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Pulmonary surfactant is a complex and highly surface-active material. It covers the alveolar
epithelium and consists of 90% lipids and 10% proteins. Pulmonary surfactant lipids
together with pulmonary surfactant proteins facilitate breathing by reducing surface
tension of the air-water interface within the lungs, thereby preventing alveolar collapse
and the mechanical work required to breathe. Moreover, pulmonary surfactant lipids, such
as phosphatidylglycerol and phosphatidylinositol, and pulmonary surfactant proteins,
such as surfactant protein A and D, participate in the pulmonary host defense and
modify immune responses. Emerging data have shown that pulmonary surfactant lipids
modulate the inflammatory response and antiviral effects in some respiratory viral
infections, and pulmonary surfactant lipids have shown promise for therapeutic
applications in some respiratory viral infections. Here, we briefly review the composition,
antiviral properties, and potential therapeutic applications of pulmonary surfactant lipids in
respiratory viral infections.

Keywords: pulmonary surfactant lipids, therapeutic applications, respiratory viral infections, COVID-19, ARDS
INTRODUCTION

Pulmonary surfactant is a complex and highly surface-active material that are found in the fluid lining
of the alveolar surface of the lungs (1). It forms a mobile-liquid phase that covers the alveolar
epithelium to facilitate breathing by reducing surface tension at the air-water interface within the lungs,
thereby preventing alveolar collapse and reducing the mechanical work required to breathe (1, 2).
Abbreviations: ARDS, acute respiratory distress syndrome; ATII, alveolar type 2; COVID-19, coronavirus disease 2019;
DPPC, dipalmitoyl- phosphatidylcholine; LPS, lipopolysaccharide; PC, phosphatidylcholine; PE, phosphatidylethanolamine;
PG, phosphatidylglycerol; PI, phosphatidylinositol; PL, phospholipid; PONPC, 1-palmitoyl-2-(9-oxononanayl)-
phosphatidylcholine; POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-
phospho-(1’-rac-glycerol); PS, phosphatidylserine; RSV, respiratory syncytial virus; SAPI, 1-stearoyl-2-arachidonoyl-
phosphatidylinositol; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SP, surfactant protein; TLR, toll-like
receptor; HCMV, human cytomegalovirus; WNV, West Nile Virus.

org September 2021 | Volume 12 | Article 7300221

https://www.frontiersin.org/articles/10.3389/fimmu.2021.730022/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.730022/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.730022/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.730022/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jshan@njucm.edu.cn
mailto:xietong@njucm.edu.cn
https://doi.org/10.3389/fimmu.2021.730022
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.730022
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.730022&domain=pdf&date_stamp=2021-09-27


Ji et al. Pulmonary Lipids in Viral infections
Pulmonary surfactant is an important lipoprotein complexes of the
lung lining, consisting of 90% lipids and 10% proteins by weight,
and it is produced predominantly by alveolar type 2 (ATII) cells (2,
3). Together with pulmonary surfactant proteins, lipids provide the
surface activity of surfactants (2, 3). Pulmonary surfactant proteins
contain four proteins, including surfactant protein (SP)-A, SP-B,
SP-C, and SP-D. SP-B and SP-C are small hydrophobic peptides,
while SP-A and SP-D are large, soluble, hydrophilic proteins that
have key overlapping and distinct roles in innate immunity and the
immunological homeostasis of the lung (1).

In addition to lowering surface tension and preventing alveolar
collapse at end-expiration, pulmonary surfactant functions as a
modulator of immune responses (1). Previous studies have
revealed that pulmonary surfactant, especially pulmonary
surfactant proteins, plays an important role in the host defence
against respiratory tract infection (1). Most previous studies
focused on the anti-infectious roles of SP-A and SP-D. These
proteins were found to protect the lung against multiple viral
infections by directly neutralising viruses and modulating host
antiviral immunity (1). SP-A and SP-D were found to bind several
viruses, including influenza A virus, respiratory syncytial virus
(RSV), and human immunodeficiency virus, enhancing their
clearance from mucosal points of entry and modulating the host
antiviral immune response (4). Many studies have investigated
the antiviral properties of pulmonary surfactant proteins possess
antiviral effects; however, few studies have focussed on the
antiviral properties of pulmonary surfactant lipids. Emerging
data have shown that some pulmonary surfactant lipids
potentiate the host defence against respiratory viral infections (3,
5). Because the surface of lung is permanently exposed to the virus
and pro-inflammatory factors directly in the respiratory viral
infections, it is particularly important to explore the host
defence against viruses of pulmonary surfactant lipids. Herein,
we briefly review the antiviral properties and relevant mechanisms
Frontiers in Immunology | www.frontiersin.org 2
of pulmonary surfactant lipids in respiratory viral infections and
discuss their possible therapeutic applications.
PULMONARY SURFACTANT LIPID
CONSTITUENTS AND FUNCTIONS

