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Non-human primate (NHP) animal models are an integral part of the drug research and
development process. For some biothreat pathogens, animal model challenge studies
may offer the only possibility to evaluate medical countermeasure efficacy. A thorough
understanding of host immune responses in such NHPmodels is therefore vital. However,
applying antibody-based immune characterization techniques to NHP models requires
extensive reagent development for species compatibility. In the case of studies involving
high consequence pathogens, further optimization for use of inactivated samples may be
required. Here, we describe the first optimized CO-Detection by indEXing (CODEX)
multiplexed tissue imaging antibody panel for deep profiling of spatially resolved single-
cell immune responses in rhesus macaques. This 21-marker panel is composed of a set of
18 antibodies that stratify major immune cell types along with a set three Ebola virus
(EBOV)-specific antibodies. We validated these two sets of markers using
immunohistochemistry and CODEX in fully inactivated Formalin-Fixed Paraffin-
Embedded (FFPE) tissues from mock and EBOV challenged macaques respectively
and provide an efficient framework for orthogonal validation of multiple antibody clones
using CODEX multiplexed tissue imaging. We also provide the antibody clones and
oligonucleotide tag sequences as a valuable resource for other researchers to recreate
this reagent set for future studies of tissue immune responses to EBOV infection and
other diseases.

Keywords: codex, EBOV (Ebola virus), rhesus macaque (Macaca mulatta tcheliensis), NHP (non-human primate),
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INTRODUCTION

Animal models are vital for understanding disease pathogenesis
as well as the development and evaluation of therapeutics. When
human studies are not feasible, regulatory decision-making for
medical countermeasures (MCMs) may rely entirely on
outcomes from animal models, as has been the case for some
potential bioterror threat pathogens (1). Non-human primate
(NHP) models with similar phylogenetics and physiology to
humans remain the only option for modeling many
host-restricted viral infectious diseases (2). A thorough
understanding of host immune responses in such NHP models
is therefore imperative.

Since its discovery in 1976, Ebola virus (EBOV) has
accounted for more than 33,000 documented infections and
nearly 15,000 deaths, with a case fatality ratio of approximately
44% (3). Rhesus macaque lethal infection models provide a
unique opportunity to understand EBOV pathogenesis and test
MCMs against this biothreat (4). However, studying EBOV
tissue pathogenesis in this context is challenging due to the
difficulties of working inside maximum containment, the
incompatibility of many assays with inactivated samples, and
the scarcity of NHP-specific reagents.

Not surprisingly, a comprehensive understanding of tissue-
level immune responses to EBOV infection is still lacking. To
date, our ability to examine the complex host immune
responses to viral infections in situ has been hindered by
technical barriers that allow only a limited number of
markers to be simultaneously examined on cells using
traditional fluorescent microscopy. Recently developed
multiplexed imaging techniques offer great promise for more
precise profiling of the spatial biology of immune responses to
EBOV (5). A new method named CO-Detection by indEXing
(CODEX) (6) bypasses traditional fluorescent microscopy
limits by simultaneous staining of tissue samples with a
cocktail of DNA-indexed antibodies followed by iterative
steps of hybridization with complementary, fluorescently
labeled probes for imaging. This results in the generation of
images with up to 60 parameters, enabling the extraction of
high-parameter, spatially-resolved single-cell data from solid
tissue samples.

An important consideration of antibody-based immune
profiling techniques such as CODEX is the significant initial
efforts required to screen and optimize reagents for
compatibility with both NHP models (7–10) and inactivation
protocols required to safely work with samples outside of
maximum containment.

We describe here the validation workflow and establishment
of the first CODEX antibody panel specifically designed for use
with inactivated, archival rhesus macaque tissue samples. This
21-marker panel includes 18 antibodies for the identification of
major immune cell types, along with three EBOV-specific
antibodies. Our resource also includes a list of all 75 antibodies
tested and manufacturer-reported cross-reactivity. This panel
will enable future studies characterizing the immune cell
infiltrates and spatial organization of host-EBOV tissue
Frontiers in Immunology | www.frontiersin.org 2
interactions in situ and signifies a key starting point for work
extending into other NHP disease models.
RESULTS

Overview of Experimental Workflow
In this study, we designed and implemented a 21-marker CODEX
antibody panel compatible with inactivated FFPE rhesus macaque
tissue samples to enable future studies into EBOV pathogenesis.
Our proof-of-concept work uses tissues from a previously reported
investigation of EBOV-challenged and healthy control rhesus
macaques (4, 11). Spleen tissues collected at necropsy were
inactivated and processed into FFPE blocks. Tissues were
subsequently sectioned and immunohistochemistry (IHC)
antibody validation performed against several immune
phenotyping and virus-specific markers. Markers that passed
our IHC antibody validation were then incorporated into a
multiplexed panel for downstream CODEX imaging and
processing (Figure 1).

