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Human Cytomegalovirus (HCMV) is an immensely pervasive herpesvirus, persistently
infecting high percentages of the world population. Despite the apparent robust host
immune responses, HCMV is capable of replicating, evading host defenses, and
establishing latency throughout life by developing multiple immune-modulatory
strategies. HCMV has coexisted with humans mounting various mechanisms to evade
immune cells and effectively win the HCMV-immune system battle mainly through
maintaining its viral genome, impairing HLA Class I and II molecule expression, evading
from natural killer (NK) cell-mediated cytotoxicity, interfering with cellular signaling,
inhibiting apoptosis, escaping complement attack, and stimulating immunosuppressive
cytokines (immune tolerance). HCMV expresses several gene products that modulate the
host immune response and promote modifications in non-coding RNA and regulatory
proteins. These changes are linked to several complications, such as immunosenescence
and malignant phenotypes leading to immunosuppressive tumor microenvironment (TME)
and oncomodulation. Hence, tumor survival is promoted by affecting cellular proliferation
and survival, invasion, immune evasion, immunosuppression, and giving rise to
angiogenic factors. Viewing HCMV-induced evasion mechanisms will play a principal
role in developing novel adapted therapeutic approaches against HCMV, especially since
immunotherapy has revolutionized cancer therapeutic strategies. Since tumors acquire
immune evasion strategies, anti-tumor immunity could be prominently triggered by
multimodal strategies to induce, on one side, immunogenic tumor apoptosis and to
actively oppose the immune suppressive microenvironment, on the other side.
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BACKGROUND

HCMV or human herpesvirus 5 (HHV-5) has co-evolved with mammalian hosts over millennia
infecting almost 83% of the world’s population, impending 100% in developing countries (1). After
initial infection, HCMV can establish lifelong persistence within its corresponding host as well as
possessing the reactivation potential; viral persistence depends on composite interactions among various
org September 2021 | Volume 12 | Article 7307651
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viral and host determinants. Such interactions mostly generate an
equilibrium between the immunocompetent host and the virus
itself. In the host, HCMV infrequently causes symptoms unless this
balance is demolished by the minimized host immune proficiency
(atypical settings) leading to substantial pathology (1, 2). Upon
viewing several forms of viral-host interaction, the explicit HCMV
reactivation in immunosuppressed patients (organ transplant
recipients) and immunocompromised patients (septic patients,
elderly, HIV-infected patients, etc.) is considered a well
identifiable disease state (3, 4). Hence, in immunocompetent
patients, HCMV is considered a multifaceted beta herpesvirus
that is viewed as an asymptomatic and mildly pathogenic virus,
but may nevertheless cause chronic infections along with acute and
serious complications in immunocompromised individuals (5).
HCMV persistence can also have a key influence on the host,
even in healthy carriers, through the attenuation of innate and
adaptive immune responses since HCMV starts to counteract
several host immune response mechanisms required to control
the infection (1, 2). HCMV potentially triggers the host immune
responses starting by the mechanisms of innate immunity,
including inflammatory cytokines resulting from virus/cell
binding and NK cell induction which consequently drives
adaptive immune responses, involving production of antibodies
and the initiation of CD4+ and CD8+ T-cell responses. However,
HCMV encodes various immune evasion mechanisms; hence,
expressing several genes that influence both innate and adaptive
immunity (5, 6).

HCMV, a leading viral cause of birth defects, has been linked
to several mortality and morbidity conditions (7). The stage of
HCMV acquisition may affect the range of associated clinical
manifestations and the effectiveness of the immune responses
exerted against HCMV (7, 8). Regarding congenital CMV
infection, neurological defects might be experienced as mental
retardation, cerebral palsy, and hearing impairment; newborns
may experience either symptomatic or asymptomatic infections
(7, 9, 10). Symptomatic infections might cause petechiae, low
birth weight, jaundice, hepatosplenomegaly, seizures, and
microcephaly; they appear to be more common in newborns
infected during the first trimester of pregnancy (7). In case of
premature birth, sepsis and respiratory distress can develop (11).
Compared to adults, these observations indicate that controlling
CMV replication is restricted during early stages of life and is
associated with delayed immune responses and increased risk of
symptomatic infection (7). Years later, persistent HCMV
infection might be considered a potential risk factor
exacerbating age-associated diseases and immunosenescence
which is defined as the age-associated deterioration in overall
immune condition (12–14) although some studies have indicated
that the link between HCMV and immune aging is obscure (3,
15). Further, various stimuli can induce HCMV reactivation; it
might be triggered in SARS-CoV-2 infected patients (16, 17) thus
exacerbating the risk of coronavirus disease 2019 (COVID-19)
(18, 19). Even if this interaction is still elusive and additional
large scale studies are recommended (16), CMV testing and
treatment should be taken into consideration in such critical
conditions (18). CMV status must be taken into account for
several vaccine responses, especially cancer despite the use of
Frontiers in Immunology | www.frontiersin.org 2
HCMV-based therapeutic cancer vaccines (20), since it has been
suggested that with advanced age and due to CMV-associated
altered immunity in both healthy and immunocompromised
hosts, vaccine immunogenicity was modulated (21–23). Thus,
recent studies are concerned about targeting HCMV to decrease
the sensitivity to other infectious diseases and cancer, and to
prevent poor responses to vaccination (21, 22).

The contribution of HCMV infection in late inflammatory
complications highlights its potential association with chronic
diseases, such as atherosclerosis, chronic rejection following
solid-organ transplantation, and malignancies (24). Recent
investigations have reported the prevalence of HCMV infection
in tumoral tissues of malignancies such as malignant glioma,
breast and colon cancer, negative Hodgkin’s disease, Epstein-
Barr virus (EBV), liver cancer, cervical cancer, and prostatic
carcinoma (1, 25, 26). Despite the fact that HCMV is not yet
included in the oncogenic viruses list, its possible contribution in
carcinogenesis as initiator or promoter is significantly reported
suggesting that HCMV and tumors express a symbiotic
relationship (26–29). HCMV aids the tumor to escape immune
surveillance by encoding viral proteins and inducing various
cellular factors, in addition to the HCMV-induced immune
tolerance which favors tumor growth. In return, HCMV
harbors in the immunologically weak environment of the
cancerous cells (6). This review accentuates the considerable
influence of HCMV on the immune landscape and its
oncomodulatory signals that might contribute to oncogenesis.
HOST IMMUNE RESPONSES AGAINST
HCMV INFECTION

HCMV, a double-stranded DNA (dsDNA) genome beta-
herpesvirus is considered the largest virus among the human
herpesviruses (30). Upon HCMV infection and despite the
counteracting host response, this virus powerfully adapts to the
human immune system. HCMV is certainly not eradicated from
the HCMV-positive immunocompetent patient, in whom the
virus establishes latency (31). Thus, the human immune system
is incompetent to clear the latent HCMV, however it mounts an
immune defense targeting multiple viral proteins (8). Due to the
existing coevolution between HCMV and the host immune
system for millions of years, it’s informative to study the
immune defense strategies and pathogen counterstrategies (12).
Innate immunity, in addition to adaptive humoral and cell-
mediated immune responses, are induced by HCMV infection;
such responses lead to the resolution of acute primary infection
(5). Such immune responses differ during distinct life stages;
throughout pregnancy, maternal anti-HCMV antibodies
participate in preventing congenital fetal CMV infection (32).
In addition, studies have shown that despite the detection of
primary humoral and cellular immune responses in neonates,
cell-mediated immune responses are delayed compared to adults
which justifies the reason behind uncontrolled viremia and
serious clinical harm in early life CMV infections (8, 32, 33).
CMV-specific CD8+ T-cell responses in congenitally infected
newborns were characterized by lower IFN-g levels and elevated
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levels of IL-8 compared to adults (33). Finally, elderly people
have increased sensitivity and susceptibility to serious infections
and diseases most likely due to immunosenescence (14).