In pulmonary surfactant lipids, the most abundant constituents
are glycerophospholipids (2, 3). Surfactant phospholipids (PLs)
account for 80–85% of pulmonary surfactant lipids, including
phosphatidylcholine (PC, accounting for about 80%);
phosphatidylglycerol (PG, accounting for about 7–15%); and
small quantities (accounting for approximately 5% each) of
phosphatidylinositol (PI), phosphatidylethanolamine (PE), and
phosphatidylserine (PS) (Figure 1). The most prevalent PLs in
pulmonary surfactant lipids is PC, and approximately 40% of
pulmonary surfactant PC is saturated dipalmitoyl-PC (DPPC)
(i.e., PC with two palmitic acid groups) (Figure 1). The tight
intermolecular packing of DPPC, especially at end-expiration, is
thought to be largely responsible for the surface tension-reducing
activity of surfactants that guards against alveolar collapse (2, 3)
as DPPC achieves very low surface tension upon compression (6).
The remaining PC molecular species mainly include unsaturated
lipids, such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC) (2, 3). The POPC in the surfactant film contributes to the
membrane fluidity at physiological temperature, and unsaturated
PC (PC16:0/16:1) is related to surface dynamics and respiratory
rate (7). These unsaturated PCs improve the adsorption and
spreading properties of surfactant at the air-liquid interface (8).
Other pulmonary surfactant PLs such as PE, is important in
facilitating/promoting curvature in some non-bilayer surfactant
forms that are critical intermediates throughout the transitions
from bilayers to interfacial films and their interconversions
during surfactants metabolism (9, 10); and PI can increase the
FIGURE 1 | Pulmonary surfactant lipid constituents. Pulmonary surfactant components are important lipoprotein complexes of the lung lining, consisting of 90%
lipids and 10% proteins by weight. Pulmonary surfactant proteins contain four proteins, including surfactant protein (SP)-A, SP-B, SP-C, and SP-D. In pulmonary
surfactant lipids, the most abundant constituents are glycerophospholipids. Surfactant phospholipids (PLs) account for 80–85% of pulmonary surfactant lipids;
surfactant PLs are a mixture of lipids, which include phosphatidylcholine (PC, accounting for about 80%), phosphatidylglycerol (PG, accounting for about 7–15%),
and small quantities (accounting for approximately 5% each) of phosphatidylinositol (PI), phosphatidylethanolamine (PE), and phosphatidylserine (PS). The most
prevalent PL in pulmonary surfactant is PC, and approximately 40% of surfactant PC is saturated dipalmitoyl-PC (DPPC).
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rate of alveolar fluid clearance and stabilise the surfactant
monolayer (7).

In addition to preventing alveolar collapse during respiratory
activity, pulmonary surfactant lipids can also modulate the
inflammatory response to microbial components (3). PCs have
anti-inflammatory properties that can alleviate tissue damage in
multiple organs via the inhibition of multiple proinflammatory
mediators. DPPC inhibits lipopolysaccharide (LPS)-induced
cytokine production by airway epithelial cells and monocytes, and
DPPC supplementation in mice attenuates lung inflammation.
However, PONPC [1-palmitoyl-2-(9-oxononanayl)-PC], another
component of PC, can increase the production of nitric oxide and
cytokines inmacrophages via the upregulation ofTLR4 andMyd88
gene expression (11). PI and PG can inhibit macrophage
proinflammatory cytokine responses to LPS. PG can also reduce
inflammatory mediator production by blocking the toll-like
receptor 2 (TLR2) pathway, thus repressing lung inflammation.
Moreover, PG can inhibit the single-stranded RNA-activated
TLR7/8 pathway and reduce pre-inflammation cytokine
secretion. In a study, PG supplementation preserved lung
function and prevented alveolar epithelial injury in a neonatal pig
triple-injury model of acute respiratory distress syndrome (ARDS)
(12). PLs competitively inhibit the binding of LPS to LPS-binding
protein and CD14, which then inhibits the LPS–LPS-binding
protein–TLR4signallingpathwayandattenuates inflammation (3).
ALTERATION IN PULMONARY
SURFACTANT LIPIDS IN RESPIRATORY
VIRAL INFECTIONS