Host Antibody Validation in Healthy
Lymphoid Tissues
The initial host antibody marker selection was based on prior
knowledge and antibody clones described in previous studies
(12–19). Various factors, such as the time between tissue
collection and fixation, duration of fixation, processing into
paraffin blocks, and storage conditions can affect tissue
integrity and immunohistochemical analysis (20). We
rigorously titrated each of the 18 immune-specific antibodies
by IHC using healthy control tissues treated with the same tissue
fixation and processing conditions suitable for EBOV
inactivation and the same heat-induced epitope retrieval
conditions intended for the subsequent CODEX experiments
(Figure 2 and Supplementary Table 1). Staining of spleen and
bone marrow tissues resulted in consistent staining patterns and
expected spatial distributions of marker positive cells in
comparison to The Human Protein Atlas pathology data (21),
as well as with our internal human tissue controls
(Supplementary Figure 1). For example, CD20 was found
appropriately within B cell follicles, while FoxO1 was found in
the nucleus of lymphocytes and macrophages (Figure 2, middle
left, middle right). This laid a foundation for subsequent
multiplexed orthogonal validation of markers by CODEX.

Reagent compatibility with multiplexed imaging methods,
such as multiplexed ion beam imaging (MIBI), imaging mass
cytometry (IMC), and CODEX, all require these antibodies to 1)
be available in a carrier-free purified form, 2) retain its antigen-
binding capabilities after labeling with metal conjugates or
barcoded oligonucleotides, and 3) perform in concert in a
cocktail containing antibodies against different targets (5).
Each antibody clone that passed initial validation by IHC was
subsequently conjugated to a unique indexed DNA
oligonucleotide tag (Supplementary Table 1) (22) and tested
by CODEX imaging. Only antibodies that passed our initial IHC
December 2021 | Volume 12 | Article 729845
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screening and CODEX validation pipeline are described in this
report (see Discussion).

A key aspect of antibody-based assays is the need for thorough
reagent validation (23). A fundamental strength of performing this
on a multiplexed imaging platform, such as CODEX in this study, is
the ability to orthogonally validate antibody reagents against each
other. To exemplify this, we generated graphical three-marker-
overlays of CODEX images from this study (Figure 3). These
overlays were designed to highlight the key marker being
investigated in green, an overlapping marker in red, and a
mutually exclusive marker in blue. For instance, we confirmed the
specificity of the antibody against calprotectin, an intracytoplasmic
marker that is found predominantly in monocytes and
macrophages, by observing overlap with another macrophage
marker, CD163, but mutually exclusive staining patterns with the
B cell-specific marker CD20 (Figure 3, top lef). Similarly, we
confirmed strong overlap between the T cell marker CD3 with
either CD4 or CD8, but not with CD20, and also the macrophage
marker CD68 with CD163, but not with CD20 (Figure 3, bottom
right). We thusly confirmed the specificity of neutrophil markers
(CD66 and CD16), macrophage markers (CD68, CD163, MMP9,
CD209, FoxO1, and Iba1), B cell markers (CD20, CD21, CD138,
IgG, and IgM), natural killer cell markers (CD16 and CD56),
follicular dendritic cell marker (CD21), dendritic cell marker
(CD209) and T cell markers (CD3, CD4, CD8a and FoxO1)
(Figure 3). These results highlight the importance of cross-
validating antibody reagents against co-expressed or mutually-
expressed markers and provide an efficient framework to validate
antibody reagents using CODEX multiplexed imaging.
Frontiers in Immunology | www.frontiersin.org 3
Differential Expression of Cell Type-
Specific Markers Revealed by CODEX
Multiplexed Imaging
High dimensional imaging with the 18 lineage-specific and
functional markers allowed further delineation of cell types and
their unique expression patterns. This confirmed the appropriate
presence of phenotypic markers CD56 in NK cells, CD209 in DCs,
CD138 and some IgG in Plasma cells, CD3 and CD8 in CD8 T
cells, CD3 and CD4 in CD4 T cells, CD20, CD21 and IgM in B
cells and CD209, Iba-1, CD68, CD16 and CD163 in macrophages
(Figure 4). This approach orthogonally confirmed the staining
specificity and distinct differential lineage-specific marker
expression patterns as revealed by CODEX multiplexed imaging.