HCMV Entry
HCMV exhibits a wide host cell range, possessing the ability to
infect several cell types for instance endothelial cells, epithelial
cells, fibroblasts, smooth muscle cells, leukocytes, and dendritic
cells (DCs) (8, 34). In healthy persons, HCMV initiates its
replication in the mucosal epithelium; thereafter, it disperses to
monocytes and CD34+ cells, where it institutes a latent infection.
Upon differentiation of HCMV-infected monocytes into
macrophages, a viral infection could be initiated (35). Infection
of both hematopoietic and endothelial cells systemically eases the
viral spread within the host (36), unlike prevalent cell types
infection including smooth muscle cells and fibroblasts which
enhances efficient proliferation of the virus (35).

Innate Immunity
As HCMV enters the cells, virions are firstly recognized by the
host thus activating multiple pathways and strategies of innate
immunity which is known as the primary host defense against
HCMV infection (8). These involve inflammatory cytokines, type
I interferon (IFN), and upregulation of CD80 and CD86 (37) that
are essential for limiting pathogen’s spread and thereafter priming
the adaptive immune response (5, 8). The stimulation of the NF-
kB pathway and predominant inflammatory cytokines
production for example interleukin-6 (IL-6) and tumor necrosis
factor-alpha (TNF-a) (38) result from the interaction of viral
envelope glycoproteins B (gB) and glycoprotein H (gH) with the
immune-sensor molecules namely, toll-like receptors 2 (TLR2) (5,
12, 39, 40). Such inflammatory cytokines are capable of inducing
and triggering phagocytic cells, such as dendritic cells, which have
the ability to clear HCMV-infected cells (5, 8, 38). In the initial
infection sites, NK cells are activated to eradicate HCMV-infected
cells by the liberation of cytotoxic proteins (38). Furthermore,
studies have shown NK cells’ role in inhibiting HCMV
transmission in fibroblasts, epithelial, and endothelial cells and
this through inducing IFN-b in target infected cells (41) and
secretion of IFN-g (42). NK cells, crucial guards of the immune
system, produce a cytokine environment that triggers the
consequential maturation of adaptive immune responses
particularly T-cells (5, 8, 43).

Adaptive Immunity
The adaptive immunity which contributes to the control of
HCMV infection is among the strongest responses in which it
fully engages humoral and cellular immune responses. Adaptive
immunity is necessary to fundamentally manage HCMV
primary infection, afterwards HCMV will enter into a latent
state (44). The development of a sustained adaptive immune
response is essential to preserve HCMV latency, avert acute
viremia, and avert lytic infection which, in contrast, is
frequent in patients on immunosuppressive therapies and
immunocompromised individuals often leading to unrestricted
replication and clinically severe HCMV morbidity and
mortality (45).
Frontiers in Immunology | www.frontiersin.org 3
Humoral Responses
Following a primary HCMV infection, the initiation of a robust
immune response to control HCMV is essentially required.
Many evidences supported the role of humoral immunity in
limiting viral propagation and HCMV severity through antibody
production targeting multiple CMV proteins, envelope
glycoproteins, and genes (8, 32). The key target for antibody
neutralization against HCMV is gB since it is related to cellular
adhesion and invasion; besides, gH is considered the secondary
target as it is involved in the fusion of the host cell membrane
with the viral envelope (37). Other targets include the structural
tegument proteins (pp65 and pp150) and non-structural proteins
(IE1) (8, 32). A study shows that pregnant women, primarily
infected with HCMV, having HCMV specific IgM antibodies and
missing neutralizing IgG antibodies are at greater risk of
transmitting HCMV to their fetus in contrast to seropositive
mothers experiencing a recurrent infection (45). Thus,
underlying the critical role of humoral immunity, especially
HCMV IgG, in controlling HCMV infection and spread.

T-Cell Mediated Immune Responses
Due to the fact that the immune response stimulated by primary
infection does not eliminate HCMV, HCMV-specific CD4+ T-
cells, CD8+ T-cells, and gamma delta (gd) T-cells have been
considered as critical players in restricting viral replication in
hosts acquiring persistent infections (38, 46, 47). With regard to
CD8+ T-cells, the CD8+ HCMV-specific T-cell response is
targeted toward HCMV proteins which are being expressed at
different stages of viral replication (IE, early, early-late, and late)
in addition to other proteins possessing various functions
(capsid, tegument, glycoprotein, DNA-regulatory, and immune
escape) (37). It is worth noting that the most immunodominant
antigens to which HCMV-specific CD8+ T-cells react are
addressed toward IE1 (UL123), IE2 (UL122), and pp65 (UL83)
(37, 48). Even though the major histocompatibility complex
(MHC) class I-restricted CD8+ T-cell immune response role in
targeting HCMV is evidently marked, there exists a significant
indication that CD4+ T-cells are as well fundamental in
controlling HCMV infections (37). Further studies reveal the
attainment of a cytolytic potential by pp65-specific CD4+ T-cells
and gB-specific CD4+ CTL in vivo where CD4+ T-cells released
granzyme B in reaction to glia presenting endogenous gB (49).
The recruitment of HCMV-specific T-cells into the memory
compartment is stimulated by the relatively prolonged viral
replication of HCMV since T-cells are mandatory to limit
HCMV viral replication and impede certain diseases (50).
HCMV-specific T-cell responses inflate throughout life
leading to a significant fraction of memory T-cells in healthy
seropositive individuals (50–52). Hence, HCMV-seropositive
immunocompetent people maintain lifetime protection despite
the insufficient or minimal HCMV-specific T-cell responses.
Cellular responses from CD4+ and CD8+ T-cells vary among
individuals (50). HCMV-positive serostatus has been associated
with CD8+ T-cell compartment expansion, reduced CD4:CD8 T-
cell ratio as well as alterations in the expression of CD8+ T-cell
senescence related markers (53, 54). These senescent cells are
characterized by a progressive loss of CD28 and CD27,
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upregulation of CD57 expression which is known as the classical
immune senescence marker, replicative senescence, and
shortened telomeres resulting in a limited cell proliferation
capacity and finally the inability to eliminate the HCMV
infection (14, 55). Other cellular responses include gd T-cells
and NK cells. Although the previously mentioned cells are not
targeted specifically against HCMV, they can still successfully
lyse HCMV-infected endothelial cells and fibroblasts in
consequence of a cellular stress response that upregulates the
endothelial protein C receptor (EPCR) in addition to CD54
(Intercellular adhesion molecule-1, ICAM-1) (56). gd T-cells
contribute to dual immune response, anti-infectious and
antitumor. Activated gd T-cells are essential immune effectors
against HCMV in which they stimulate IFN-g and TNF-a
production that may synergize to inhibit HCMV replication (38).
HCMV PERSISTENCE DESPITE
ANTIVIRAL IMMUNITY

In healthy individuals, the operative homeostatic equilibrium
established between HCMV and the host prevents serious HCMV
complications. Conversely, in an immunocompromised host, fetus,
and neonates, HCMV infection can cause multiple forms of clinical
harm (8). Disequilibrium in immunocompromised patients can
result in unhindered viral replication followed by the reactivation
of the latent virus, with subsequent morbidity and mortality (5).
Despite a powerful immunity involving both arms of the immune
system, HCMV establishes latency. In that context, HCMV-encoded
determinants of tropism for endothelial cells, an imperative objective
of the infection, were considered. It was stated that in endothelial
cells the UL133-UL138 locus, encoded in the ULb′ region of the
HCMV genome, is essential for the viral late-stage response (57). In
infected cells, this locus was mandatory for preserving membrane
organization and is required for the progeny viruses’ maturation.
However, it’s not necessary for early/late gene expression or viral
genome synthesis. Viruses missing the UL133-UL138 region,
produce progeny viruses that are deprived of tegument and
envelopes, leading to deficient viral yields. UL135 and UL136
genes, encoded in the UL133-UL138 region, promote viral
maturation. Additional recent data propose that this locus involves
themainmolecular switch among latency and reactivation, including
the opposing roles of UL135 andUL138. Moreover, a study reported
that the outcome of antiviral immunity might be influenced by
numerous viral determinants, including HCMV strain, virulence,
MHC I downregulation, and other escape strategies elicited by
HCMV during the early virus-host interaction (3).
HCMV ESCAPE MACHINERIES AND
IMMUNOSUPPRESSION