Pulmonary surfactant lipids constitute the frontline of defence
against inhaled pathogens (3). Respiratory viral infections, such as
those caused by influenza virus and RSV, which are the most
common respiratory viruses, can induce the dysfunction of
pulmonary surfactant lipids metabolism (13). ATII cells are
responsible for the synthesis, secretion and recycling of pulmonary
surfactant (14), and they are the primary site of influenza virus
replication in the distal lung (15). Influenza infection significantly
alters ATII cells surfactant lipidmetabolism, and this was reported to
result in surfactantdysfunction andARDS in influenza-infectedmice
(15).The levels of severalmajor pulmonary surfactantPLs (PCs, PGs,
andPEs) inATII cells frominfluenza-infectedmicewere significantly
decreased compared with that in mock-infected animals; however,
the levels of several minor pulmonary surfactant lipids (PSs, PIs, and
sphingomyelin), cholesterol, and diacylglycerol were increased in
ATII cells from influenza-infected mice (15). Moreover, cytidine 5’-
diphosphocholine and 5’-diphosphoethanolamine (liponucleotide
precursors for PCs and PEs synthesis, respectively, in ATII cells)
were alsodecreased (15). Furthermore, alterations inPLs inATII cells
were reflected in the composition of surfactant lipids in bronchial
alveolar lavagefluid,which showed reducedamounts ofPCs andPGs
but increased amounts of sphingomyelin and cholesterol (15).

A study on lung tissue sample obtained from RSV-infected
mice demonstrated alteration in 86 surfactant lipids, compared
with that in control mice (16). Levels of PI, lyso-PI and
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plasmalogen lipids, including plasmenyl-PC and plasmenyl-PE
were significantly elevated in the lungs of RSV-infected mice
(16). The levels of palmitoylated PGs such as PG (16:0_22:5), PG
(16:0_22:6), and PG (16:0_18:1) were decreased, but the levels of
stearoylated PG lipids, such as PG (18:2_20:4), PG (18:2_18:2),
and PG (18:1_20:4), were increased in the lung tissues of RSV-
infected mice (14).

Although there is no convincing evidence that pulmonary
surfactant lipids are dysfunctional in those with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection,
indirect evidence indicates that SARS-CoV-2 infection may
induce alterations in the composition of pulmonary surfactant
lipids in three ways. Firstly, SARS-CoV-2 infects ATII cells by
binding angiotensin-converting enzyme 2 (17), and the infected
cells provide an environment for SARS-CoV-2 replication.
Colonisation of these cells by SARS-CoV-2 may interfere with the
synthesis of pulmonary surfactant components. Secondly, SARS-
CoV-2 infection may influence the recycling and catabolism of the
used/spent/altered pulmonary surfactant in ATII cells and alveolar
macrophages. Thirdly, inflammation can result in the
compositional alterations of lipids (18). Therefore, the
inflammations in the lung caused by SARS-CoV-2 infections may
alter composition of pulmonary surfactant lipids. A previous study
has shown that SARS-CoV-2 infections result in the decrease of
pulmonary surfactant proteins (19), indicating that pulmonary
surfactant lipid content may also be influenced by SARS-CoV-2.
A recent study showed that the lipid metabolism in the plasma was
altered in patients with coronavirus disease 2019 (COVID-19). The
levels of PCs in plasma gradually reduced over time, while the levels
of PEs and PSs in the plasma gradually increased over time in those
with COVID-19 fatalities (20). Although the direct relationship
between pulmonary surfactant and plasma lipids has not been
studied, the composition of pulmonary surfactant lipid
composition may be similarly altered in COVID-19 patients, and
related research should emerge soon. Together, current evidence
suggests that pulmonary surfactant lipid compositionmay undergo
alterations following respiratory viral infection.