EBOV-Specific Antibody Validation in
EBOV-Challenged Lymphoid Tissues
To enable future studies to dissect intricate viral tissue interactions,
we next sought to extend our antibody validation to EBOV-
specific reagents. We identified three antibodies from previous
literature targeting the EBOV structural glycoprotein (GP), viral
RNA encapsidation nucleoprotein (NP), and virion assembly
protein and interferon antagonist VP40 (18, 19, 24). We first
tested these antibodies using IHC on spleen collected from healthy
controls and EBOV-infected NHPs (Figure 5). We confirmed
their strong signal specificity for EBOV in infected spleen, as well
as antibody performance in our standardized staining protocol.

We next conjugated these anti-EBOV antibodies to unique
indexed DNA oligonucleotide tags (Supplementary Table 1) and
added them to the CODEX panel. Staining of EBOV-infected and
healthy control spleens indicated anti-EBOV antibodies
performed well in concert, with minimal background observed
in healthy controls and specific signals confirmed in infected
samples (Figure 6). These results indicate that the epitope
binding capabilities of these EBOV-specific antibodies were
retained even after DNA-oligonucleotide conjugation and
perform robustly during multiplexed CODEX imaging.
DISCUSSION

In this study, we describe the implementation of the first
optimized CODEX multiplexed tissue imaging panel for deep
profiling of spatially resolved single-cell immune responses in
inactivated, archival rhesus macaque tissues. This resource is
paramount for future studies of host responses to EBOV, with
broad applicability to other research topics. The 21-marker FFPE
compatible panel includes 18 antibodies for the identification of
major immune cell types along with three EBOV-specific
antibodies. Host markers were validated by co-expression and
orthogonal staining patterns of canonical targets used for
immune cell type identification, while EBOV-specific
antibodies were validated by the use of tissues from healthy
control and EBOV-challenged animals.

Given that NHPmodels are critical tools to study and develop
effective therapies for high consequence pathogens, the assembly
of this CODEX antibody panel empowers future investigations
FIGURE 1 | Pipeline for building a CODEX antibody panel for studying tissue
immune responses during EBOV infection in rhesus macaques. Spleen
tissues were collected from control and EBOV challenged rhesus macaques,
inactivated by fixation, embedded in paraffin blocks, and sectioned. A panel
of antibodies targeting host immune cells and EBOV proteins was tested by
immunohistochemistry (IHC) to determine compatibility with epitopes following
inactivation. Antibodies with acceptable staining performance by IHC were
conjugated to unique DNA oligonucleotide tags and pooled to create a 21-
plex CODEX antibody panel. CODEX antibody panel validation was
accomplished by staining tissues with the entire antibody panel cocktail and
examining orthogonal staining patterns of antibody channels after imaging.
December 2021 | Volume 12 | Article 729845
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into tissue-specific responses against biothreats in these models.
We share below the unique set of challenges encountered in this
study which we hope will allow a smooth transition for others in
adopting antibody-based high-dimensional tissue imaging
for NHPs.

First, commercial antibodies used for studying NHPs are
generally limited to those raised against human epitopes and
must be tested for compatibility with the specific NHP species
in question. The IHC-based screening was used in this study as an
initial step to establish the compatibility of antibody clones with
rhesus macaque tissues. We also provide here all the antibodies
tested in this study, including their manufacturer suggested cross-
species compatibility and IHC-compatibilities (Supplementary
Table 2). Eighteen of the seventy five antibodies tested passed
our validation pipeline and eventually were compatible with
Frontiers in Immunology | www.frontiersin.org 4
CODEX staining. Our validation pipeline tested antibodies at
only two uniform dilutions with epitope retrieval conditions
identical to that used for CODEX staining. It is probable that
some clones that failed our validation pipeline may indeed
perform adequately under different tissue fixation conditions,
retrieval conditions, or antibody dilutions.