HCMV has evolved manifold immune evasion strategies that
modulate the host immune system and promotes more efficient
infection and dissemination within the host. A chief evasion
strategy depends on hindering the MHC class I-restricted
Frontiers in Immunology | www.frontiersin.org 4
antigen presentation (58). Throughout the immediate early
HCMV infection phase, a cytotoxic T-lymphocyte (CTL)
response counteract antigenic peptides resulting from the IE1
transcription factor (59, 60). The matrix protein, pp65,
possessing a kinase activity, phosphorylates the IE1 protein
and specifically inhibit the presentation of IE-derived antigenic
peptides to escape immune recognition of the early produced
viral proteins (59). Knowing that pp65 is delivered directly into
the cells during the viral fusion phase, HCMV will instantly
escape from immunological surveillance, till further immune
evasion related proteins are secreted (61). HCMV-specific viral
proteins and genes that are associated with the host interferon
responses (pp65), inhibit NK cell detection or activation (37, 62),
and inhibit the recognition of CD4+ and CD8+ T-cell by
preventing MHC Class I and II antigen processing and
appearance (1, 37, 61). HCMV infected cells produce viral IL-
10 homolog which further suppresses CD4+ and C8+ T-cell
responses (1, 61). The previously mentioned evasion
mechanisms are summarized in Figure 1.

In the absence of MHC class expression, HCMV must be
susceptible to NK cell-mediated lysis; however, HCMV donates a
large proportion of its genome to down-regulate the NK cell
activity (63). Consequently, the surface expression of HLA-E and
HLA-G is stimulated by gpUL40 and CMV-IL10 respectively
(64–66). In addition, the expression of UL16 supports HCMV to
block natural killer group 2D (NKG2D)-mediated NK-cell
activation and this is by adopting a blocking strategy that
hinders the binding of NKG2D to UL16 binding proteins
(ULBPs) namely, ULBP1 and ULBP2, and to the MHC class I
chain-related gene B (MICB gene) (37, 61). HCMV US18 and
US20 proteins stimulate the deterioration of a major stress
protein namely, MHC class I polypeptide-related sequence A
(MICA); hence, preventing the NK cell from recognizing infected
cells’ stress signals (67). Other machineries considered by
HCMV to escape NK cell lysis involve the inhibition of NK
cell-activating receptor (NKp30) by pp65 (37), UL122-encoded
microRNA that represses MICB gene expression (68), and
blocking of the expression of CD155 by HCMV-UL141 (37).

To counteract apoptosis and further evade the immune
system, HCMV overexpresses anti-apoptotic proteins and
inhibits pro-apoptotic molecules and death receptors. The
former is achieved by upregulating B-cell lymphoma 2 (Bcl-2)
in HCMV-infected cells (69) and expressing Fas-associated
death-domain-like IL-1b-converting enzyme-inhibitory
proteins (FLIP) by IE2 (70). On the other hand, pUL36
inhibits the induction of procaspase 8 to the death-inducing
signaling complex (DISC) and pUL37 inhibits pro-apoptotic Bcl-
2 members namely Bcl-2-associated X Protein (Bax) and Bcl-2
homologues antagonist/killer (Bak); thus, HCMV is hindering
apoptosis through two distinct mechanisms (6, 61).
Furthermore, HCMV has developed UL36 and UL37 proteins,
which enhance the survival of infected cells; thus, stimulating
viral dissemination within the host (37, 71). HCMV escapes
complement attack by upregulating the host-encoded
complement regulatory proteins (CRPs) (72) and by the ability
of HCMV to integrate host cell-derived CRPs, CD55 and CD59
in its virions (6).
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Lastly, HCMV produces the G-Protein-coupled receptors
(GCRs) homologs US27, US28, UL33, and UL78 that might act
as eliminators of chemotactic factors, thus hindering the
inflammatory cells’ accumulation at the viral infection site (61,
73). These viral approaches secure novel viral progeny production
and facilitate the spread to other hosts (61). US28 is usually
expressed in the early infection phase; it shows the highest
homogeneity to the CC chemokine receptor CCR1. It also binds
the CC chemokines RANTES, monocyte chemoattractant protein-
1 (MCP-1), monocyte chemotactic protein-3 (MCP3),
macrophage inflammatory protein-1 alpha (MIP-1a), and
macrophage inflammatory protein-1 beta (MIP-1b), in addition
to the membrane-associated CX3C chemokine, fractalkine (37, 61,
74). US28 expression results in the stimulation of phospholipase C
and NF-kB signaling. The US28-fractalkine interaction has been
involved in cell targeting and viral dissemination (61). The
transcription of US28 takes place during productive and latent
HCMV infection, which might justify the dissemination of latent
HCMV (75, 76). Moreover, HCMV encodes a homolog of the
immunosuppressive cytokine IL-10 (UL111a) (62, 71); it likewise
possesses potent immunosuppressive traits, including the
inhibition of mitogen-stimulated peripheral blood mononuclear
cells (PBMCs) proliferation in addition to the blockade of pro-
inflammatory cytokine synthesis in PBMCs and monocyte (37,
Frontiers in Immunology | www.frontiersin.org 5
61). CMV IL-10 binds to the cellular human receptor of IL-10
despite its minimal homology to the endogenous cellular IL-10
(61). In addition, HCMV establishes immune tolerance by
inducing the transcription and release of TGF-b which inhibits
anti-viral IFN-g and TNF-a cytokine production and cytotoxic
effector activities of HCMV specific Th1 cells (77). Further
homologs encoded by HCMV are UL144 which is a viral TNF
receptor and an effective IL-8-like chemokine (viral CXC-1)
prompting the chemotaxis of peripheral blood neutrophils
(UL146) (37). Lastly, HCMV strategies that modify the cellular
infected environment to restrict immune identification are known
to be widely expressed during lytic infection; however, recent
evidence shows that viral genes’ activity in preventing immune
recognition is being remarkable even during latency phases (75).
Recent data shows that the majority of the HCMV-encoded
proteins and microRNAs (miRNAs) are expressed also during
latent stages (75, 76) (Table 1 and Figure 1).
HCMV COMPLICATIONS UNDER
IMMUNOSUPPRESSION