Altered pulmonary surfactant lipid composition not only
influences surface tension-related properties but also impacts
the progress of inflammation following viral infections.
Importantly, recent studies have shown that supplementation
with several pulmonary surfactant lipids, such as PGs (mainly
POPG [1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-
glycerol)] and PIs via intranasal inoculation can prevent some
respiratory viral infections, and this may provide potential
therapeutic applications for respiratory viral infections. This
suggests potential therapeutic applications of pulmonary
surfactant lipids for preventing or treating respiratory viral
infections. We will briefly review these topics in the followings.
ANTIVIRAL EFFECT OF PULMONARY
SURFACTANT LIPIDS IN RSV INFECTION

RSV is a negative-sense, single-stranded RNA virus of the
Paramyxoviridae family, and that is a leading cause of acute
September 2021 | Volume 12 | Article 730022
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respiratory tract infections in early childhood (21). As
mentioned earlier, the levels of some PGs in the lungs are
decreased after RSV infection (16). Some studies have shown
that POPG and PIs possess potent antiviral effects, and POPG
supplementation can prevent RSV infection (5, 22–24). POPG
can bind RSV with high affinity and inhibit virus attachment to
cells; it then blocks viral plaque formation and markedly
suppresses virus replication (22, 24). POPG can also attenuate
inflammatory responses induced by RSV through direct
interactions with the TLR4-interacting proteins, CD14 and
MD-2 (5). Intranasal POPG supplementation significantly
prevented virus infection and inflammation in the lungs of
RSV-infected mice (22, 24). In addition, PI also markedly
prevented RSV infection in vivo and in vitro (5, 23). The
presence of PI during RSV challenges in vitro prevented virus
attachment to epithelial cells by binding RSV with high affinity,
blocking the spread of RSV from infected to uninfected cells and
suppressing RSV replication (23). In another study, intranasal
inoculation with PI reduced the viral load in lungs, eliminated
the influx of inflammatory cells, and reduced lung tissue
histopathology in RSV-infected mice (23). Collectively, these
findings demonstrate that POPG and PI are effective for the
prevention and treatment of RSV infections. Other studies
indicate that the antiviral ability of POPG may be greater than
that of PI, although the latter may confer longer-lasting
protection against RSV infection (5).

Regarding the underlying mechanism(s), the antiviral effects
of PI and POPG are achieved by their binding to RSV to block
virus attachment to epithelial cells. However, it is unclear why PI
and POPG have such a high affinity for RSV and how they bind
to RSV. Moreover, it has not been determined whether the high
affinity of PG and POPG is specific for RSV, or if this
phenomenon applies to other viruses. It is also unknown if the
antiviral mechanisms of PG and PI are the same. We believe
these mechanisms should to be further explored as this
information may be important for developing an effective
strategy for controlling RSV infection.
ANTIVIRAL EFFECTS OF PULMONARY
SURFACTANT LIPIDS IN INFLUENZA
VIRUS INFECTION

Influenza virus is one of the most common viruses globally,
causing global health problems and life-threatening infections
and resulting in an estimated 500,000 deaths each year (25). As
mentioned above, the levels of some PCs and PGs were decreased
in the lungs after influenza infection (15). Previous studies have
shown that PG supplementation can suppress influenza virus
infections (5, 26, 27). POPG can inhibit influenza A virus
attachment to the plasma membrane and block subsequent
replication in vitro (26). Another study showed that POPG can
bind to two strains of influenza virus, H1N1-PR8-influenza and
H3N2-influenza, with high affinity and block influenza virus
replications (26, 27). Some studies revealed that the intranasal
inoculation of POPG in H1N1-PR8-influenza-infected mice
Frontiers in Immunology | www.frontiersin.org 4
markedly reduced viral titres and suppressed inflammatory cell
infiltrates in the lungs (5, 26, 27). PI can also bind to H1N1-
influenzawith high affinity anddisrupt viral spread from infected to
non-infected cells in tissue culture, reducingH1N1 propagation (5,
27). PI administration also significantly reduced lung inflammation
and viral burden in infectedmice (5, 27). These studies suggest that
PI and PG can prevent influenza infection by binding to the
influenza virus. The above studies also indicate that PI and PG
are effective for preventing RSV infection. However, it is
undetermined if the antiviral capabilities of PI and PG are against
for most viruses or pertain only influenza and RSV.
ANTIVIRAL EFFECTS OF PULMONARY
SURFACTANT LIPIDS IN OTHER
VIRAL INFECTIONS

