.

EXERCISE MODULATES THE NUMBER
AND ACTIVITY OF CD4+ T CELLS

The effect of exercise on immune health has been widely studied
in various population cohorts, however, exercise-research
targeting CD4+ T cells is less represented. Nevertheless,
exercise has been shown to modulate both the number and
activity of CD4+ T cells, with an increased number of CD4+ T
cells observed in the blood of athletes after training (22).
Furthermore, physical fitness can modulate the concentration
of immune cell subsets (VO,max exhibiting a large correlation
(r =0.69) with Treg populations in the blood outside of training).
Moreover, exercise can alter the balance of Th17/Tregs
(increased Th17 and decreased Treg populations) improving
chronic heart failure outcomes in a murine model (23). In
athletes post training, increased Thl, Th17 and Treg
populations have been observed. In contrast, no changes in
Th2 cell concentrations have been identified immediately after
exercise or after a recovery period. Interestingly, only Th17 cell
populations remained elevated into the recovery period (24). To
our knowledge, there are yet to be any reports of Th9, Th22 or
Trl cell modulation by exercise in healthy subjects. Furthermore,
exercise and sport-related studies rarely include comprehensive
immune-analysis, tending to instead focus resources on
determining the concentration of plasma-cytokines, leaving the
immune cells involved unexplored. In reports that have
identified CD4+ T cell subsets, the mechanisms driving these
observations are not characterized, however, it is likely that
metabolism plays an integral part.

METABOLIC DRIVERS OF CD4+
T CELL PLASTICITY

Metabolic programs engaged by T cells directly affect their
identity and function. Following T-cell Receptor (TCR)
stimulation, CD4+ T cells rapidly acquire metabolites required
for cellular processes, and even the method of Adenosine
triphosphate (ATP) generation can vary depending on
immune cell identity. CD28 signaling is important for Treg
activation, triggering upregulation of GLUT1 expression
controlling the metabolic switch to glycolysis, and increasing
cellular glucose uptake (25). Notably, once activated Tregs do not
use glycolysis, and instead rely on fatty acid oxidation to feed the
Tricarboxylic acid cycle (TCA) cycle and generate energy
through oxidative phosphorylation (26).

The TF hypoxia-inducible factor 1o (HIF1o) is positively
regulated by PI3K-AKT-mTOR signals. HIF1o induces the
expression of genes required for glycolysis when stabilized by
low oxygen availability. Treg cells prevent the induction of
HIFlo. expression and glycolysis during TCR stimulation by
dampening the PI3K- AKT-mTOR pathway (27). In addition to
promoting glycolysis, HIF1a has an important role in Th17 cell
polarization, by directly inducing the expression of RORyt and
supporting its function. The transcriptional activity of HIF1o is
also opposed by the transcriptional repressor B cell lymphoma 6
(BCL-6), which competes for binding to many of the same genes,
preventing the induction of glycolytic genes that may be
detrimental to the T-fh cell program (28).

Glutamine metabolism generates large amounts of the
metabolite o-ketoglutarate (0KG) and has been linked to
Th1-Treg cell plasticity. oKG is required for Thl cells but
blocks Treg differentiation in an mTORCI- dependent manner.
In a similar way, regulation of fatty acid metabolism and
downstream cholesterol biosynthesis by CD5 antigen-like
(CD5L) in Th17 cells can act as a crucial checkpoint promoting
regulatory versus pathogenic activities within the Th17 cell
subset (29).

Metabolism changes markedly across the lifetime in a sex-
specific manner. Significant alterations in lipid, amino acid and
energy metabolite profiles have been observed in cohorts of
ageing men and women, with menopause also implicated (30).
These metabolic changes can have consequences for CD4+ T cell
identity, including downregulation of glycolytic metabolism
potentially leading to the loss of plasticity observed in ageing.
While the crucial role of metabolic programming in T cell
physiology is emerging, many of the potential impacts of
ageing on metabolic homoeostasis for T cell plasticity
remain unexplored.

These studies highlight that fluctuations in nutrients, oxygen
levels and energy sources present in the environment can
influence CD4+ T cell plasticity and influence pathogenicity.
Understanding changes in metabolic pathways in CD4+ T cells is
part of the key to unraveling mechanisms of plasticity and
immunosenescence. However, further research is required to
disentangle the interplay between metabolic pathways, and the
gatekeeper of cellular states, epigenetics.
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EPIGENETIC DRIVERS OF CD4+
T CELL PLASTICITY

Epigenetics refers to the heritable layer of information on top of a
genomic sequence that regulates gene expression. Generally, this
information encompasses DNA methylation, histone
modifications and noncoding RNAs. In mammalian genomes,
DNA methylation commonly includes the addition of methyl
groups to cytosines (5mC) and adenines (6mA) (31). While
cytosines can also be hydroxy-methylated (5hmC) (32),
formylated (5fC) and carboxylated (5caC), their role in gene
regulation has not been well studied. Importantly, in certain
tissues mitochondrial DNA can also be methylated, however the
function of these marks is not well elucidated (33). Histone
modifications include acetylation, methylation, phosphorylation
and ubiquitination of histone tails. Histone modifications linked
to open chromatin are classified as permissive (H3K4me3,
H4ac), and those linked to closed chromatin are considered
repressive (H3K27me3). Moreover, histone modifications can
indicate the activity of gene enhancers (poised: H3K4mel and/or
active: H3K27ac). DNA methylation and histone modifications
regulate gene expression by governing chromatin accessibility,
and recruit important TFs and epigenetic writers, readers,
and erasers.