Second, currently available high parametric protein imaging
platforms, such as CODEX, MIBI, cycIF, IMC, and others (6, 12,
25–29) require complex instrumentation that would be difficult
to operate inside a maximum containment environment (5).
Therefore, we optimized the CODEX panel described in this
study to be compatible with FFPE tissues resulting from the
stringent inactivation protocols required to safely remove
samples from maximum containment laboratories. FFPE
tissues are advantageous for ease of storage and general
accessibility of archival samples, However, they present certain
difficulties relative to fresh-frozen tissues as fixation can alter the
conformation of epitopes, precluding the binding of antibodies
without the use of target-specific antigen retrieval steps. This is a
greater challenge for CODEX where all the antibody clones in a
single panel must be compatible with a single set of antigen
retrieval conditions; we optimized the CODEX panel described
in this study to be compatible with such constraints (i.e., target
retrieval solution (pH9) at 97°C for 10 min).

Lastly, after clones are deemed to perform adequately with
fixation and retrieval conditions by IHC, antibodies require
conjugation to DNA oligonucleotides and further validation,
since the mildly-reducing conjugation process can have a
detrimental effect on the antibody performance. Issues can also
arise with the oligonucleotide tags themselves. Maleimide-tagged
oligonucleotides require deprotection using a Diels-Alder
reaction prior to conjugation, and it is important that each
batch of oligonucleotides is validated with a known antibody
clone to ensure the fidelity of this deprotection process (22). The
efficacy of antibody conjugation can be negatively impacted by
multiple factors, such as the incompatibility of the antibody with
the TCEP mild reduction for maleimide conjugation and the
presence of contaminating proteins in solution. We, therefore,
emphasize that antibodies must be purchased carrier-free when
available or purified before oligonucleotide conjugation.

Given these challenges, the success rate for the inclusion of
putative antibodies in this panel was low (24%), making the initial
development of our optimized CODEX panel costly and time-
consuming. However, once suitable clones and oligonucleotide
sequences are identified, a panel is easy to reproduce and be
expanded upon by other investigators. We are confident that this
panel and the current availability of validated CODEX
oligonucleotide channels (12, 22) will provide a core set of
markers that other investigators can build upon.

In sum, we present here a rhesus macaque-specific CODEX
panel that is immediately available to interrogate the spatial
immune microenvironment in response to the progression of
Ebola virus disease. Future studies will use this panel to examine
the phenotype and abundance of different immune cell subsets
responding to and participating directly in viral replication in
tissues. Our long-term efforts will aim to not only understand
FIGURE 2 | Immunohistochemistry validation of antibodies targeting rhesus
immune tissues. Representative low magnification (left) and high magnification
(right) IHC images for indicated markers. Inlaid orange boxes on low
magnification images indicate the magnified region.
December 2021 | Volume 12 | Article 729845
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how individual cell types respond to infection but also how cells
functionally organize into neighborhoods to mount coordinated
immune responses to pathogens.
MATERIALS AND METHODS