The suppressive effects exerted by HCMV on the host immune
system, HCMV persistence, dissemination, and reactivation result
FIGURE 1 | HCMV-induced modulation of the host immune system. The battle between the host immunity and HCMV is permanent, with HCMV developing various
mechanisms to evade the host immune system. Immunosuppression may be ascribed to the variety of immune modulators encoded by HCMV-specific gene
products. HCMV viral genes prevent MHC Class I and II antigen presentation and thus interfere with interferon responses, NK cell recognition as well as CD4+ and
CD8+ T-cell recognition. Additional HCMV genes for instance IL-10 homologue (UL111a), and viral proteins acting as receptors for host inflammatory cytokines
(US28), further suppress the host immune responses.
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in dire consequences. The severe and mortal complications
resulting from HCMV reactivation mainly occur in
immunosuppressed and seriously ill immunocompetent
individuals in whom the HCMV infection is accompanied by
prolonged hospitalization and/or mortality. Furthermore, the
manipulation of the host immunity can result in superinfections
with other herpesviruses or bacteria, and exacerbate SARS-CoV-2
infections that are benefiting from the weakened immune system
(18, 19, 103, 104). Since HCMV infection is known as a prevalent
congenital viral infection, it might generate viral hepatitis with
jaundice in addition to long-lasting disabilities, including hearing
and visual damage, neurological impairments, and mental
retardation (103). Additionally, studies show that HCMV has
been detected in tissue specimens from immunocompetent
individuals with inflammatory diseases, including atherosclerosis,
psoriasis (6, 105), rheumatoid arthritis (24), inflammatory bowel
disease (IBD) (105), and systemic lupus erythematosus (SLE); it has
been concerned in the development of these diseases (103). HCMV
leads to the development of restenosis after coronary angioplasty,
chronic rejection of organ transplantation, chronic graft-versus-
host disease in recipients of bone marrow transplants (24). Such
observations infer the presence of an association between HCMV
and autoimmune diseases. Knowing that the HCMV chemokine
receptor homolog, US28, is considered a major co-receptor for
several HIV strains, it provokes cell fusion with several forms of
viral envelope proteins in addition to stimulating HIV-1 entry into
HCMV- infected cells (106). Several epidemiologic studies
suggested that HCMV infection has been linked to an elevated
risk of cardiovascular death, one of which revealed that CMV
seropositivity has been significantly associated with cardiovascular
mortality (P-value=0.007) (107). This association was confirmed by
another study showing an “increased six-year cardiovascular
mortality” (P-value=0.021) (108). Further findings showed that
CMV seropositive elderly presented elevated cardiovascular
mortality compared to CMV-negative ones; the subhazard ratio
for cardiovascular mortality was 1.95 (95% CI: 1.29–2.96, P-
value=0.002) (109). The association between HCMV and
vascular diseases is verified by the transient presence of US28 in
smooth muscle cells which induces chemokinesis and chemotaxis
(61). Moreover, since HCMV infection has been involved in
producing modifications among the total T-cell population and
adversely affecting to the immune well-being of elderly, it
stimulates the occurrence of numerous age-related syndromes,
and decreases efficacy of vaccines (3, 12, 110). Additionally, in
elderly, HCMV could contribute to inflammation-mediated
vascular pathology which is evaluated by determining systemic
inflammation markers (C-reactive protein, IL-6, and TNF) and it
might also cause direct vascular damage (2).
HCMV ONCOMODULATION AND ITS
SIGNIFICANCE IN TUMOR
MICROENVIRONMENT
Alterations resulting from cancerous genetic and epigenetic
instability provide recognizable antigens that are distinguished
Frontiers in Immunology | www.frontiersin.org 6
by the host immune system (111, 112). As cancer evolves, it can
resist immune clearance by prompting tolerance in the presence
of tumor-associated inflammatory cells (113). Consequently, a
tumor microenvironment is generated and controlled by tumor-
induced molecular and cellular interactions (114) in which
immune cells not only fail to exert anti-tumor effector
functions, but also promote tumor development (113). Since
CMV possesses different cellular signaling pathways, encodes
many genes that exhibit immunosuppressive effects, and may
empower cancer hallmarks, it thus plays an essential role in
generating cancerous cells and has a fundamental impact on the
tumor microenvironment (1, 29, 115).

Some studies put extra emphasis on the indirect role of CMV
in cancer (115, 116). For instance, Dey et al. suggested that the
association between glioma and CMV is an “observational
association” (117). However, the prevalence of HCMV is
remarkably high in several cancer forms (26, 118). Several
research groups showed that over 90% of breast, colon, and
prostate cancer, rhabdomyosarcoma, hepatocellular cancer,
salivary gland tumors, neuroblastoma and brain tumors were
positive for HCMV nucleic acids and/or proteins (26). HCMV
DNA was confirmed in 100% of breast cancer and 91% of
sentinel lymph nodes samples from the metastatic group (119).
Moreover, a study conducted by Taher et al., showed HCMV
detection in 98% of breast cancer derived metastatic brain
tumors, suggesting a potential link between HCMV and
metastatic cancer (120). HCMV was considered as a potential
therapeutic target in metastatic cancer due to the expression of
HCMV-IE protein in 53% of breast cancer samples which
therefore resulted in shorter overall survival, and the detection
of HCMV DNA and transcripts in 92% and 80% of the used
specimens respectively (120). Another study showed the
inversely proportional relation between HCMV-IE1 presence
and hormone receptor expression suggesting HCMV role in
hormone receptor-negative breast cancer tumors (121). HCMV
IE1 and pp65 were present in 82% and 78% of colorectal cancer
samples, and in 80% and 92% of adenocarcinomas, respectively.
In colon cancer cells, these HCMV-specific proteins contribute
to the induction of Bcl-2 and COX-2 proteins thus promoting
colon cancer progression (122). Cobbs et al. showed that
HCMV-IE1 was expressed in all studied glioma biopsy
specimens, in all grades (II-IV) (123). Over again, HCMV-IE
and late proteins were expressed in 100% and 92% of primary
neuroblastoma samples respectively; notably, HCMV proteins
were detected in CD133 and CD44-positive neuroblastoma cells
(118). HCMV DNA was detected in the peripheral blood of
GBM patients (80%), suggesting either HCMV reactivation or
viral DNA shedding from HCMV-tumor cells (124). In addition,
HCMV was detected in all evaluated preneoplastic and
neoplastic prostate lesions (125). In Hodgkin’s disease cases,
the HCMV infection frequency was 28.6% (126). Further,
expression of HCMV was marked in the neoplastic epithelium
of 97% of the carcinoma patients (127). 92% of the primary
medulloblastoma cases expressed HCMV-IE protein while 73%
expressed late viral proteins (128). Evident elevated survival rates
were observed among HCMV positive glioblastoma patients who
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were on anti-viral therapy (valganciclovir) (120, 129). A 70% and
90% survival rate was proved with 6-month and continuous
valganciclovir treatment, respectively (120). Despite the existing
studies which describe the possible involvement of CMV in
cancer, further large scale investigations are needed in addition
to the necessity of novel epidemiologic studies knowing that the
latter might be challenging to conduct especially among CMV-
positive cancer patients.

HCMV infects multiple cell types including stem cells;
referring to the fact that Thy-1 and platelet-derived growth
factor receptor alpha (PDGFRa) stem cell markers enhance
HCMV infection, stem cells are susceptible to HCMV infection
Frontiers in Immunology | www.frontiersin.org 7
(130, 131). Thus, stem cells serve as reservoirs for HCMV
persistence and reactivation. The major stem cell regulator
namely, Wnt tends to trigger HCMV transcriptional activation;
hence, once HCMV disseminates to various body organs, viral
expression occurs during patients’ lifetime in stem cells (132). It
is worth noting that the latter increases the chance of
accumulation of genetic mutations; thus, stem cells lose control
over their self-growth and renewal, act as a cancer source, and
become susceptible to oncogenesis in the presence of
inflammation and altered DNA repair pathways (133). In
return, HCMV can support stem cells survival which would
potentially elevate oncogenesis. Studies reveal the effect of
TABLE 1 | HCMV gene products involved in immunomodulation and their oncogenic characteristics.