Previous studies showed thatotherpulmonary surfactantPLs, suchas
PCandPS, cancontrol infectionby reprogrammingmacrophagesvia
negatively charged membrane (28). 1-stearoyl-2-arachidonoyl-PI
(SAPI), which is the most abundant PI, can defend against dengue
virus infection (29). DPPC can promote adenoviral entry into
epithelial cells by binding the virus and serving as a vehicle for
receptor-independent penetration into the cell (29). Exogenous PS
also promotes cell entry by enveloped viruses, potentially by
promoting fusion (30). Interestingly, PS in the poxvirus envelope
promotes viral infectivity (31), possibly through apoptotic cell
mimicry (32). Plasmalogen pre-conditioning may be potentially
used as anti-viral therapeutic and prophylaxis strategy to treat
SARS-CoV-2, influenza, human cytomegalovirus (HCMV) and
West Nile Virus (WNV) infections (33). The potential anti-viral
mechanism of plasmalogen may include influencing viral entry host
cells vianon-receptormicrodomainmediated endocytosis pathways;
modulating lipid-modulated host innate immune response and
virus-induced host membrane rearrangements, especially cubic
membrane (CM) formation (33).

As suggested above, not all lipids are protective against viral
infection. A previous study showed that PE was required for the
replication of a (+)RNA virus (34), and RNA virus replication
depended on PE enrichment at replication sites in subcellular
membranes (35). The PE receptor CD300a can bind dengue virus
and enhance infection (36). Previous studies have shown that
cholesterol play an important role in viral entry into host cells
and cholesterol-lowering therapies can reduce viral infectivity
(37). These studies suggest that not all lipids are protective in
respiratory viral infection.
POTENTIAL THERAPEUTIC
APPLICATIONS OF PULMONARY
SURFACTANT LIPIDS IN RESPIRATORY
VIRAL INFECTIONS

After respiratory viral infection, viruses can interfere with the
synthesis and secretion of pulmonary surfactant; this can cause
September 2021 | Volume 12 | Article 730022
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an increase in surface tension, leading to alveolar collapse and
ARDS (38, 39). ARDS is characterised by lung inflammation and
pulmonary oedema, which reduces gas exchange and leads to
hypoxaemia and dyspnoea, with patients often requiring
mechanical ventilation to provide sufficient oxygenation (38,
39). Pulmonary surfactant lipids can lower surface tension at the
air-liquid interface, thus preventing alveolar collapse at end-
expiration (1, 3). As such, supplementation with pulmonary
surfactant lipids can effectively alleviate respiratory distress
because of the lack of surfactant lipids in the lung. In fact, PG-
containing surfactants have already been approved by the Food
and Drug Administration for the treatment of neonatal
respiratory distress syndrome (40). A previous study also
showed that supplementation composed of surfactant with
additional PG (to a molar percentage of 6%) preserved lung
function and prevented alveolar epithelial injury in a neonatal
pig triple-injury model of ARDS (12). Current studies have
demonstrated that multiple respiratory viruses, such as RSV,
SARS, and SARS-CoV-2, usually cause ARDS (38). Thus,
pulmonary surfactant lipids supplementation does not only
restore the decreased pulmonary surfactant lipids caused by
viral infection, but it also reduces surface tension to decrease
the work of breathing and increase oxygen supply.

Respiratory viral infections are accompanied by an aggressive
proinflammatory cytokine response that is directly related to the
severity of the disease (41). Thus, the inflammation modulatory
function of pulmonary surfactant may be important for treating
virus infection. Pulmonary surfactant lipids have been shown to
modulate the inflammatory response to microbial components,
such as LPS and single-stranded RNA, also known as pathogen-
associated molecular patterns (PAMPs). Thus, supplementation
with pulmonary surfactant lipids can effectively alleviate virus
infection-induced inflammatory responses. Recently, several
pulmonary surfactant lipids have been reported to have anti-
inflammatory effects, among which PGs have been reported to
play an anti-inflammatory role inmany inflammatory processes (3,
5, 39). PGswere shown to inhibit the expression of interleukin (IL)-
1a, IL-1b, IL-6, and/or TNFa, as well as IL-8 and interferon-g in
response to TLR activation (39), which then decreased
inflammation in the lungs. Therefore, pulmonary surfactant lipids
supplementation may reduce virus-induced inflammation.