Animal Study
Tissue samples were obtained from a previously reported EBOV
Kikwit challenge study in rhesus macaques (4). That study was
conducted at a National Institute of Allergy and Infectious
Diseases (NIAID) facility under the approval of the NIAID
Division of Clinical Research Animal Care and Use Committee
strictly adhering to the Guide for the Care and Use of Laboratory
Animals of the National Institute of Health, the Office of Animal
Welfare, and the US Department of Agriculture. Water and food
were available ad libitum. Animals were anesthetized prior to
clinical procedures conducted by trained personnel under the
supervision of veterinary staff. Animals were challenged with 1000
PFU EBOV/Kikwit in the left lateral triceps muscle diluted in a
total volume of 1 mL at the study day 0 (4). Tissues described in
Frontiers in Immunology | www.frontiersin.org 5
the current study were collected during necropsy from
unchallenged control animals NHP C1 and NHP C3 or from
challenged animals NHP 7 (necropsied on study day 7 with
viremia of 1.7E10 copies/mL) and animal NHP 8 (necropsied on
study day 6 with viremia of 1.6E10 copies/mL) as previously
described (4, 11). Additional healthy control rhesus tissues for
initial antibody clone validation were obtained from the California
National Primate Research Center (CNPRC), University of
California, Davis. The CNPRC is accredited by the Association
for Assessment and Accreditation of Laboratory Animal Care
International (AAALAC). Animal care is performed in
compliance with the 2011 Guide for the Care and Use of
Laboratory Animals provided by the Institute for Laboratory
Animal Research. Macaques were housed indoors in stainless
steel cages (Lab Product, Inc.) whose sizing was scaled to the
size of each animal, as per national standards, and were exposed to
a 12-hour light/dark cycle, 64-84°F, and 30-70% room humidity.
Animals had unrestricted access to water and received commercial
chow (high protein diet, Ralston Purina Co.) and fresh produce
supplements. Studies were approved by the Institutional Animal
Care and Use Committee of the University of California, Davis.
FIGURE 3 | CODEX validation of antibodies targeting rhesus immune tissues. Representative low magnification (left) and high magnification (right) CODEX images for
indicated markers (green). Markers are shown relative to nuclear stain only (DAPI, grey, left), or overlayed with co-staining (red) and counterstaining (blue) markers to
demonstrate specificity (right). Inlaid orange boxes on low magnification images indicate the magnified region.
December 2021 | Volume 12 | Article 729845
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FIGURE 4 | Cell type-specific marker expressions revealed by CODEX. Single-cell data extracted from segmented CODEX images of spleen from this study was
used to identify major immune cell populations by gating. A heatmap displays rows signifying cell types, and columns indicative of their corresponding marker
expressions. Median z scores and their corresponding color maps are shown in the key on the right.
FIGURE 5 | Immunohistochemistry validation of anti-EBOV protein antibodies. Representative low magnification (left, center right) and high magnification (center left,
right) IHC images for indicated EBOV protein markers on healthy control spleen sections (left) or spleen sections from EBOV challenged animals (right). Inlaid orange
boxes on low magnification images indicate the magnified region.
Frontiers in Immunology | www.frontiersin.org December 2021 | Volume 12 | Article 7298456
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Tissue Processing and Sectioning
Tissue chunks up to 1cm3 in size from necropsied animals were
inactivated in a 10% neutral buffered formalin (NBF) fixative at a
ratio of at least 20 parts fixative to 1 part tissue (vol/vol) for a
minimum of 72h. Complete replacement of 10% NBF fixative
occurred prior to removal of any samples from containment.
Fixed samples were embedded in paraffin blocks and
subsequently cored and re-embedded into Next-generation
Tissue Microarray (ngTMA) paraffin blocks. Regions of
interest were annotated in Case Viewer software (3DHistech,
Budapest, Hungary) on digitized hematoxylin and eosin (H&E)-
stained sections. For each specimen, three representative tissue
cores of 0.6 mm diameter were assembled into ngTMAs using a
Grand Master automated tissue microarrayer (3DHistech).
Blocks were cut in 4-µm thick sections using a Leica Reichert-
Jung 2030 Biocut Manual Rotary Microtome onto frosted
histology glass slides (12-550-15, Thermo Fisher) for IHC or
Vectabond (SP-1800, Vector Laboratories) treated coverslips for
CODEX (see ‘Coverslip Preparation’ below).