HCMV
Gene
Products

Mechanism of Action Possible Oncogenic Characteristic

US2, US3,
US6, US11

➢MHC class I expression impairment, reducing HCMV antigen presentation toward
CD8+ cells and evasion of CD8+ T-cell immune responses, superinfection (60, 78)
➢US2 down regulates MHC class II and reduces HCMV antigen presentation to
CD4+ cells (79)

➢Preventing CD8+ mediated cytotoxic tumor killing (80)

US18 and
US20

➢Interfere with B7-H6 surface expression including endosomal degradation, evades
NK cells’ immune detection (81)

➢HCMV-immune evasion might indirectly affect tumor
environment

US28 (viral
GPCR)

➢Promotes chemotaxis (82, 83) ➢Cellular proliferation, tumor growth, enhanced angiogenesis and
cell survival (84, 85)

UL16 ➢Regulation of NK cell ligand NKG2D and impairing NK cells function (79) ➢Immune evasion, protects the cells from cytotoxic peptides-
mediated lysis, and protects cancer cells from both NK and T-
cells (80)

UL40 ➢NK cell evasion (62)
➢HLA-E over expression (62), enhancing its interaction with the inhibitory receptor
CD94/NKG2A (86)

➢HLA-E Over expression (1)

UL83
(pp65)

➢IE1 sequestration, repress proteasome processing, reduce NKp30 effect and delays
antiviral gene expression (87)

➢Genomic mutation, immune evasion (84)

UL122
(IE2)

➢Overexpression of anti-apoptotic FLIP protein (60, 79) ➢Elevated immune suppression, cell proliferation, escaping
growth suppressors and apoptosis (84)

UL123
(IE1)

➢Induction of TGF-b (82) ➢Cellular proliferation, genome instability and mutation, escaping
growth suppressors, and ameliorated cell survival (84)

UL82
(pp71)

➢Inhibits antiviral response by binding to interferon stimulator gene (87, 88) ➢Cellular proliferation, escaping growth suppressors, and
genomic mutation (84)

UL111A
(cmvIL-10)

➢Inhibits MHC class II expression and suppresses CD4+ T-cell recognition (83, 89) ➢Immunosuppression, cellular proliferation, stimulates migration
and metastasis, telomerase activation (84)

UL142 ➢Inhibiting MICA (79, 90) ➢HCMV-immune evasion might indirectly affect tumor
environment

UL36 ➢Complexing with pro-caspase-8 thus suppressing its proteolytic stimulation and
prompting its designation as viral inhibitor of caspase-8-induced apoptosis (vICA) (91,
92)

➢Enhanced cell survival

UL37 ➢Inhibition of Bak and Bax protein, thus inhibiting apoptosis (79) ➢Enhanced cell survival
UL76 ➢Activation of the DNA damage response thus inducing IL-8 expression (93) ➢Genome instability and mutation (84)
UL97 ➢Forms a complex with pp65 and mediates immune evasion (5, 94) ➢Escaping growth suppressors (84)
UL141-
UL144

➢Encodes for homolog of TNFR, hinders CD155 and CD112 expression (NK cell
activating ligands) and the death receptor for the TNF family ligand TRAIL (5, 95)

➢HCMV-immune evasion might indirectly affect tumor
environment

UL145 ➢Depletion of helicase like transcription factor- (HLTF) through the recruitment of
Cullin4/DDB ligase complex (96, 97)

➢Impeding innate immunity might indirectly affect tumor
environment

UL146 ➢Promotes neutrophil chemotaxis, immune escape (5, 98) ➢HCMV-immune evasion might indirectly affect tumor
environment

UL148 ➢CD58 Suppression; effective modulator of CTL function, amplify degranulation in
cytotoxic T lymphocytes and NK cells against HCMV-infected cells (85)

➢HCMV-immune evasion might indirectly affect tumor
environment

miR-
UL112

➢Down regulation of MICB thus escaping NK cells, and decreased T-cell recognition
(99, 100)

➢Exerts its oncogene function by directly targeting tumor
suppressor candidate 3 (TUSC3) in GBM (101)

LncRNA ➢Function in both innate and adaptive immunity including the development,
activation, and homeostasis of the immune system (102)

➢Cellular proliferation and transformation, facilitating signal
transductions in cancer signaling pathways (84, 102), it’s also
involved in angiogenesis (85)
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HCMV-IE1 protein in promoting the preservation of
glioblastoma cancer stem cells through its induction of SRY-
Box Transcription Factor 2 (SOX2), Nanog, Nestin, and
octamer-binding transcription factor 4 (OCT3/4) where it’s
considered as a key regulator of glioblastoma stem-like
phenotype (134). In GBM cells, the induction of transcription
factors that are crucial for cancer stem cell persistence, cancer
growth, and signaling pathways associated with the epithelial to
mesenchymal (EMT) phenotype are stimulated by HCMV IE1
expression (134, 135). Many studies proved that cancer stem cells
infected with HCMV possess a progression potential in contrast
to HCMV-negative cancer stem cells. Some HCMV strains, for
instance HCMV-DB and HCMV-BL, are capable of
transforming human mammary epithelial cells and producing
a “transcriptional profile” associated with DNA hypomethylation
that resulted in enhanced proliferation, activation of cancer stem
cell, and EMT process (136, 137). Likewise, HCMV was proven
to induce an EMT phenotype in colorectal carcinoma cells
accompanied with amplified tumor proliferation and cancer
cell invasion (136). In addition, IE1 expression was detected in
CMV transformed HMECs (CTH) cells which as well express
embryonic stem cell markers (138). HCMV IE1 and IE2 gene
expression in addition to UL76 genes prompt DNA mutagenesis,
chromosome breakage, and genomic instability. Such expression
of HCMV gene products could affect the pathways of p53 and Rb
tumor suppressors, and other pathways that are responsible for
DNA repair (27, 139, 140). Presuming the role of HCMV gene
products in causing DNA damage directly and indirectly, and
stimulating proliferation in stem cells, HCMV may have the
potential to initiate and promote tumor formation. The
oncomodulatory potential of HCMV catalyzes an oncogenic
process by producing viral proteins, helping tumor cells to
evade the immune system, and preventing and/or delaying cell
death. The lack of HCMV specific cellular immune responses in
these immune-privileged tumor sites would definitely enhance
HCMV replication. On the other hand, cancer cells on their own
can escape immune responses by diverse mechanisms. Thus, the
combination of intrinsic cellular with viral immune escape
machineries in cancer cells may offer an environment which
enhances HCMV replication and boost cancer cells to evade
from immune surveillance showing the bidirectional relationship
between tumor cells and HCMV (25, 141). It’s worth mentioning
that HCMV can activate many of the tumor pathways’ hallmarks
including uncontrolled inflammation, myeloid cells’ infiltration,
immune modulat ion , angiogenes i s , and metabol ic
reprogramming. Production of inflammatory cytokines
including RANTES, MCP-1, MIP-1a, IFN-g, TNF- a, IL-4, IL-
18, and IL-8F is induced by HCMV (142, 143). The HCMV-
US28 chemokine receptor strongly promotes the expression of
the NF-kB, COX-2, IL-6, and p-STAT-3 which could initiate
oncogenic pathways (144, 145). Upon HCMV infection of
human cancer stem cells and in the presence of cmvIL-10,
cancer stem cells can induce macrophage reprogramming “M2
phenotype” in the tumor microenvironment hence favoring the
appearance of tumor-associated macrophages (TAMs) and
enhancing other immunomodulatory, oncogenic, and
Frontiers in Immunology | www.frontiersin.org 8
angiogenic cytokines’ expression such as STAT3 and vascular
endothelial growth factor (VEGF) (146–148). Similar to US28,
the cmvIL-10 chemokine which is known to be expressed in
latency phase and tumor cells can enhance cancer cell invasion
(149). In addition, HCMV can guarantee neutrophils and
mononuclear cells survival, which can support a quick
oncogenesis via the activation of an angiogenic switch (150,
151). Further, long non-coding RNAs (lncRNAs) were described
as efficient players not only in facilitating signal transductions in
tumor signaling pathways but also in promoting tumor evasion
from immunosurveillance. It has been also shown that immune
cells for instance, T-cells, B-cells, dendritic cells, macrophages,
and myeloid cells control tumor immune responses via lncRNAs
linked pathways (152, 153). In CTH cells, HCMV lncRNA4.9
was formerly detected in tumors isolated from xenograft NSG
mice injected with CTH cells, as well as in human breast cancer
biopsies (137). Moreover, several studies specified that
modifications in gut permeability and intestinal microbiota
translocation can stimulate chronic inflammation as well as
causing auto-immune and neoplastic diseases (154, 155).
Knowing that CMV presence was associated with upregulation
of various cytokines, elevated epithelial gut damage, microbial
translocation, and systemic inflammation (156, 157), it might
play a part in eliciting carcinogenesis. All in all, these studies
indicate that HCMV can be actively involved in enabling cancer
progression and this is through inducing certain pathways that
give rise to epigenetic modifications, and promoting the
activation of cancer stem cell, angiogenesis, invasion, and an
EMT phenotype (136, 158, 159). Certainly, one of the limitations
for assessing the effect of HCMV on immunity and cancer
progression is that the majority of the investigations were done
on the high risk CMV-positive subpopulation which might
involve diverse immunomodulation sociodemographic and
environmental co-factors other than HCMV status as well as
divergent lifestyles and medical history. Therefore, prospective
studies are highly required to rule out other immunomodulatory
factors and precisely evaluate the impact of CMV on
host immunity.