Importantly, recent studies have shown that POPG and PI
supplementation can combat RSV and influenza infection by
blocking viral replication (5). Although, it is unclear whether
pulmonary surfactant lipids can defend against other respiratory
viral infections, this suggests it is worthwhile to explore the
antiviral effect of pulmonary surfactant lipids. Another
application of pulmonary surfactant lipids is using them as a
vehicle for antiviral drugs administrated by the pulmonary route.
Use surfactant lipids as a vehicle can offer compatibility for
delivering antiviral drugs, vaccines and other therapeutic
molecules, which enhances targeted delivering and also has
capability for immunomodulation (42). For example, DPPC
liposomes can also be loaded with hydroxychloroquine to treat
COVID‐19 disease trough inhalation (43). Collectively, the
pulmonary administration of exogenous pulmonary surfactant
Frontiers in Immunology | www.frontiersin.org 5
lipids may have therapeutic effects as follows (Figure 2): the
pulmonary surfactant lipids may (1) supplement the decreased
pulmonary surfactant lipids; (2) reduce surface tension and prevent
alveolar collapse during respiratory activity; (3) inhibit the
proinflammatory response and alleviate tissue damage in lungs;
and (4) inhibit virus replications and limit viral infection;(5) be as a
vehicle for drugs administrated by the pulmonary route.

However, some pulmonary surfactant lipids such as PEs may
facilitate RNA virus infection. Thus, not all pulmonary surfactant
lipids can be used to treat viral infections. As pulmonary
surfactant lipids contain many species and subclasses, further
studies need to be performed to explore the potential functions of
each pulmonary surfactant lipid in respiratory viral infections.

It is worth noting that, pulmonary surfactant proteins also
possess anti-viral and anti-inflammatory properties, especially
SP-A and SP-D (4). Therefore, the use of pulmonary surfactant
lipids in combination with pulmonary surfactant proteins may
be more effective in treatment of respiratory virus infection. In
fact, current studies have used a combination of pulmonary
surfactant lipids and pulmonary surfactant proteins to treat
ARDS (44).
POTENTIAL THERAPEUTIC
APPLICATIONS OF PULMONARY
SURFACTANT LIPIDS IN
SARS-COV-2 INFECTION

Alterations in pulmonary surfactant composition may occur in
COVID-19 patients; thus, the administration of pulmonary
surfactant lipids may be effective in COVID-19 patients.
Several groups have undertaken studies to investigate the
therapeutic value of exogenous pulmonary surfactant lipids in
COVID-19 patients (39). A clinical trial of surfactants treatment
on COVID-19 patients was ongoing (45). In this trail, a natural
animal derived (bovine) lung surfactants, Bovactant (Alveofact®)
was used and it consisted of a mixture of phospholipid (75% PCs,
13% PG, 3% PE, 1% PI and 1% sphingomyelin), 5% cholesterol,
1% surfactant proteins (SP-B and SP-C), very low levels of free
fatty acid, lyso-phosphatidylcholine, water and 0.3% calcium
(45). Whether pulmonary surfactant lipids possess antiviral
effects against SARS-CoV-2 infection is still unknown, and we
hope future studies will soon reflect on this subject.

COVID-19 is usually accompanied by ARDS, which may
result in severe inflammation, multiorgan failure, and death (17).
Because there are no specific antiviral treatments for SARS-CoV-
2 infection, it is necessary to find alternative supportive
treatments to prevent ARDS, severe inflammation, and
pulmonary failure (39), which are the most common causes of
COVID-19 mortality. The use of the pulmonary surfactant seems
to be promising as an additional therapy for the treatment of
ARDS and has been proposed by some researchers (39, 40). They
concluded that pulmonary surfactant lipids supplementation
could potentially reduce surface tension, inhibit the
September 2021 | Volume 12 | Article 730022
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proinflammatory response, and improve ARDS in COVID-19,
and we agree with their opinion based on the above discussion.
However, some lipids, such as PE and cholesterol, could facilitate
virus infection. As a result, it is important to clarify the
alterations of pulmonary surfactant components in COVID-19
before conducting related trials.
CONCLUSIONS

In summary, pulmonary surfactant lipids have multiple
functions beyond simply reducing the surface tension and
altering the mechanical properties of the lung. Notably, these
additional functions include anti-inflammatory and antiviral
roles in the lungs. As the lung epithelium is constantly exposed
to the environment, pulmonary surfactant provides a crucial first
line of defence against infection by enhancing the removal of
pathogens, modulating the response of inflammatory cells, and
optimising lung biophysical activity. Compared to the studies on
the application of pulmonary surfactant proteins in viral
infections, current studies on pulmonary surfactant lipids are
still in early stages, and few in number. Therefore, further studies
are required to explore the possibility of pulmonary surfactant
lipids as a therapeutic approach or developmental drug therapy
in respiratory viral infections. Taken together, this review can
Frontiers in Immunology | www.frontiersin.org 6
form the basis to guide future studies regarding research
directions for the study of pulmonary surfactant lipids.
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