Antibodies
Purified carrier-free antibodies were purchased from commercial
suppliers. Clones and suppliers are listed in Supplementary Table 1.
Frontiers in Immunology | www.frontiersin.org 7
Immunohistochemistry
FFPE sections on glass slides were used for IHC. Slides were
deparaffinized by baking at 70°C for at least 1 hour. Slides were
then immersed in fresh xylene (X5-4, ThermoFisher) for 30 min
(two separate containers, 15 min each). Next, slides were rehydrated
in descending concentrations of ethanol (412811, Gold Shield)
(twice in 100%, twice in 95%, once in 80%, once in 70%, twice in
ddH2O; each step for 3 min). Slides were loaded into slide
chambers containing 1X Target Retrieval Solution, pH9
(S236784-2, Agilent), and heat-induced antigen retrieval (HIER)
was performed using a PT Link Pre-Treatment Module (Dako,
Agilent) at 97°C for 10 min. After antigen retrieval, slide chambers
were removed from the module and allowed to equilibrate to room
temperature for 30 min. Tissue sections were then encircled on
slides using a polyacrylamide gel pen (Bondic). The slides were
washed twice with 1X TBS IHC wash buffer containing Tween20
(935B-09, Cell Marque) at room temperature for 5 minutes. Slides
were blocked for 1 hour at room temperature using 100 µL of
serum-free protein block (X090930-2, Agilent) to prevent
nonspecific antibody binding. Antibodies were diluted in 100 µL
antibody diluent (S080983-2, Agilent) (see Supplementary Table 1
for concentrations), and sections were stained overnight in a sealed
humidity chamber at 4°C on a shaker. After overnight staining,
FIGURE 6 | CODEX validation of anti-EBOV protein antibodies. Representative low magnification (left, center right) and high magnification (center left, right) CODEX
images for indicated EBOV protein markers on healthy control spleen sections (left) or spleen sections from EBOV challenged animals (right). EBOV GP (green),
EBOV NP (red), EBOV VP40 (blue). Inlaid orange boxes on low magnification images indicate the magnified region.
December 2021 | Volume 12 | Article 729845
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slides were washed twice with 1X TBS IHC wash buffer containing
Tween20 for 5 minutes. Sections were covered with dual
endogenous enzyme-blocking reagent (S200389-2, Agilent) for 5-
10 min at room temperature, followed by two washes with 1X TBS
IHC wash buffer containing Tween20 for 5 minutes each. Excess
wash buffer was tapped off and 100 µL of EnVision+ Dual Link,
Single Reagents (HRP Rabbit/Mouse) (K406311-2, Agilent) was
added for 30 min at room temperature and then washed. Bound
antibodies were visualized using the HRP/liquid DAB+ substrate
chromogen system (K346711-2, Agilent) according to the
manufacturer’s instructions. Sections were counterstained with
hematoxylin (GHS116-500ML, Sigma). Stained IHC slides were
digitally scanned using an Aperio AT2 Digital Whole Slide Scanner
(Leica Biosystems) with images examined using Aperio ImageScope
(version v.12.4.3.5008) and QuPath (version 0.2.3) software.

Coverslip Preparation
For CODEX assays, square (22 x 22 mm) glass coverslips (72204-
10, Electron Microscopy Sciences) were pre-treated with
Vectabond (Vector Labs) according to the manufacturer’s
instructions. Briefly, using glass beakers, coverslips were
immersed in 100% acetone for 5 min and then incubated in a
mixture of 7 mL Vectabond and 350 mL 100% acetone for 30
min. Coverslips were washed in 100% acetone for 30 seconds,
air-dried, baked at 70°C for 1 hour, and stored at room
temperature. FFPE blocks were sectioned on Vectabond-
treated coverslips and stored in a coverslip storage box (CS-22,
Qintay, LLC) at 4°C in a vacuum desiccator (Thermo Fisher)
containing drierite desiccant (07-578-3A, Thermo Fisher) until
use for CODEX experiments.

CODEX
CODEX assays were performed as previously reported (12, 22)
and as described below. Please see Supplementary Table 3 for a
complete description of buffers and solutions used.

CODEX Antibody DNA Conjugation
Maleimide-modified short DNA oligonucleotides (for sequences,
refer to Supplementary Table 1) were purchased from TriLink.
Oligonucleotides were first activated as previously described (12,
22). LTS filter tips (Rainin) and nuclease-free microcentrifuge
tubes were used in the entire conjugation protocol to prevent
contamination. Conjugations were performed with at least 100
µg of antibody per reaction at a 2:1 weight/weight ratio of
oligonucleotide to antibody. Centrifugation steps were
performed at 12,000 g for 8 min unless otherwise specified.
Antibodies purchased were purified and carrier-free (for details
on clones and manufacturers, refer to Supplementary Table 1).
Antibodies were first loaded onto 50 kDa filters (UFC505096,
Thermo Fisher) in microcentrifuge tubes and reduced using a
mixture of 2.5 mM TCEP and 2.5 mM EDTA in PBS, pH 7.0, for
30 min at room temperature. Next, filter tubes were centrifuged
and antibodies were washed with buffer C. Activated
oligonucleotides were resuspended in buffer C containing NaCl
at a final concentration of 400 mM. Activated oligonucleotides
were then added to the concentrated, reduced, and washed
antibodies and incubated for 2 hours at room temperature to
Frontiers in Immunology | www.frontiersin.org 8
allow conjugation to occur. Following this incubation,
conjugated antibodies were washed three times in 450 µL of
PBS containing 900 mM NaCl. Finally, conjugated antibodies
were eluted by inverting filters, centrifuging at 3,000 g for 2 min,
and diluted in PBS-based antibody stabilizer (nc0436689,
Thermo Fisher) containing 0.5 M NaCl, 5 mM EDTA, and
0.02% w/v NaN3 (Sigma), and stored at 4°C.