Nonetheless, it is noteworthy that the oncogenic potency of
HCMV clinical strains varies between low and high-risk strains.
HCMV-DB and HCMV-BL have been classified as high-risk
strains in which they possessed their oncogenic potentials in
acutely infected human mammary epithelial cells (HMEC) in
vitro showing sustained transformation. These high-risk strains
were characterized by elevated Myc expression, PI3K/Akt
pathway activation, and p53 and Rb gene repression (138).
With regard to immune responses, Myc suppresses immune
surveillance by modulating the expression of the innate immune
regulator (CD47, also known as integrin-associated protein) and
the adaptive immune checkpoint namely, programmed death
ligand 1 (PD-L1, also known as CD274 and B7-H1) (160–164).
Further, Myc regulates thrombospondin-1 (161) and Type 1 IFN
(165, 166). Hence, Myc initiates and maintains tumorigenesis
through the modulation of immune regulatory molecules. PI3K/
Akt activation induced inflammation and immunosuppression
through nitric oxide synthase (NOS) overexpression; thus,
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resulting in tumor initiation via the activated Notch pathway
leading to tumor progression (167). On the other hand,
suppression or mutation of p53 has been shown to decrease
MHC-I presentation, increase STAT3 phosphorylation,
upregulate PD-L1 via microRNA (miR34), elevate pro-
inflammatory chemokine and cytokine production, and
indirectly upregulate the expression of chemokine receptors
(CXCR4 and CXCR5) (160, 168, 169). Loss of Rb leads to the
increase in CCL2 and IL6 secretion and this is because of the
elevated fatty acid oxidation (FAO) activity and enhanced
mitochondrial superoxide (MS) production (170). Indeed,
those molecular alterations have been linked to immune
suppression in the tumor microenvironment indicating that
only high-risk HCMV strains possessing oncomodulatory
properties are potentially involved in the oncogenesis process
as described previously (84, 138) (Figure 2). In line with the
previously presented epidemiological studies, and since HCMV
was confined within tumors correlating positively to poor
prognosis, as well as the potential of HCMV gene products in
regulating tumorigenic pathways and processes linked to cancer
hallmarks, and finally the HCMV broad tissue tropism, we infer
that HCMV possesses distinctive mechanisms in cancer
progression (26, 29, 171).
Frontiers in Immunology | www.frontiersin.org 9
THERAPEUTIC APPROACHES IN
HIGH-RISK POPULATIONS

The fact that HCMV is highly prevalent in different cancer
forms, opens up the possibility to manage such cancers with
anti-HCMV medications. Currently, two major approaches are
being chased; the first emphases on antiviral therapy while the
other targets HCMV directed immunotherapy. The core
approach to antiviral therapy involves the use of valganciclovir.
The rationale behind using valganciclovir is suppressing HCMV
replication in HCMV-positive glioblastoma (GBM) cells leading
to the repression of virus-mediated tumor-promoting strategies.
Despite its viral replication suppression, valganciclovir doesn’t
eradicate the virus. Thus, short-term valganciclovir treatment
wouldn’t be ideal for treating glioma patients, necessitating
long-term treatment to maintain the tumor suppressive
properties (116). Interestingly, valganciclovir treatment
outcome was improved in combination with celecoxib (COX-2
specific inhibitor). Since glioblastoma, medulloblastoma, and
neurob l a s t oma tumor s show h igh expr e s s i on o f
cyclooxygenase-2 (COX-2) and nonsteroidal anti-inflammatory
drugs (NSAIDs) levels, COX-2 and PGE2 inhibitors possess a
profound effect on tumor growth. The two inhibitors
FIGURE 2 | Major signaling pathways stimulated by HCMV that modulate the immune landscape. HCMV-infected cells produce elevated levels of interleukin-6 (IL-6)
that activates signal transduction via IL-6 receptor (IL6R)-STAT3 axis. US28, an active chemokine receptor, also plays a major role in activating STAT3 in cancer
cells. The combination of STAT3 activation and the impact of HCMV on cancer cell apoptosis, invasion, migration, adhesion, angiogenesis, and immunogenicity
significantly exacerbates malignancy. In contrast to p53 and Rb, the upregulation of Akt, Myc, PD-L1, and CCL2 strongly exerts immunosuppressive and
oncomodulatory effects. HCMV-induced alterations in the TME may contribute to oncomodulation.
September 2021 | Volume 12 | Article 730765

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


El Baba and Herbein HCMV Immune Landscape
competently block HCMV replication and limiting the US28-
expressing tumor cell growth. Therefore, the significant effects
behind the use of aspirin and other NSAIDs in tumor prevention
investigations could be somewhat due to the suppression of
HCMV replication in pre-malignant lesions (80). The existing
link between CMV and cancer creates a new avenue for
immunotherapeutic strategies that target CMV such as,
adoptive T-cell transfer and vaccine approaches (172). During
adoptive lymphocyte transfer (ALT), autologous T-cells are
expanded and activated ex vivo against the tumor. After that,
they are transferred into patients where lymphodepletion
stimulates a substantial proliferation of T-cells and intensifies
tumor-specific immunity (173, 174). There exist various ongoing
clinical studies assessing the effectiveness of adoptive T-cell
therapy using HCMV-specific T-cells, or DCs with CMV-pp65
RNA in order to vaccinate GBM patients. CMV-specific T-cells,
especially pp65-specific T-cells, favorably infiltrate glioblastoma
tumors and were able to stimulate glioblastoma cells’ killing
(173). The fact that a high percentage of GMB samples were
HCMV-positive has led to potential immunotherapy targets for
GBM treatment. HCMV-specific proteins (IE1, pp65, and gB)
are being investigated for the development of immunotherapy
targets (116, 174). Interestingly, a study showed that CMV-
stimulated NK cells and gd-T-cells might have antineoplastic
potential and CMV reactivation has been associated with
minimal risk for relapsed leukemia in hematopoietic stem-cell
transplantation (HSCT) patients (173). Since oncolytic
virotherapy has been recognized as a promising approach for
treating cancers in recent years, the use of “oncolytic CMV
therapy” in combination with anti-tumor medications, immune
checkpoint inhibitors (targeting CTLA4 and PD-L1), epigenetic
therapeutics, or as “HCMV/HSV-1 oncolytic virus” could be
regarded as one of the most intriguing antitumor
approaches (175).