Epigenetic marks govern the plasticity of T cells by lowering
or raising the threshold between cellular states (34). Whole
genome mapping of permissive and repressive histone
modifications in different CD4+ T cell lineages can reveal the
presence of a mixed ‘poised’ state in the promoter of lineage-
specific TFs. For example, in Th17 cells, the FOXP3 promoter is
not epigenetically repressed, potentially allowing Th17 to Treg
plasticity. Moreover, TBX21 was decorated with permissive
marks in Th2 lineage, allowing plasticity between Thl and
Th2 (19).

The plasticity of immune cells has implications for disease. In
intestinal inflammation models Th17 cells can be highly plastic,
developing a “Th1 like’ phenotype by expressing IFNG STAT4
and TBET, driving disease development (18). The phenotype of
these pathogenic Th1 ex Th17 cells is associated with an increase
in DNA methylation in IL17A locus, and a decrease in DNA
methylation in TBX21 and IFNG (35). These data support the
hypothesis that environmental cues can induce immune cell
plasticity. However, the upstream factors responsible for
driving epigenetic re-programming in T cells are not
well understood.

METABOLITES AND COFACTORS
REQUIRED FOR EPIGENETIC
MODIFICATIONS

Several compounds formed through different stages of
metabolism have been recognized as playing a part in different
epigenetic mechanisms (summarized in Figure 2). Briefly, flux
through glycolysis determines the NAD*/NADH ratio which is
important for the activities of sirtuin histone deacetylases, while

acetyl CoA derived from the TCA cycle is important for
maintaining histone acetylation (36). The histone
demethylation reaction, catalyzed by Lysine-specific histone
demethylase 1A (LSD1), involves the reduction of co-factor
flavin adenine dinucleotide (FAD) to FADH,, and the release
of formaldehyde as a by-product. As recycling of FAD requires
converting molecular oxygen to hydrogen peroxide, cellular
redox status might influence the availability of FAD and thus
the activity of LSD1. Subsequently a family of histone
demethylases named Jumonji-C domain contain histone
demethylases, catalyze a distinct demethylation reaction from
LSD1 (37). This reaction utilizes KG, oxygen and Fe (II) as co-
factors, and releases succinate and formaldehyde as by-products.
This mechanism is also used by TET family enzymes that
hydroxylate the 5-methylcytosine of DNA. Conversely, DNA
methylation reactions are affected through one carbon
metabolism; S-adenosylmethionine (SAM) is produced via
one-carbon metabolism from methionine by the enzyme
methionine adenosyltransferase (38). DNA methyl-transferases
(DNMTs) and histone methyl-transferases (HMTs) transfer
methyl groups to DNA and histones via the same mechanism,
utilizing a methyl group from SAM to generate methylated
DNA/histones and a molecule of S-adenosyl homocysteine
(SAH). While this is not an exhaustive list, these metabolites
are imperative for the maintenance of epigenetic marks and thus,
cellular identity. Considering the potential of metabolic flux to be
induced by environmental cues, including exercise, exploration
of the roles of metabolite availability on cellular plasticity is of
high importance.

EXERCISE AFFECTS METABOLIC
PROGRAMS IMPORTANT FOR
EPIGENETIC MECHANISMS IN CD4+
T CELLS

Substrate utilization during exercise will vary depending on the
exercise type, intensity, and duration. During low to moderate
intensity exercise, the main substrates are glucose, glutamine and
fatty acids; with glucose becoming a more prominent fuel source
as intensity increases (39). Considering the importance of
mitochondria in cell metabolism, the effects of exercise in
mitochondria have been studied extensively. Although it is
expected that exercise-related adaptations mainly affect muscle
mitochondria, exercise can influence surrounding cells via the
availability of metabolites. Here we link studies highlighting
the effects of exercise on metabolic programs, and the
availability of metabolites, required for epigenetic remodeling
events (Figure 2).

Glutamine is an important fuel for Th1 cells. Skeletal muscle
is the major tissue involved in glutamine production and known
to release glutamine into the bloodstream at a high rate. Skeletal
muscle plays a vital role in maintenance of the key process of
glutamine utilization in immune cells, and therefore, the activity
of skeletal muscle may directly influence the immune system.
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According to the glutamine hypothesis, a decrease in
plasma glutamine concentrations, brought about by heavy
exercise limits the availability of glutamine for cells of the
immune system that require glutamine for energy and
nucleotide biosynthesis. Thus, factors that directly or indirectly
influence glutamine synthesis or release could theoretically
influence the function of CD4+ T cells (40, 41).