CODEX FFPE Tissue Staining
Coverslips with 4-µm FFPE tissue sections were processed as
described above for IHC. Briefly, tissue sections were
deparaffinized by baking at 70°C for at least 1 h, followed by
immersion in fresh xylene for 30 min (two separate containers,
15 min each). Sections were then rehydrated in descending
concentrations of ethanol (twice in 100%, twice in 95%, once in
80%, once in 70%, twice in ddH2O; each step for 3 min).
Coverslips were loaded into slide chambers and HIER was
performed using a PT Link Pre-Treatment Module in 1X Target
Retrieval Solution, pH9 (Agilent) at 97°C for 10 min. After
antigen retrieval, slide chambers were removed from the
module and allowed to equilibrate to room temperature for
30 min. Coverslips were washed twice for a total of 10 min in 1X
TBS IHC wash buffer with Tween20 (Cell Marque). Sections
were surrounded with a polyacrylamide gel (Bondic) to create a
region for reagents to pool. Coverslips were blocked for 1 hour
at room temperature using 100 µL of blocking buffer (S2 buffer
with B1 (1:20), B2 (1:20), B3 (1:20), and BC4 (1:15)) to prevent
non-specific antibody binding. DNA-conjugated antibody
cocktails were prepared for each coverslip section. Antibodies
were added to 50 µL of the blocking buffer and loaded onto a
50-kDa filter unit, concentrated by spinning at 12,000 g for 8
min and resuspended in the blocking buffer to a final volume of
100 µL. This antibody cocktail was then pipetted onto coverslip
sections and incubated in a sealed humidity chamber overnight
at 4°C on an orbital shaker for staining. Following overnight
staining, coverslips were washed twice in buffer S2 for (2
minutes per wash) and fixed in buffer S4 containing 1.6%
paraformaldehyde for 10 min. After fixation, coverslips were
washed three times in 1X PBS. Coverslips were then incubated
in 100% methanol on ice for 5 min, followed by three washes in
1X PBS. Fresh BS3 fixative solution was prepared immediately
before final fixation by thawing and diluting one 15 µL aliquot
of BS3 in 1 mL 1 X PBS. 200 µL of the BS3-PBS solution was
added to coverslips and fixation was allowed to occur at room
temperature for 20 min. Following this fixation step coverslips
were washed three times in 1X PBS (using fresh PBS for each
wash). All incubations and washes were performed in 6-well
tissue culture plates (07-20083, Thermo Fisher). For an
immediate multicycle and image acquisition, coverslips were
placed in a coverslip glass container containing buffer H2. For a
future multicycle and image acquisition, coverslips were stored
in buffer S4 in a coverslip storage glass jar at 4°C for up to
two weeks.

CODEX Image Acquisition
To create fluorescent oligonucleotide plates for multicycle rendering,
appropriate fluorescent oligonucleotides (at a concentration of 400
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nM) were aliquoted in wells of a black 96-well plate (07-200-762,
Corning containing plate buffer (a mixture of buffer H2 plus
Hoechst (62249, Thermo Fisher) nuclear stain (1:600) and
0.5 mg/ml sheared salmon sperm DNA). Details of the
fluorescent oligonucleotides are provided in Supplementary
Table 1. Each CODEX cycle contains up to 4 fluorescent
channels (three for antibody visualization and one for nuclear
stain). For each cycle, up to three fluorescent oligonucleotides (10
µL each) were added to 220 µL of plate buffer (containing Hoechst
nuclear stain). For each empty channel, 10 µL of plate buffer was
substituted for fluorescent oligonucleotides. A final well containing
DRAQ5 (4084L, Cell Signalling Technology) (1:500 final dilution)
was added as an additional nuclear stain. Plates were sealed with
aluminum sealing film (14-222-342, Thermo Fisher) and kept at
room temperature until use.