Major approaches used to target Myc are mostly targeting
Myc gene transcription (JQ1, AZD5153, GSK525762, dBET1,
THZ1, Roscovitine, Flavopiridol, QN-1, and APTO-253),
inhibiting Myc mRNA translation (MLN0128, Silvestrol,
eFT226, BTYNB, Rapamycin, MK2206, BEZ235), targeting
Myc oncoprotein stability (Volasertib, TD19, P22077,
MLN8237, BI 6727, and BI 2536), controlling Myc-Max
interactions (Omomyc and MYCMI-6), and blocking Myc’s
accessibility to other genomic targets (Sulfopin) (176–178).
Further, bromodomain and extraterminal protein (BET)
inhibitor, JQ1, decreased expression of PD-L1 and CD47
resulting in the recruitment of T-cells. Hence, drugs targeting
Myc-associated pathways may be used to modify the expression
of immune checkpoints (179). Furthermore, the PI3K/AKT
pathway is activated in cancer; thus, identifying AKT inhibitors
that can block PI3K/AKT signaling could attenuate tumor
growth and recover immune responses. AKT inhibitors are
classified in Synthetic (MK-2206, AZD5363, GDC-0068,
Perifosine) and natural AKT inhibitors (Resveratrol or grape
powder, Ginger root extract, Sulforaphane) (180, 181). Few drugs
in clinical use or preclinical assessment have been verified to
directly or indirectly target PI3K signaling such as BEZ235,
Frontiers in Immunology | www.frontiersin.org 10
Ly294002, Rapamycin, CCI779, PX-866, SF1124, PX316,
Miltefosine, and Perifosine (178, 181). Reactivating tumor
suppressors is a substantial pharmacological challenge;
restoring p-53 activity stimulated innate immunity particularly
DC activation, and it also promoted adaptive immunity. Nutlin-
3a, mouse double minute 2 homolog (MDM2) inhibitor, induces
local p53 activation in the TME resulting in MDM2-mediated
tumor cell apoptosis even in the presence of a sustained Notch
activity (168, 182, 183). Re-expression of p53 was stimulated by
Tamoxifen injections causing massive apoptosis (179). T-cell
responses were driven by using p53 vaccines (ALVAC-p53 and
MVAp53) or synthetic long peptides of p53 (169). Moreover, the
highly selective cyclin-dependent kinases 4/6 (CDK4/6)
inhibitors (Palbociclib, Ribociclib, and Abemaciclib) were
proved to avert RB phosphorylation thus regulating MHC
presentation, IFN-g response, and IL-6 signaling (184–186).
Carlumab, a human IgG1 monoclonal antibody, inhibited
CCL2 and it consequently showed promising effects in both
solid tumors and metastatic resistant prostate cancer. A distinct
approach to CCL2/CCR2 interference, was hindering CCR2
using MLN1202 in bone metastasis (187). It has been shown
that CCL2 knockout prompted marked suppression of TAMs-
associated inflammatory cytokines (188); in addition, CCL2-
CCR2 blockade exhibited tumor-suppressive function by
blocking inflammatory monocyte recruitment within the
tumor (170) (Figure 3).

Additionally, because of HCMV’s ability to establish latency
and reactivate, CMV vaccines are presently being developed for
clinical use. To prevent HCMV infection in tumor-independent
settings, the development of an effective HCMV vaccine has been
investigated despite being a struggle for a couple of years. Few have
already granted the approval to a phase III clinical trial thus
possessing promising outcomes (189). The investigated anti-
CMV vaccine types include the live-attenuated (phase 2),
recombinant subunit (phase 2), virus vectored phase (1, 2),
chimeric peptidic (phase 2), enveloped virus-like particles (phase
1), plasmid-based (phase 3), and mRNA (phase 2) vaccines (190).
mRNA-1647, a CMV vaccine covering six mRNAs that encodes
pentamer and gB protein, is designed for CMV prophylaxis; a
phase 3 study will be initiated to assess the prevention of primary
CMV infection in women of childbearing age (ClinicalTrials.gov
Identifier: NCT04232280). Recent data showed that HCMV could
perhaps induce transformation by enhancing the expression of
viral genes (for example,UL69 gene). The presence ofUL69 gene in
CTH cell cultures and UL69 DNA in the majority of breast cancer
biopsies indicates a potential significance of UL69 as a target in
developing HCMV-vaccine (191). The usage of HCMV vaccines
for the treatment of cancer patients generally and GBM patients in
specific might be of high therapeutic value especially that HCMV
has been shown to express oncomodulatory functions. Letermovir,
an FDA approved novel terminase inhibitor, is currently used for
CMV prophylaxis as it selectively compromises CMV replication.
It’s characterized by its high potency compared to ganciclovir and
limited toxicity profile (192). There exists an ongoing phase 2
clinical trial that aim to assess the anti-inflammatory potential of
letermovir in adults with HIV and asymptomatic CMV being on
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antiretroviral therapy-mediated suppression (ClinicalTrials.gov,
Identifier: NCT04840199). Further investigations will be
a welcome addition to evaluate the use of letermovir in
averting CMV recurrence and treatment as well as to reverse
letermovir resistance.
CONCLUSION

Overall, HCMV-induced amplification of immune evasion
mechanisms mediates oncomodulation and enables tumors to
further escape immune surveillance and develop immune
tolerance favoring other malignant phenotypes. HCMV,
infecting many cell types, induces a pro-inflammatory
environment and conquers specific immune responses
thus creating an immunosuppressive TME. Nevertheless,
getting to know viral immune evasion mechanisms will aid
in understanding aspects of cellular as well as immunological
function, and contribute to the enhancement of immunotherapies’
outcome and antiviral agents eliminating the virus from tumor
tissues which could improve patient’s immune responses and
Frontiers in Immunology | www.frontiersin.org 11
suppress tumor progression. Taking into consideration the
profound effects of HCMV on the quality of life, there remain
further experimental studies to be performed in order to design
effective interventions including vaccines or other approaches that
reinforce immune homeostasis and maintain the adapted immune
response to aging.
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L, Tučková L, et al. The Role of Gut Microbiota (Commensal Bacteria) and
the Mucosal Barrier in the Pathogenesis of Inflammatory and Autoimmune
Diseases and Cancer: Contribution of Germ-Free and Gnotobiotic Animal
Models of Human Diseases. Cell Mol Immunol (2011) 8:110–20.
doi: 10.1038/cmi.2010.67

155. Francescone R, Hou V, Grivennikov SI. Microbiome, Inflammation, and
Cancer. Cancer J (2014) 20:181–9. doi: 10.1097/PPO.0000000000000048

156. Ramendra R, Isnard S, Lin J, Fombuena B, Ouyang J, Mehraj V, et al.
Cytomegalovirus Seropositivity Is Associated With Increased Microbial
Translocation in People Living With Human Immunodeficiency Virus and
Uninfected Controls. Clin Infect Dis (2020) 71:1438–46. doi: 10.1093/cid/ciz1001

157. Gianella S, Chaillon A, Mutlu EA, Engen PA, Voigt RM, Keshavarzian A,
et al. Effect of Cytomegalovirus and Epstein–Barr Virus Replication on
Intestinal Mucosal Gene Expression and Microbiome Composition of HIV-
Infected and Uninfected Individuals. AIDS (2017) 31:2059–67. doi: 10.1097/
QAD.0000000000001579

158. Al-Koussa H, Atat OE, Jaafar L, Tashjian H, El-Sibai M. The Role of Rho
GTPases in Motility and Invasion of Glioblastoma Cells. Analytical Cell
Pathol (2020) 2020:1–9. doi: 10.1155/2020/9274016