Acetyl-CoA carboxylase (ACC) is produced in various
metabolic pathways and serves as an acetyl group donor of
histone acetyltransferase, which is the critical step of
acetylation (Figure 2). Activated Thl cells express lactate
dehydrogenase A (LDHA) to support aerobic glycolysis,
allowing Thls to maintain high ACC levels, which in turn,

FIGURE 2 | Interplay between exercise, metabolism and epigenetic mechanisms; overview of exercise induced metabolic pathways that synthesize metabolites or
cofactors required for epigenetic marks. Exercise promotes glycolysis, which determines the NAD+/NADH ratio, integral for the activities of sirtuin histone
deacetylases. Free Fatty Acid (FFA) and glutamine metabolism can be perturbed by exercise, potentially affecting acetyl CoA derived from either FFA or the TCA
cycle and maintenance of histone acetylation. The histone demethylation reaction, catalyzed by Lysine-specific histone demethylase 1A (LSD1), involves the reduction
of co-factor flavin adenine dinucleotide (FAD) to FADH2, and release of formaldehyde as a by-product. Histone demethylases family Jumoniji-C domain contain
histone demethylases (HDM), catalyze a distinct demethylation reaction from LSD1. This reaction utilizes o-ketoglutarate (aKG), oxygen and Fe (I) as co-factors, and
releases succinate and formaldehyde as by-products; this mechanism is also used by TET family enzymes that hydroxylate the 5-methylcytosine of DNA. Exercise
limits glutamine metabolism reducing available oKG. DNA methylation reactions are affected through one carbon metabolism; S-adenosylmethionine (SAM) is
produced via one-carbon metabolism from methionine to homocysteine by the enzyme methionine adenosyltransferase; exercise increases peripheral homocysteine
affecting the methionine: homocysteine cellular ratios. DNA methyl-transferases (DNMTs) and histone methyl-transferases (HMTs) transfer methyl groups to DNA and
histones via the same mechanism, utilizing a methyl group from SAM to generate methylated DNA/histones and a molecule of S-adenosyl homocysteine (SAH).

promote histone acetylation at important loci including IFNG,
and thus expression of inflammatory cytokines. Importantly, in
the absence of LDHA, mice were protected from autoimmune
diseases associated with an abundance of IFNy (42).
Interestingly, ACC is decreased in human skeletal muscle
during exercise (43). Considering the importance of ACC for
maintenance of histone acetylation in T cells, and the link with
immune pathologies, it is plausible that exercise-associated
reductions in ACC could affect the maintenance of histone
acetylation. Collectively this sequence of events could induce
changes in expression of vital identity genes such as IFNG in Th1
cells. Such environmental cues could be key for inducing
plasticity of CD4+ T cells.
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Homocysteine is an amino acid, whose conversion from
methionine is an integral step for one-carbon metabolism
(Figure 2). Elevated plasma homocysteine levels are linked with
diseases including cardiovascular disease and cancer. In the
immune system, homocysteine is known as a potent
concentration-dependent T cell activator promoting
differentiation as well as potentiating activation-induced cell
death and apoptosis (44). More specifically, homocysteine is
linked with a Th17 and Tth cell imbalance in individuals with
abdominal aortic aneurysm (45). Interestingly, homocysteine levels
can be manipulated by exercise. In rats, homocysteine plasma levels
are affected by exercise in a dose-dependent manner (46),
accompanied by decreased liver SAM/S-adenosylhomocysteine.
In humans, plasma homocysteine is affected inversely by exercise
type, with aerobic exercise increasing plasma levels and resistance
training decreasing levels (47). Considering the link between
homocysteine and CD4+ T cell stability, and exercise-induced
effects on homocysteine levels, it is conceivable that exercise-
specific homocysteine manipulation can modulate DNA
methylation landscapes of CD4+ T cell subsets. These examples
provide further evidence for the potential mechanisms of exercise-
induced T cell plasticity.

As discussed earlier, regulation of Free Fatty Acid (FFA)
metabolism in Th17 cells is a crucial checkpoint in promoting
regulatory versus pathogenic phenotypes (29). The lipid profile
and saturation level [Polyunsaturated/Saturated Fatty Acids
(PUFAS/SFAs)] of available FFAs was involved in regulation of
Th17 pathogenicity, with SFAs linked to pathogenic profiles and
PUFAs with non-pathogenic. The modulation of FFAs by
exercise has been well studied; notably, exercise increases the
plasma unsaturated/saturated fatty acid ratio (48). The link
between FFAs and epigenetics has been well studied (49),
however, this research has focused on dietary consumption of
fats and dietary intervention studies rather than the effect of
exercise. Despite this, we can extrapolate that similar epigenetic
consequences would be observed with exercise interventions that
affect lipid profiles and FFA availability. However, there is a need
for targeted research in this realm to decipher conclusively the
role of exercise on FFAs and epigenetic regulation of T cells.

It is important to note that there are other pathways that
could facilitate exercise-induced CD4+ T cell plasticity, such as,
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