Chambers containing stained coverslips stored in buffer S4
were removed from 4°C and allowed to equilibrate to room
temperature. Coverslips were then removed from S4 and placed
in a separate chamber containing buffer H2. Coverslips were then
removed from H2 and covered with a small piece of cling wrap.
The exposed areas were washed with ddH2O to remove any
residual salts and thoroughly dried using a vacuum aspirator.
Coverslips were then mounted onto custom-made CODEX
acrylic plates (Bayview Plastic Solutions) using double-sided
clear adhesive tape (TMG-22, Qintay) to create a well for
buffer exchange. A second layer of adhesive tape was added
below the coverslip for additional leak protection. Next the cling
wrap was removed from the section and the well was washed
with H2. Nuclear staining was performed by adding to the well
Hoechst nuclear stain at a dilution of 1:1000 in H2 buffer for 30s
followed by three washes with buffer H2. The CODEX acrylic
plate was mounted onto a custom-designed plate holder and
securely tightened onto the stage of a Keyence BZ-X710 inverted
fluorescence microscope.

Cycles of hybridization, buffer exchange, image acquisition,
and stripping were then performed using an Akoya CODEX EA
(early access) instrument and CODEX Driver EA2 (version
2.0.0.29). Briefly, that instrument performs hybridization of the
fluorescent oligonucleotides in a hybridization buffer, imaging of
tissues in buffer H2, and stripping of fluorescent oligonucleotides
in the stripping buffer.

CODEX multicycle automated imaging of regions of
interest or TMA cores was performed using a CFI Plan Apo
20x/0.75 objective (Nikon). The multipoint function of the
BZ-X viewer software (BZ-X ver. 1.3.2, Keyence) was manually
programmed to align with the center of each TMA core and set
to 25 Z stacks. Nuclear stain (Hoechst, 1:3000 final
concentration) was imaged in each cycle at an exposure time
of roughly 8 ms. DRAQ5 nuclear stain was visualized in the
last imaging cycle at an exposure time of roughly 118 ms.
The respective channels were imaged in the automated run
using pre-determined optimized exposure times (See
Supplementary Table 1).

CODEX Computational Image Processing and Analysis
Raw TIFF images produced during image acquisition were
processed using the CODEX Toolkit uploader [Version 1.5.5
Frontiers in Immunology | www.frontiersin.org 9
(6)]. The toolkit uploader concatenates Z-stack images and
performs drift compensation based on alignment of Hoechst
nuclear stain across images. It also removes the out-of-focus light
us ing the Microvolut ion deconvolut ion a lgor i thm
(Microvolution) and subtracts the background using blank
imaging cycles without fluorescent oligonucleotides. It finally
creates hyperstacks of all fluorescence channels and imaging
cycles of the imaged regions. Hyperstacks were loaded and
visualized on FIJI version 2.0.0 (30). Antibody staining
performance was visually inspected across each channel and
cycle using two and four-color overlays. Segmentation was
performed using the nuclear channel, and cell features
extracted as previously described (6).

Cell type Annotation and Differential Marker Analysis
Cell populations were gated as follows. All nucleated cells
were first identified by a positive nuclear signal. Granulocytes
(CD66+CD45+) and non-granulocyte (CD66-CD45+) immune
cells were first subsetted. From the non-granulocytes, CD4
(CD3+, CD4+) and CD8 (CD3+, CD8+) T cells, B cells (CD3-,
CD20+, CD21+), macrophages (CD3-, CD20-, CD21-, CD68+,
CD163+), NK cells (CD3-, CD20-, CD21-, CD68-, CD163-, CD56+),
dendritic cells (CD3-, CD20-, CD21-, CD68-, CD163-, CD209+),
and plasma cells (CD3-, CD20-, CD21-, CD68-, CD163-,
CD138+) populations were gated. A heatmap was then
constructed showing the median marker expression (z-score)
across cell populations.
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Supplementary Figure 1 | Immunohistochemistry validation of antibodies on
human and rhesus immune tissues. Representative IHC images for indicated
markers on human (left) and rhesus (right) tissues. Spleen tissue is shown unless
otherwise indicated. *human spleen, rhesus bone marrow; ** human tonsil, rhesus
lymph node.

Supplementary Table 1 | Antibody panel information. Antibody, clone, supplier,
product number, oligonucleotide number, oligonucleotide sequence,
oligonucleotide channel, imaging order.

Supplementary Table 2 | All antibodies tested in this study. Antibody, clone,
Manufacturer reported reactivity, species, company, catalog number, manufacturer
recommendation for IHC, dilutions tested for IHC, pass/fail of antibody in our
validation pipeline.

Supplementary Table 3 | Composition of buffers and reagents for CODEX.
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