159. Shimamura M, Murphy-Ullrich JE, Britt WJ. Human Cytomegalovirus
Induces TGF-b1 Activation in Renal Tubular Epithelial Cells After
Epithelial-To-Mesenchymal Transition. PloS Pathog (2010) 6:e1001170.
doi: 10.1371/journal.ppat.1001170
September 2021 | Volume 12 | Article 730765

https://doi.org/10.1215/15228517-2007-035
https://doi.org/10.1097/01.ju.0000080263.46164.97
https://doi.org/10.1186/2042-4280-1-8
https://doi.org/10.1172/JCI57147
https://doi.org/10.1172/JCI57147
https://doi.org/10.1056/NEJMc1302145
https://doi.org/10.1371/journal.ppat.1004999
https://doi.org/10.1371/journal.ppat.1004999
https://doi.org/10.1038/nature07209
https://doi.org/10.1128/AAC.00029-13
https://doi.org/10.1016/j.mehy.2017.03.005
https://doi.org/10.1158/0008-5472.CAN-14-3307
https://doi.org/10.1158/0008-5472.CAN-14-3307
https://doi.org/10.1158/0008-5472.CAN-07-2291
https://doi.org/10.1158/0008-5472.CAN-07-2291
https://doi.org/10.3892/ijo.2017.4135
https://doi.org/10.1038/s41598-018-30109-1
https://doi.org/10.1038/s41388-021-01715-7
https://doi.org/10.1002/rmv.368
https://doi.org/10.1186/1423-0127-16-107
https://doi.org/10.1186/1423-0127-16-107
https://doi.org/10.1016/j.molmed.2003.11.002
https://doi.org/10.1016/j.molmed.2003.11.002
https://doi.org/10.3389/fimmu.2019.00078
https://doi.org/10.1007/978-3-540-77349-8_22
https://doi.org/10.18632/oncotarget.11817
https://doi.org/10.1158/0008-5472.CAN-08-2487
https://doi.org/10.1158/0008-5472.CAN-08-2487
https://doi.org/10.18632/oncotarget.17061
https://doi.org/10.4161/onci.25620
https://doi.org/10.18632/oncotarget.24102
https://doi.org/10.18632/oncotarget.24102
https://doi.org/10.1371/journal.pone.0088708
https://doi.org/10.1073/pnas.0601807103
https://doi.org/10.1080/2162402X.2015.1075693
https://doi.org/10.1371/journal.ppat.1008390
https://doi.org/10.1371/journal.ppat.1008390
https://doi.org/10.1002/1878-0261.12413
https://doi.org/10.1002/1878-0261.12413
https://doi.org/10.1038/cmi.2010.67
https://doi.org/10.1097/PPO.0000000000000048
https://doi.org/10.1093/cid/ciz1001
https://doi.org/10.1097/QAD.0000000000001579
https://doi.org/10.1097/QAD.0000000000001579
https://doi.org/10.1155/2020/9274016
https://doi.org/10.1371/journal.ppat.1001170
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


El Baba and Herbein HCMV Immune Landscape
160. Casey SC, Baylot V, Felsher DW. MYC: Master Regulator of Immune
Privilege. Trends Immunol (2017) 38:298–305. doi: 10.1016/j.it.2017.01.002

161. Rakhra K, Bachireddy P, Zabuawala T, Zeiser R, Xu L, Kopelman A, et al.
CD4+ T Cells Contribute to the Remodeling of the Microenvironment
Required for Sustained Tumor Regression Upon Oncogene Inactivation.
Cancer Cell (2010) 18:485–98. doi: 10.1016/j.ccr.2010.10.002

162. Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI. Mast Cells are
Required for Angiogenesis and Macroscopic Expansion of Myc-Induced
Pancreatic Islet Tumors. Nat Med (2007) 13:1211–8. doi: 10.1038/nm1649

163. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD, et al.
CD47 Is an Adverse Prognostic Factor and Therapeutic Antibody Target on
Human Acute Myeloid Leukemia Stem Cells. Cell (2009) 138:286–99.
doi: 10.1016/j.cell.2009.05.045

164. Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, et al. MYC Regulates
the Antitumor Immune Response Through CD47 and PD-L1. Science (2016)
352:227–31. doi: 10.1126/science.aac9935

165. Schlee M, Hölzel M, Bernard S, Mailhammer R, Schuhmacher M, Reschke J,
et al. C-MYC Activation Impairs the NF-kb and the Interferon Response:
Implications for the Pathogenesis of Burkitt’s Lymphoma. Int J Cancer
(2007) 120:1387–95. doi: 10.1002/ijc.22372

166. Stark GR, Kerr IM, Williams BRG, Silverman RH, Schreiber RD. How Cells
Respond To Interferons. Annu Rev Biochem (1998) 67:227–64. doi: 10.1146/
annurev.biochem.67.1.227
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ALT Adoptive lymphocyte transfer
BAK Bcl-2 homologues antagonist/killer
BAX BCL2-Associated X Protein
Bcl-2 B-cell lymphoma 2
BET Bromodomain and extraterminal protein
CDK Cyclin-dependent kinases
COVID-19 Coronavirus disease 2019
COX-2 Cyclooxygenase-2
CRPs Complement regulatory proteins
CTH CMV transformed HMECs
CTLs Cytotoxic T lymphocytes
DCs Dendritic cells
DISC Death-inducing signaling complex
dsDNA Double-stranded DNA
EBV Epstein-Barr virus
EMT Epithelial to mesenchymal transition
EPCR Endothelial protein C receptor
FAO Fatty acid oxidation
FLIP Fas-associated death-domain-like IL-1b-converting enzyme-

inhibitory proteins
gB Glycoproteins B
GBM Glioblastoma
GCRs G-Protein-coupled receptors
gH Glycoprotein H
HCC Hepatocellular carcinoma
HCMV Human Cytomegalovirus
HHV-5 Human herpesvirus 5
HLTF Helicase like transcription factor
HMEC Human mammary epithelial cells
HSCT Hematopoietic stem-cell transplantation
IBD Inflammatory bowel disease
ICAM-1 Intercellular adhesion molecule-1
IFNs Type I interferons
IL Interleukin
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IL6R IL-6 receptor
JAK Janus kinase
lncRNAs Long non-coding RNAs
MCP-1 Monocyte chemoattractant protein-1
MCP3 Monocyte chemotactic protein-3
MDM2 Mouse double minute 2 homolog
MHC Major histocompatibility complex
MICA MHC Class I Polypeptide-Related Sequence A
MICB MHC class I chain-related gene B
MIP-1a Macrophage inflammatory protein-1 alpha
MIP-1b Macrophage inflammatory protein-1 beta
miRNAs microRNAs
MS Mitochondrial superoxide
NK Natural killer
NKG2D Natural Killer Group 2D
NOS Nitric oxide synthase
NSAIDs Nonsteroidal anti-inflammatory drugs
Oct-4 Octamer-binding transcription factor 4
PBMCs Peripheral blood mononuclear cells
PDGFRa Platelet-derived growth factor receptor alpha
PD-L1 Programmed death-ligand 1
PI3K/AKT Phosphatidylinositol-3-kinase and protein kinase B
SLE Systemic lupus erythematosus
SOX2 SRY-Box Transcription Factor 2
STAT Signal transducer and activator of transcription
TAMS Tumor-associated macrophages
Th T-helper
TLR2 Toll-like receptors 2
TME Tumor microenvironment
TNFR Tumor necrosis factor receptor
TNF-a Tumor necrosis factor-alpha
TUSC3 Tumor suppressor candidate 3
UL Unique long
ULBPs UL16 binding proteins
US Unique short
VEGF Vascular endothelial growth factor
vICA Viral inhibitor of caspase-8-induced apoptosis
gd T-cells Gamma-delta T-cells
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